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Abstract. Exemplar-based colorization approaches rely on reference
image to provide plausible colors for target gray-scale image. The key
and difficulty of exemplar-based colorization is to establish an accurate
correspondence between these two images. Previous approaches have at-
tempted to construct such a correspondence but are faced with two ob-
stacles. First, using luminance channel for the calculation of correspon-
dence is inaccurate. Second, the dense correspondence they built intro-
duces wrong matching results and increases the computation burden. To
address these two problems, we propose Semantic-Sparse Colorization
Network (SSCN) to transfer both the global image style and detailed
semantic-related colors to the gray-scale image in a coarse-to-fine man-
ner. Our network can perfectly balance the global and local colors while
alleviating the ambiguous matching problem. Experiments show that our
method outperforms existing methods in both quantitative and qualita-
tive evaluation and achieves state-of-the-art performance.

Keywords: image colorization, sparse attention, exemplar-based col-
orization

1 Introduction

Image colorization is a classic and appealing task that predicts the vivid colors
from a gray-scale image. As there is no unique correct color for a given pixel,
three classes of methods are proposed to constrain the output color space. The
first one is called automatic colorization, such as [5,40]. These methods generally
rely on the powerful convolutional networks and learn a direct mapping from a
large-scale image dataset. The second class introduces additional human inter-
vention, such as user-guided scribbles [41,28,7] and text [25,1]. They require users
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to provide reliable color/text labels for more dedicated colorization. While the
third class, denoted as exemplar-based method [23,11,33,35,19,2,6,10,36,21], is a
trade-off between fully automatic and human intervention strategies. It adopts
a reference image as guidance and generates a similar color-style image. These
three kinds of methods have different applications and prior information, thus
cannot be compared side-by-side. In this work, we study exemplar-based image
colorization, due to its large flexibility and excellent performance.

Target Reference Result Target Reference Result

Fig. 1. Overview colorization results of the proposed method. Our method can com-
mendably build correspondence between the target and reference images and has the
capability to generate a plausible colorization of gray-scale images.

The difficulty of exemplar-based image colorization is to build an accurate
correspondence between the gray-scale image and the color reference. Some
works regard colorization as a style transfer problem [35], and usually trans-
fer the global color tones. As a result, they lack detailed color matching between
semantically similar objects/parts. Other researchers [38,19,23,36,39] propose
to construct a dense correspondence with a correlation matrix, whose elements
characterize pairwise similarity between different image features. Although they
have achieved considerable progress, they are still facing two obstacles. First,
the correspondence is calculated using the luminance channel of the input im-
age. However, as gray-scale images do not contain enough semantic information
as color images (a common knowledge in image classification [11]), the corre-
spondence based on the luminance channel [23,36,38,39] is inaccurate. Second,
the dense correspondence itself will also bring in unavoidable drawbacks. It not
only introduces wrong matching results for semantically unrelated objects, but
also increases the computation burden.

To address the above mentioned problems, we propose a new coarse-to-fine
colorization framework – Semantic-Sparse Colorization Network – to transfer
both the global image style and the detailed semantic-related colors to the gray-
scale image. Specifically, in the coarse colorization stage, we adopt an image
transfer network to obtain a preliminary colorized result. The color informa-
tion of the reference image is encoded as a vector, which is then migrated to
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the gray-scale image by an AdaIN [12] operation. In the fine colorization stage,
we will first calculate the semantic correspondence between the coarse result
and the reference image. Specially, only the semantic-significant parts and some
background regions are reserved for calculation, leading to a sparse correlation
matrix. Then the attention mechanism will be used to re-weight the reference im-
age and help generate the final color result. The proposed method can perfectly
balance the global and local colors while alleviating the ambiguous matching
problem caused by dense correspondence. Extensive experiments have shown
the superiority of our network towards other state-of-the-art methods. To fa-
cilitate numerical evaluation, we also propose a unified evaluation pipeline for
all exemplar-based colorization methods. Our code will be publicly available for
research purpose.

Our main contributions are summarized as follows:

– We propose to build a more accurate correspondence between a coarse-
colorized result and the reference image. It not only minimizes the infor-
mation gap between the gray-scale input and the color reference, but also
achieves better performance on details.

