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Abstract. Current deep video quality assessment (VQA) methods are
usually with high computational costs when evaluating high-resolution
videos. This cost hinders them from learning better video-quality-related
representations via end-to-end training. Existing approaches typically
consider naive sampling to reduce the computational cost, such as re-
sizing and cropping. However, they obviously corrupt quality-related
information in videos and are thus not optimal to learn good repre-
sentations for VQA. Therefore, there is an eager need to design a new
quality-retained sampling scheme for VQA. In this paper, we propose
Grid Mini-patch Sampling (GMS), which allows consideration of local
quality by sampling patches at their raw resolution and covers global
quality with contextual relations via mini-patches sampled in uniform
grids. These mini-patches are spliced and aligned temporally, named as
fragments. We further build the Fragment Attention Network (FANet)
specially designed to accommodate fragments as inputs. Consisting of
fragments and FANet, the proposed FrAgment Sample Transformer for
VQA (FAST-VQA) enables efficient end-to-end deep VQA and learns
effective video-quality-related representations. It improves state-of-the-
art accuracy by around 10% while reducing 99.5% FLOPs on 1080P
high-resolution videos. The newly learned video-quality-related repre-
sentations can also be transferred into smaller VQA datasets, boost-
ing the performance on these scenarios. Extensive experiments show
that FAST-VQA has good performance on inputs of various resolu-
tions while retaining high efficiency. We publish our code at https:

//github.com/timothyhtimothy/FAST-VQA.
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1 Introduction

More and more videos with a variety of contents are collected in-the-wild and
uploaded to the Internet every day. With the growth of high-definition video
recording devices, a growing proportion of these videos are in high resolution
(e.g. ≥ 1080P ). Classical video quality assessment (VQA) algorithms based on

https://github.com/timothyhtimothy/FAST-VQA
https://github.com/timothyhtimothy/FAST-VQA
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Fig. 1: Motivation for fragments: (a) The computational cost (FLOPs&Memory at
Batch Size 4) for existing VQA methods is high especially on high-resolution videos.
(b) Sampling approaches. Naive approaches such as resizing [17,45] and cropping [14,15]
cannot preserve video quality well. Zoom in for clearer view.

handcrafted features are difficult to handle these videos with diverse content and
degradation. In recent years, deep-learning-based VQAmethods [23,24,42,8,44,21]
have shown better performance on in-the-wild VQA benchmarks [33,12,40,42].
However, the computational cost of deep VQA methods increases quadratically
when applied to high resolution videos, and a video of size 1080 × 1920 would
require 42.5× floating point operations (FLOPs) than normal 224× 224 inputs
(as Fig. 1(a) shows), limiting these methods from practical applications. It is
urgent to develop new VQA methods that are both effective and efficient.

Meanwhile, with high memory cost noted in Fig. 1(a), existing methods
usually regress quality scores with fixed features extracted from pre-trained
networks for classification tasks [11,34,10] to alleviate memory shortage prob-
lem on GPUs instead of end-to-end training, preventing them from learning
video-quality-related representations that better represent quality information
and limiting their accuracy. Existing approaches apply naive sampling on im-
ages or videos by resizing [17,45] or cropping [14,15] (as Fig. 1(b) shows) to
reduce this cost and enable end-to-end training. However, they both cause ar-
tificial quality corruptions or changes during sampling, e.g., resizing corrupts
local textures that are significant for predicting video quality, while cropping
causes mismatched global quality with local regions. Moreover, the severity of
these problems increases with the raw resolution of the video, making them
unsuitable for VQA tasks.