– We propose a sparse attention mechanism to make the model focus on the
semantically significant regions in the reference image. It could produce more
detailed results with lower computation cost.

– We collect a new test dataset from ImageNet to solve the problem of fair
comparison. We also design a new quantitative evaluation metric to evaluate
exemplar-based colorization methods.

2 Related Work

Because image colorization plays an essential role in image processing tasks such
as old photo restoration and image editing, this subject has been studied for a
long time [4,2,26,24,13]. Recently, many studies have used learning-based meth-
ods to solve this ill-posed problem. These approaches can be roughly grouped
into three classes.

The first one is called automatic colorization, which directly maps gray-scale
images to color images, such as [5] and [40]. They are the earliest methods to use
convolutional networks to learn the mapping from a large-scale image dataset.
MemoPainter [37] uses a memory network to “memorize” rare examples, which
can avoid the interference of dominant color in the dataset and make the model
perform well even without sufficient data. More recently, Transformer has also
been applied to address this task [18]. Some works [3,31,32] take advantage of
generative models to promote the diversity of results. For instance, [32] leverages
the rich and diverse color priors encapsulated in a pretrained StyleGAN [15] to
recover vivid colors. The variational autoencoder (VAE) architecture has also
been used in [9]. However, the colorization process of these methods are lack of
controllability.

The second class introduces additional human intervention, such as user-
guided scribbles and text. They require users to provide reliable color/text labels
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for more dedicated colorization. Traditional scribble-based colorization methods
[20,34] usually propagate the local user hints to the whole image via an op-
timization approach, while learning-based methods [41,28,7] will combine color
prior learned from large-scale image dataset with user’s intervention for coloriza-
tion. Recently, some researchers [16] have found that leveraging user interactions
would be a promising approach for reducing color-breeding artifacts. These meth-
ods require a certain amount of human effort, and the quality of results depends
on the user’s skills. Text-based methods usually adopt image captions [25] or
palettes converted from the text [1] as means of intervention. However, the color
represented by text is challenging to transfer to the image accurately.

The third class, denoted as exemplar-based method, is a trade-off between
fully automatic and human intervention strategies. Compared to the above two
classes, it adopts sample reference images to provide rich colors without requiring
the user to do too much manual work. The key and difficulty of exemplar-based
colorization is to establish an accurate correspondence between these two images.
DEPN [33] uses a pyramid structure to exploit multi-scale color information, but
it only captures the global tones because no semantic correspondence is estab-
lished. Some works [35] regard exemplar-based colorization as a style transfer
problem, but cannot guarantee the correctness of semantics because they also
lack a correspondence. Deep Image Analogy [22] was used in [11] to make the tar-
get and reference luminance channels aligned to get a coarse chrominance map
for further refinement. [23] uses features extracted from the luminance channel
of the target and reference images to obtain dense correspondence. However, in-
accuracies caused by using luminance channels to calculate correspondence and
wrong matching problems introduced by dense correspondence will lead to un-
satisfactory results. A general attention based framework is proposed in [36] to
fuse colors from the database when the correspondence is not established. How-
ever, this method sometimes will mistakenly use the colors from the database
when the selected two images are highly semantically related, resulting in the
final results looking different from the reference image.

3 Methods

3.1 Overview of the Proposed Method

The task of exemplar-based colorization can be formulated as follows. Given a
gray-scale image Ig, which only contains the luminance channel l, our goal is to
predict the corresponding a and b color channels in the CIE Lab color space,
according to the reference color image Ir. The main challenge is to build an
appropriate correspondence between the gray-scale image and the color refer-
ence. In order to make full use of the color information in the reference image,
we will utilize the reference image twice in a coarse-to-fine manner during the
whole colorization process. The proposed framework, namely Semantic-Sparse
Colorization Network (SSCN), consists of two auxiliary modules, which transfer
global and local colors in the reference image, respectively.
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Fig. 2. The illustration of the proposed two-stage image colorization framework. Our
method uses a coarse-colorized image to build more accurate correspondence, which is
completely different from previous works. The right part shows our proposed sparse
attention mechanism in detail. With the help of the semantic information provided by
CAM, the model can accurately use the critical parts of the reference image and reduce
the complex computation caused by the attention mechanism.

The overall pipeline of SSCN is illustrated in Figure 2. Specifically, taking
the reference image Ir as input, our model will first encode it into features FIr .
These features will be used in both global and local coloring modules. In the
coarse colorization stage, the Global Color Transfer (GCT) module will use FIr

to preliminarily color the gray-scale image Ig, and get a coarse-colorized result
Ic, which has similar global tones as Ir. Then the coarse output Ic will be further
encoded into features FIc with the same encoder as FIr . In the fine colorization
stage, the Local Details Transfer (LDT) module will use FIr and FIc to construct
a correspondence that focuses on the semantically relevant regions of Ir. Note
that these regions are sparsely selected according to their semantic levels. Based
on the predicted mappings from LDT, the reference features FIr are reorganized
and fused with FIc at different scales. Finally, the decoder takes the fused color
features to produce the a and b channels of the input image Ig.

3.2 Global Color Transfer

We will first introduce the encoder of Ir, which is shared in both GCT and LDT
modules. The encoder consists of six residual blocks. The last layer of FIr is
passed through an MLP to form the style vector, which will be used in the GCT
module for global style transfer. In GCT, the gray-scale image Ig will first be
encoded into features {x1, x2, ..., xn}. Then, we perform coarse colorization in
the feature space by changing feature statistics with AdaIN operation as:

AdaIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i , (1)
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where µ(xi) and σ(xi) represent the i
th feature map’s mean and variance, respec-

tively. ys and yb are the affine parameters of the style vector, which is obtained
from FIr via MLP transformation. Each feature map xi is normalized separately
and then scaled/biased using the corresponding coefficients from y(ys, yb). After
affine transformation, each feature channel will have the activation for certain
color information. These features can be inverted to the Lab space by a con-
volutional decoder. We finally get the coarse colorized result Ic of the coarse
colorization stage. In our implementation, the encoder uses sub-layers of the
VGG19 [29], and the decoder is symmetric structure. AdaIN are added after
CNN layers of the decoder.

3.3 Local Details Transfer

The target of the LDT module is to build a more detailed and accurate cor-
respondence between the coarse-colorized result Ic and the reference image Ir.
To begin with, we encode Ic into the corresponding features FIc , with the same
encoder as FIr . To find their correspondence, we extract features from the first
four layers of FIr and FIc , and resize them to the same spatial size of 1/4 input
image. Then these features are concatenated to form features F̂Ir and F̂Ic , cor-
responding to the latent states of coarse and reference image, respectively. Their
spatial size is both d×H/4×W/4, where d is the number of feature maps. To
facilitate computation, they are further flattened in the last two directions, and
form features of size d×HW/16. In this way, we segment the input image into
HW/16 regions and represent each region with a d dimensional vector.

Based on the obtained features F̂Ir and F̂Ic , the LDT module will calculate
a correlation matrix A via attention mechanism, whose element is computed by
the scaled dot product [30] illustrated as Formula 2:

αij = softmax
j

(
(Wqf

c
i ) · (Wkf

r
j )√

d

)
. (2)

Here, αij represents the similarity between the i-th region of F̂Ic and the

j-th region of F̂Ir . F̂Ic is used to retrieve relevant local details from F̂Ir . Then,
we can re-weight the features F̂Ir to obtain the attended feature F̂a through a
weighted sum operation as Formula 3:

fa
i =

∑
j

αijWvf
r
j , (3)

where Wq, Wk and Wv represent the linear transformation matrix into query,

key, and value vectors, respectively. The attended features F̂a will be reshaped
to the size of d × H/4 × W/4 and further resized into a suitable shape, fused
with the features FIc at different scales and fed into the U-Net [27] decoder for
the final detailed result of the fine colorization stage.