To improve the practical efficiency and the training effectiveness of deep VQA
methods, we propose a new sampling scheme, Grid Mini-patch Sampling (GMS),
to retain the sensitivity to original video quality. GMS cuts videos into spatially
uniform non-overlapping grids, randomly sample a mini-patch from each grid,
and then splice mini-patches together. In temporal view, we constrain the po-
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Fig. 2: Fragments, in spatial view (a) and temporal view (b). Zoom-in views of mini-
patches show that fragments can retain spatial local quality information (a), and spot
temporal variations such as shaking across frames (b). In (a), spliced mini-patches also
keep the global scene information of original frames.

sition of mini-patches to align across frames, in order to ensure the sensitivity
on temporal variations. We name these temporally aligned and spatially spliced
mini-patches as fragments. As shown in Fig. 2, The proposed fragments can
well preserve the sensitivity on both spatial and temporal quality. First, it pre-
serves the local texture-related quality information (e.g., spot blurs happened
in video 1/2 ) by retaining the original resolution in patches. Second, benefit-
ing from the globally uniformly sampled grids, it covers the global quality even
though different regions have different qualities (e.g., video 3 ). Third, by splicing
the mini-patches, fragments retains contextual relations of patches so that the
model can learn global scene information of the original frames. At last, with
temporal alignment, fragments preserve temporal quality sensitivity by retain-
ing the inter-frame variations in mini-patches from raw resolution, so they can
be used to spot temporal distortions in videos and distinguish between severely
shaking videos (e.g., video 5 ) from relatively stable shots (e.g., video 6 ).

However, it is non-trivial to build a network using the proposed fragments as
inputs. The network should follow two principles: 1) It should better extract the
quality-related information preserved in fragments, including the retained local
textures inside the raw resolution patches and the contextual relations between
the spliced mini-patches; 2) It should distinguish the artificial discontinuity be-
tween mini-patches in fragments from the authentic quality degradation in the
original videos. Based on these two principles, we propose a Fragment Attention
Network (FANet) with Video Swin Transformer Tiny (Swin-T) [28] as the back-
bone. Swin-T has a hierarchical structure and processes inputs with patch-wise
operations, which is naturally suitable for proceeding with proposed fragments.
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Fig. 3: Motivation for the two proposed modules in FANet: (a) Gated Relative Position
Biases (GRPB); (b) Intra-Patch Non-Linear Regression (IP-NLR) head. The structures
for the two modules are illustrated in Fig. 5.

Furthermore, to avoid the negative impact of discontinuity between mini-
patches on quality prediction, we propose two novel modules, i.e., Gated Rela-
tive Position Biases (GRPB) and Intra-Patch Non-Linear Regression (IP-NLR),
to correct for the self-attention computation and the final score regression in the
FANet respectively. Specifically, considering that some pairs in the same atten-
tion window might have the same relative position (e.g., Fig. 3(a) A-C, D-E,
A-B), but the cross-patch attention pairs (A-C, D-E) are in far actual distances
while intra-patch attention pairs (A-B) are in much nearer actual distances in
the original video, we propose GRPB to explicitly distinguish these two kinds of
attention pairs to avoid confusion of discontinuity between patches and authen-
tic video artifacts. In addition, due to the discontinuity, different mini-patches
contain diverse quality information (Fig. 3(b)), thus pooling operation before
score regression applied in existing methods may confuse the information. To
address this issue, we design IP-NLR as a quality-sensitive head, which first re-
gresses the quality scores of mini-patches independently with non-linear layers
and pools them after the regression.

In summary, we propose the FrAgment Sample Transformer for VQA (FAST-
VQA), with the following contributions:

1. We propose fragments, a new sampling strategy for VQA that preserves
both local quality and unbiased global quality with contextual relations via
uniform Grid Mini-patch Sampling (GMS). The fragments can reduce the
complexity of assessing 1080P videos by 97.6% and enables effective end-to-
end training of VQA with quality-retained video samples.

2. We propose the Fragment Attention Network (FANet) to learn the local and
contextual quality information from fragments, in which the Gated Rel-
ative Position Biases (GRPB) module is proposed to distinguish the intra-
patch and cross-patch self-attention and the Intra-Patch Non-Linear Regres-
sion (IP-NLR) is proposed for better quality regression from fragments.

3. The proposed FAST-VQA can learn video-quality-related representations effi-
ciently through end-to-end training. These quality features help FAST-VQA
to be 10% more accurate than the existing state-of-the-art approaches and
8% better than full-resolution Swin-T baseline with fixed recognition fea-
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tures. Through transfer learning, these quality features also significantly im-
prove the best benchmark performance for small VQA datasets.