Semantic-Sparse Correspondence. In the above description, we use a
standard attention mechanism to calculate the dense correspondence between
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Target           Reference           CAM              Dense              Sparse

Fig. 3. Comparison results of dense and sparse correspondence strategies. The output
results will be disturbed by the re-weighting process using dense correspondence. Sparse
attention focusing on semantically important areas can solve this problem.

coarse and reference images. We further propose a semantically sparse corre-
spondence for better results with less computation cost. To be specific, the
reference features F̂Ir will go through a selection operation. First, the fifth
layer of FIr will be fed into a classifier and get a class activation map (CAM)
[42], which is used as the reference for selection. The CAM is flattened to
C = {c1, c2, ..., cHW/16} ∈ RHW/16. The selection operation S (·) contains the
top-k selection Sk (·) and random selection Sr (·) implemented upon C. The
Sk (·) selects the k largest elements of C and records their indexes Tk. This
encourages the attention mechanism to focus more on semantically significant
areas and reduce the interference caused by insignificant parts. At the same time,
the coloring of the background areas also needs reference. Thus Sr (·) randomly
selects r more indexes Tr. Finally, we obtain S (C) = Tk∪Tr and the semantic-
sparse features F̂Ir [S (C)]. To calculate the new correspondence map, we can
simply replace the features F̂Ir with F̂Ir [S (C)] in Formula 2,3. The other steps
remain the same as above.

3.4 Discussion

Dense Correspondence vs. Sparse Correspondence. Dense correspon-
dence will be easily affected by irrelevant regions, especially when the reference is
completely different from the gray-scale image. Even if the target region has low
similarity with most reference regions, the re-weighting process will still disturb
the final result. In contrast, sparse correspondence can overcome this difficulty
by focusing only on semantically important regions, which can reduce the in-
terference of other regions. Moreover, the computational complexity goes from
O
(
(HW )2

)
to O ((k + r)HW ), while (k + r) is generally 8 to 16 times smaller

than HW . The comparison results of these two strategies are shown in Figure 3.



8 Bai et al.

Target               Reference       Target Region         Similarity              Result 

C
oa

rs
e 

an
d 

C
ol

or
   

G
ra

y 
an

d 
C

ol
or

   
   

   
G

ra
y 

an
d 

G
ra

y

Fig. 4. Comparison results of using three different data types to build the correspon-
dence. The coarse-colorized result we proposed to use can establish more accurate
correspondence than the other two common types.

It can be observed that some details are more accurately colorized after reducing
the interference.

Coarse-colorized vs. Gray-scale. In this work, we propose to use a coarse-
colorized image to build the correspondence with the reference, which is com-
pletely different from previous works [23,36,38,39]. The coarse result is already
consistent with the reference’s global color style, thus can produce more ded-
icated correspondence than directly using the gray-scale image. Moreover, the
correspondence between color images is more accurate than that between gray-
scale images (luminance channels). To verify this comment, we build a correla-
tion matrix for three data types with the same operations. Figure 4 shows the
comparison results of the similarity between one target region and all reference
regions. It is clear that the chicken comb is correctly matched between two color
images, even with different colors.

3.5 Objective Functions

Smooth-L1 Loss. To avoid simply using the average scheme for solving the
ambiguity colorization problem, a widely used loss function Smooth-L1 loss is
adopted in image colorization tasks. This loss is added to the results of both two
stages in our architecture as Lstage1 and Lstage2. The following Formula 4 can

calculate the Smooth-L1 loss between Tab and T̂ab:

Lstage1,2(Tab, T̂ab) =


1

2
(Tab − T̂ab)

2 for
∣∣∣Tab − T̂ab

∣∣∣ ≤ δ

δ
∣∣∣Tab − T̂ab

∣∣∣− 1

2
δ2 otherwise.

(4)
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Classification Loss. There is a classification loss Lcls in the classifier to get a
CAM as a reference for S (·). This loss can also improve the encoder’s ability of
extracting color features. When FIr is fed into the classifier, its label vector is
predicted. Lcls is defined as the cross-entropy between the classification vector
ŷ and its ground truth one-hot label.

Color Histogram Loss. To transfer the color distribution of the reference
image to the target image accurately, we also add a histogram loss to the fi-
nal output as Formula 5. Similar to the previous work [40], we treat the prob-
lem as multinomial classification. We quantify T̂ab output space into bins with
gridsize = 10 and keep the in-gamut Q = 313. The mapping to predicted color
distribution Ẑ ∈ [0, 1]H×W×Q is also learned with the decoder. The Lhis is de-
fined as a cross-entropy loss for every pixel to measure the distance between
predicted distribution Ẑ and ground truth Z, and sum over all pixels.

Lhis(Ẑ, Z) = −
∑
h,w

∑
q

Zh,w,q log(Ẑh,w,q) . (5)

TV Regularization. To encourage spatial smoothness in the output result
T̂ab, we follow previous work [14] and apply the total variation regularization
LTV (T̂ab) to the output of the fine colorization stage.

In summary, the overall loss function for the entire network is defined as:

Ltotal = λstage1Lstage1 + λstage2Lstage2 + λTV LTV + λclsLcls + λhisLhis ,
(6)

where λstage1, λstage2, λTV , λcls and λhis are hyperparameters to constrain dif-
ferent loss terms.

4 Experiments

4.1 Implementation Details

We use ImageNet’s [8] total training set to train the entire network with 5 epochs
and set mini-batch size as 8. During training, the input image will be resized to
256 × 256. We use Adam [17] for optimization with β1 = 0.9, β2 = 0.999. The
learning rate is set to 0.0001. We set the coefficients for each loss function as
follows: λstage1 = 100, λstage2 = 100, λcls = 0.1, λTV = 10, and λhis = 1. For
the S (·), both k and r are set to 256.

For the exemplar-based colorization method, it is impossible to find enough
source-reference pairs to train the network. We adopt a scheme similar to [19].
The reference is generated from the original image by geometric distortion, which
can provide complete color information for the target image. The geometric dis-
tortion is realized by thin plate splines (TPS) transformation. The distortion is
randomly applied to each image. In the training process, we apply violent trans-
formation to some images to simulate semantically unrelated reference images.
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Fig. 5. Qualitative comparison of colorizing results with previous methods. The target
image, reference image, and each method’s colorized images are displayed from top to
bottom. The proposed method outperforms other models and achieves state-of-the-art
performance.

4.2 Comparison with Previous Methods

Visual Comparison. We compare the results of our method with previous
exemplar-based colorization approaches [33,35,11,23,36]. We run all 6 models
on 230 pairs of images collected from ImageNet validation set and show several
representative results. All comparison results are obtained by public available
codes. We show the qualitative comparison in Figure 5. See our supplementary
materials for more results.

The 4th column of Figure 5 shows the results of colorizing objects with
unusual or artistic colors. Compared with method [11] constrained by the per-
ceptual loss, the proposed method can appropriately colorize the target image
according to the user’s requirement. Since [23] tends to make the color histograms
of the two images consistent, resulting in the wrong spatial distribution of colors.

In the 6th column, when there are large regions with less semantics in the
image, our method can pay more attention to the semantically relevant areas,
e.g., the the pink area, while other methods fail to colorize the object or simply
get a smooth result. In the 2nd column, the parrots in two input images are
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Content Different Reference  Palette Reference  

Target               Reference              Result Target             Reference               Result

Fig. 6. Colorization results of using content different references and palettes. Visually
satisfactory results can also be obtained using these two types of references.

highly semantically related, while [36] uses the colors in the database, resulting
in an unsatisfactory final result.

When the reference image is semantically unrelated to the target image
(shown as 1st column in Figure 5), due to the dependence on prior color knowl-
edge, [11] will ignore the colors from the reference image. Histogram-based
methods [33] can get plausible results by transferring global tones, whereas
our method can yield better results. For some images with many details, [23]
cannot properly colorize these details due to the inappropriate correspondence
constructed with two gray-scale images, while the proposed method allows the
target image to be colored correctly, e.g., 5th and 7th columns in Figure 5.

These experimental results show that the proposed method can transfer color
information for different image pairs accurately and effectively. We also show
some results of using content different references and palettes in Figure 6. Even
when the semantics of the reference image are irrelevant or have no semantics,
our method can also get satisfactory results.

Self-Augmentation PSNR/SSIM. Unlike automatic colorization, in
exemplar-based colorization setting, when given a target-reference pair, there
is no ground truth that has both the target’s shape and the reference’s color.
The histogram intersection similarity (HIS) used in previous work [23,36] is not
a suitable index. Mismatches may also occur in the spatial color distribution of
the result with high histogram similarity with the reference image. In order to
make a quantitative evaluation of the colorization results, similar to the training
process, we use the augmentation of a color image as the reference to colorize its
luminance channel, so that the original color image can be used as ground truth.
With ground truth available for comparison, some existing evaluation metrics,
such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), can
be used for evaluation.