2 Related Works

Classical VQA Methods Classical VQA methods [32,30,20,36,37,26] handcrafted
features to evaluate video quality. Among recent works, TLVQM [20] uses a
combination of spatial high-complexity and temporal low-complexity handcraft
features and VIDEVAL [36] ensembles different handcraft features to model the
diverse authentic distortions. However, the reasons affecting the video quality are
quite complicated and cannot be well captured with these handcrafted features.

Fixed-feature-based Deep VQA Methods Due to the extremely high computa-
tional cost of deep networks on high resolution videos, existing deep VQA meth-
ods train only a feature regression network with fixed deep features. Among
them, VSFA [23] uses the features extracted by pre-trained ResNet-50 [11] from
ImageNet-1k [5] and GRU [4] for temporal regression. MLSP-FF [8] also uses
heavier Inception-ResNet-V2 [34] for feature extraction. Some methods [42,43]
use the features extractor pre-trained with IQA datasets [13,41]. Some recent
methods [42,22,39] also extract features pretrained on action recognition dataset
[16] for better perception on inter-frame distortion. These methods are limited
by their high computational cost on high resolution videos. Additionally, with-
out end-to-end training, fixed features pretrained by other tasks are not optimal
for extracting quality-related information, which also limits their accuracy.

Vision Transformers Vision transformers [19,35,1,6,27] have shown effective on
computer vision tasks. They cut images or videos into non-overlapping patches
as input and perform self-attention operations between them. The patch-wise
operations in vision transformers naturally distinguish the edges of mini-patches
and are suitable for handling with the proposed fragments.

3 Approach

In this section, we introduce the full pipeline of the proposed FAST-VQAmethod.
An input video is first sampled into fragments via Grid Mini-patch Sampling
(GMS, Sec. 3.1). After sampling, the resultant fragments are fed into the Frag-
ment Attention Network (FANet, Sec. 3.2) to get the final prediction of the
video’s quality. We introduce both parts in the following subsections.

3.1 Grid Mini-patch Sampling (GMS)

To well preserve the original video quality after sampling, we follow several
important principles when designing the sampling process for fragments. We
will illustrate the process along with these principles below.
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Fig. 4: The pipeline for sampling fragments with Grid Mini-patch Sampling (GMS),
including grid partition, patch sampling, patch splicing, and temporal alignment. After
GMS, the fragments are fed into the FANet (Fig. 5).

Preserving global quality: uniform grid partition. To include each region for qual-
ity assessment and uniformly assess quality in different areas, we design the grid
partition to cut video frames into uniform grids with each grid having the same
size (as shown in Fig. 4). We cut the t-th video frame Vt into Gf ×Gf uniform

grids with the same sizes, denoted as Gt = {g0,0t , ..gi,jt , ..g
Gf−1,Gf−1
t }, where gi,jt

denotes the grid in the i-th row and j-th column. The uniform grid partition
process is formalized as follows.

gi,jt = Vt[
i×H

Gf
:
(i+ 1)×H

Gf
,
j ×W

Gf
:
(j + 1)×W

Gf
] (1)

where H and W denote the height and width of the video frame.

Preserving local quality: raw patch sampling. To preserve the local textures (e.g.
blurs, noises, artifacts) that are vital in VQA, we select raw resolution patches
without any resizing operations to represent local textural quality in grids. We
employ random patch sampling to select one mini-patch MPi,j

t of size of Sf ×Sf

from each grid gi,jt . The patch sampling process is as follows.

MPi,j
t = Si,j

t (gi,jt ) (2)

where Si,j
t is the patch sampling operation for frame t and grid i, j.

Preserving temporal quality: temporal alignment. It is widely recognized by early
works [18,20,42] that inter-frame temporal variations are influential to video
qualities. To retain the raw temporal variations in videos (with T frames), we
strictly align the sample areas during patch sampling operations S in different
frames, as the following constraint shows.
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Si,j
t = Si,j

t̂
∀ 0 ≤ t, t̂ < T, 0 ≤ i, j < Gf (3)

Preserving contextual relations: patch splicing. Existing works [25,23,8] have
shown that the global scene information and contextual information affects qual-
ity predictions. To keep the global scene information of the original videos, we
keep the contextual relations of mini-patches by splicing them into their original
positions, as the following equation shows:

F i,j
t = Ft[i× Sf : (i+ 1)× Sf , j × Sf : (j + 1)× Sf ]

= MPi,j
t , 0 ≤ i, j < Gf

(4)

where F denote the spliced and temporally aligned mini-patches after the Grid
Mini-patch Sampling (GMS) pipeline, named as fragments.