We select 5000 images from the validation set of ImageNet to do three dif-
ferent data augmentation, including TPS, random rotation (RR), and random
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He et al.               Xiao et al.                 Xu et al. Reference

Lu et al. Yin et al. Ours                                     GT      

Fig. 7. Comparison results of using random cropping reference image to colorize the
target image. The results obtained by other methods are not satisfactory even when
using such a suitable reference.

Table 1. Quantitative comparisons of self-augmentation PSNR/SSIM. A higher value
indicates a better preference, while the proposed method outperforms other models.

Methods TPS RR RC Mean
He et al.(2018)[11] 28.51/0.902 28.67/0.903 27.57/0.898 28.25/0.901
Xiao et al.(2020)[33] 25.17/0.912 25.30/0.913 24.98/0.910 25.15/0.911
Xu et al.(2020)[35] 22.46/0.873 21.65/0.846 21.55/0.862 21.88/0.860
Lu et al.(2020)[23] 27.93/0.913 29.80/0.931 27.12/0.907 28.28/0.917
Yin et al.(2021)[36] 31.87/0.948 34.24/0.952 29.85/0.939 31.98/0.946

Ours 36.32/0.969 35.49/0.966 32.39/0.958 34.73/0.964

cropping (RC) as references to get different results. The quantitative compar-
isons of three different augmentation are reported in Table 1. Figure 7 shows an
example of using a RC reference and comparing the results with other methods.
We will release this test dataset for future comparison.

User Evaluation. We conduct user evaluation to verify the proposed method’s
effectiveness subjectively. In this part, we randomly select 50 groups from the
above results. Semantically dependent pairs and semantically unrelated pairs
are distributed in half. Eventually, all 6×50 color images are distributed anony-
mously and randomly to 30 college participants.

For fairness, the images with the same reference are shown simultaneously
in a random order. All participants were asked to observe the images for no
more than 5 seconds and choose the image that better matches the reference.
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As shown in Figure 8, we show the percentage of votes for each method in the
form of pie chart. It shows that images of our method are mostly preferred.
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Fig. 8. The users’ preferences for six
different methods. Under two different
image pairs, our results have been the
most selected by users.
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5 Ablation Studies

Ablation study of Sk (·) and Sr (·). The use of sparse correspondence will
lead to the question: how to select an appropriate number of regions in the
process? Then we further study the effect of k and r, and use TPS reference to
evaluate results quantitatively as described above. When the resolution of the
reference image is 256× 256, there are 4096 features available for selection. We
increase k and r gradually from 128 and 0, respectively. The comparison results
are shown in Figure 9. Without random selection, the value of PNSR/SSIM will
be much lower because some areas of the background are incorrectly colored.
Increasing r gradually can improve the results, but increasing r further will cause
the result deteriorate again. In addition, it can be seen from the comparison of
the three broken lines that a larger or smaller k will reduce the quality.

Ablation study of two-stage architecture. To illustrate the importance
of the two-stage structure in our model, we conduct ablation study on k =
256, r = 256 version. First, we evaluate the first stage results with PSNR and
SSIM values of 30.02 and 0.937. There is a huge gap between them and the
final results, thus illustrating the importance of LDT. To further validate the
importance of preliminary coloring, we remove GCT from the whole architecture
for comparison. Instead, we use another network with a similar structure to the
encoder of Ir but with one channel input to extract the features of gray-scale
image and calculate the correspondence in the same way. Due to the lack of
information in the gray-scale image, the PSNR and SSIM values will decrease
by 3.30 and 0.014. We also analyze the relationship between the results of the
two stages in the encoder feature space. The similarity of features is shown in
the form of heat map in Figure 10. We can see that the differences between the
two are mainly concentrated in some semantic details, which are completed in
the second stage.
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Target                     Reference       Stage 1 Stage 2 Similarity

Fig. 10. Ablation study on the relationship between the results of the two stages. The
bluer the part in the heat map, the less similar the features. The main differences are
concentrated in some semantic details.

Ablation study of Loss Functions. In order to verify that the classifier does
not only provide a CAM but also help the encoder extract color features, we
ablate the classification loss on the dense version. After this loss is removed, the
corresponding PSNR and SSIM values are 33.73 and 0.952, while the PSNR and
SSIM values of the dense version are 35.25 and 0.961. In addition, we also ablate
color histogram loss of the best version (k = 256, r = 256) to analyze its effect.
The PSNR and SSIM values will decrease by 1.28 and 0.009. Removing either
of these losses will reduce the model’s performance, especially in the Lcls.

6 Conclusions

This paper proposes a colorization framework named Semantic-Sparse Coloriza-
tion Network (SSCN) to colorize the target image in a coarse-to-fine manner.
Specifically, an image transfer network is adopted in the coarse colorization stage
to obtain a preliminary colorized result. In the fine colorization stage, semanti-
cally related areas of the reference image will be selected to to color the details of
the target image. Thus, SSCN can adequately transfer a reference image’s global
color and local details onto a gray-scale image. It provides a way to obtain dif-
ferent levels of color information from the reference image hierarchically and
accurately. Extensive experiments show that the proposed method outperforms
previous state-of-the-art approaches by a large margin.

Acknowledgment. This work was supported by SZSTC Grant No.JCYJ201908
09172201639 and WDZC20200820200655001, Shenzhen Key Laboratory
ZDSYS20210623092001004.



Semantic-Sparse Colorization Network for Deep Exemplar-based Colorization 15

References

1. Bahng, H., Yoo, S., Cho, W., Park, D.K., Wu, Z., Ma, X., Choo, J.: Coloring
with words: Guiding image colorization through text-based palette generation. In:
ECCV 2018. pp. 443–459. Springer (2018) 1, 4

2. Bugeau, A., Ta, V., Papadakis, N.: Variational exemplar-based image colorization.
IEEE Trans. Image Process. 23(1), 298–307 (2014) 2, 3

3. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via gen-
erative adversarial networks. In: ECML PKDD 2017. pp. 151–166. Springer (2017)
3

4. Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via mul-
timodal predictions. In: ECCV 2008. pp. 126–139. Springer (2008) 3

5. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: ICCV 2015. pp. 415–423.
IEEE Computer Society (2015) 1, 3

6. Chia, A.Y.S., Zhuo, S., Gupta, R.K., Tai, Y., Cho, S., Tan, P., Lin, S.: Semantic
colorization with internet images. ACM Trans. Graph. 30(6), 156 (2011) 2

7. Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art coloriza-
tion with conditional adversarial networks. In: MM 2018,. pp. 1536–1544. ACM
(2018) 1, 4

8. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: A large-scale
hierarchical image database. In: CVPR 2009. pp. 248–255. IEEE Computer Society
(2009) 9

9. Deshpande, A., Lu, J., Yeh, M., Chong, M.J., Forsyth, D.A.: Learning diverse image
colorization. In: CVPR 2017. pp. 2877–2885. IEEE Computer Society (2017) 3

10. Gupta, R.K., Chia, A.Y.S., Rajan, D., Ng, E.S., Huang, Z.: Image colorization
using similar images. In: MM 2012. pp. 369–378. ACM (2012) 2

11. He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L.: Deep exemplar-based coloriza-
tion. ACM Trans. Graph. 37(4), 47:1–47:16 (2018) 2, 4, 10, 11, 12

12. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive in-
stance normalization. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. pp. 1510–1519. IEEE Computer
Society (2017) 3

13. Huang, Y., Tung, Y., Chen, J., Wang, S., Wu, J.: An adaptive edge detection based
colorization algorithm and its applications. In: MM 2005. pp. 351–354. ACM (2005)
3

14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV 2016. pp. 694–711. Springer (2016) 9

15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 4401–4410.
Computer Vision Foundation / IEEE (2019) 3

16. Kim, E., Lee, S., Park, J., Choi, S., Seo, C., Choo, J.: Deep edge-aware interactive
colorization against color-bleeding effects. CoRR (2021) 4

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR 2015
(2015) 9

18. Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer. CoRR
abs/2102.04432 (2021) 3

19. Lee, J., Kim, E., Lee, Y., Kim, D., Chang, J., Choo, J.: Reference-based sketch
image colorization using augmented-self reference and dense semantic correspon-
dence. In: CVPR 2020. pp. 5800–5809. IEEE Computer Society (2020) 2, 9



16 Bai et al.

20. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans.
Graph. 23(3), 689–694 (2004) 4

21. Li, H., Sheng, B., Li, P., Ali, R., Chen, C.L.P.: Globally and locally semantic
colorization via exemplar-based broad-gan. IEEE Trans. Image Process. pp. 8526–
8539 (2021) 2

22. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through
deep image analogy. ACM Trans. Graph. 36(4), 120:1–120:15 (2017) 4

23. Lu, P., Yu, J., Peng, X., Zhao, Z., Wang, X.: Gray2colornet: Transfer more colors
from reference image. In: MM 2020. pp. 3210–3218. ACM (2020) 2, 4, 8, 10, 11, 12

24. Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y., Shum, H.: Natural image
colorization. In: Proceedings of the Eurographics Symposium on Rendering Tech-
niques 2007. pp. 309–320. Eurographics Association (2007) 3

25. Manjunatha, V., Iyyer, M., Boyd-Graber, J.L., Davis, L.S.: Learning to color from
language. In: NAACL-HLT 2018. pp. 764–769. Association for Computational Lin-
guistics (2018) 1, 4

26. Qu, Y., Wong, T., Heng, P.: Manga colorization. ACM Trans. Graph. 25(3), 1214–
1220 (2006) 3

27. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAI 2015. Lecture Notes in Computer Science,
vol. 9351, pp. 234–241. Springer (2015) 6

28. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: Controlling deep image
synthesis with sketch and color. In: CVPR 2017. pp. 6836–6845. IEEE Computer
Society (2017) 1, 4

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR 2015 (2015) 6

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017. pp. 5998–6008 (2017) 6

31. Vitoria, P., Raad, L., Ballester, C.: Chromagan: Adversarial picture colorization
with semantic class distribution. In: WACV 2020. pp. 2434–2443. IEEE (2020) 3

32. Wu, Y., Wang, X., Li, Y., Zhang, H., Zhao, X., Shan, Y.: Towards vivid and diverse
image colorization with generative color prior. CoRR (2021) 3

33. Xiao, C., Han, C., Zhang, Z., Qin, J., Wong, T., Han, G., He, S.: Example-based
colourization via dense encoding pyramids. Comput. Graph. Forum 39(1), 20–33
(2020) 2, 4, 10, 11, 12

34. Xu, K., Li, Y., Ju, T., Hu, S., Liu, T.: Efficient affinity-based edit propagation
using K-D tree. ACM Trans. Graph. 28(5), 118 (2009) 4

35. Xu, Z., Wang, T., Fang, F., Sheng, Y., Zhang, G.: Stylization-based architecture
for fast deep exemplar colorization. In: CVPR 2020. pp. 9360–9369. IEEE (2020)
2, 4, 10, 12

36. Yin, W., Lu, P., Zhao, Z., Peng, X.: Yes, ”attention is all you need”, for exem-
plar based colorization. In: MM ’21: ACM Multimedia Conference, Virtual Event,
China, October 20 - 24, 2021. pp. 2243–2251. ACM (2021) 2, 4, 8, 10, 11, 12

37. Yoo, S., Bahng, H., Chung, S., Lee, J., Chang, J., Choo, J.: Coloring with limited
data: Few-shot colorization via memory augmented networks. In: CVPR 2019. pp.
11283–11292. Computer Vision Foundation / IEEE (2019) 3

38. Zhang, B., He, M., Liao, J., Sander, P.V., Yuan, L., Bermak, A., Chen, D.: Deep
exemplar-based video colorization. In: CVPR 2019. pp. 8052–8061. Computer Vi-
sion Foundation / IEEE (2019) 2, 8



Semantic-Sparse Colorization Network for Deep Exemplar-based Colorization 17

39. Zhang, J., Xu, C., Li, J., Han, Y., Wang, Y., Tai, Y., Liu, Y.: Scsnet: An effi-
cient paradigm for learning simultaneously image colorization and super-resolution.
CoRR (2022) 2, 8

40. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV 2016. pp.
649–666. Springer (2016) 1, 3, 9

41. Zhang, R., Zhu, J., Isola, P., Geng, X., Lin, A.S., Yu, T., Efros, A.A.: Real-time
user-guided image colorization with learned deep priors. ACM Trans. Graph. 36(4),
119:1–119:11 (2017) 1, 4
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