3.2 Fragment Attention Network (FANet)

The Overall Framework. Fig. 5 shows the overall framework of FANet. It uses a
Swin-T with four hierarchical self-attention layers as backbone. We also design
the following modules to adapt it to fragments well.

Gated Relative Position Biases. Swin-T adds relative position bias (RPB) that
uses learnable Relative Bias Table (T) to represent the relative positions of pixels
in attention pairs (QKT ). For fragments, however, as discussed in Fig. 3(a),
the cross-patch pairs have much large actual distances than intra-patch pairs
and should not be modeled with the same bias table. Therefore, we propose
the gated relative position biases (GRPB, Fig. 5(b)) that uses learnable real
position bias table (Treal) and pseudo position bias table (Tpseudo) to replace T.
The mechanisms of them are the same as T but they are learnt separately and
used for intra-patch and cross-patch attention pairs respectively. Denote G as
the intra-patch gate (Gi,j = 1 if i, j are in the same mini-patch else Gi,j = 0),
the self-attention matrix (MA) with GRPB is calculated as:

BIn,(i,j) = Treal
FRP(i,j);BCr,(i,j) = Tpseudo

FRP(i,j) (5)

MA = QKT +G⊗BIn + (1−G)⊗BCr (6)

where FRP(i, j) is the relative position of pair (i, j) in fragments.

Intra-Patch Non-Linear Regression. As illustrated in Fig. 3(b), different mini-
patches have diverse qualities due to discontinuity between them. If we pool
features from different patches before regression, the quality representations of
mini-patches will be confused with each other. To avoid this problem, we de-
sign the Intra-Patch Non-Linear Regression (IP-NLR, Fig. 5(c)) to regress the
features via non-linear layers (RNL) first, and perform pooling following the
regression. Denote features as f , output score as spred, pooling operation as
Pool(·), the IP-NLR can be expressed as spred = Pool(RNL(f)).
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Fig. 5: The overall framework for FANet, including the Gated Relative Position Biases
(GRPB) and Intra-Patch Non-Linear Regression (IP-NLR) modules. The input frag-
ments come from Grid Mini-patch Sampling (Fig. 4).

4 Experiments

In the experiment part, we conduct several experiments to evaluate and analyze
the performance of the proposed FAST-VQA model.

4.1 Evaluation Setup

Implementation Details We use the Swin-T [28] pretrained on Kinetics-400 [16]
dataset to initialize the backbone in FANet. As Tab. 1 shows, we implement two
sampling densities for fragments: FAST-VQA (normal density) and FAST-
VQA-M (lower density & higher efficiency), and accomodate window sizes in
FANet to the input sizes. Without special notes, all ablation studies are on
variants of FAST-VQA. We use PLCC (Pearson linear correlation coef.) and
SRCC (Spearman rank correlation coef.) as metrics and use differentiable PLCC

loss l =
(1−PLCC(spred,sgt))

2 as loss function. We set the training batch size as 16.

Table 1: Comparison of FAST-VQA and FAST-VQA-M with lower sampling density.

Methods
Number of
Frames (T )

Patch Size
(Sf )

Number of
Grids (Gf )

Window Size
in FANet

FLOPs Parameters

FAST-VQA 32 32 7 (8,7,7) 279G 27.7M
FAST-VQA-M 16 32 4 (4,4,4) 46G 27.5M

Training & Benchmark Sets We use the large-scale LSVQtrain[42] dataset with
28,056 videos for training FAST-VQA. For evaluation, we choose 4 testing sets
to test the model trained on LSVQ. The first two sets, LSVQtest and LSVQ1080p

are official intra-dataset test subsets for LSVQ, while the LSVQtest consists of
7,400 various resolution videos from 240P to 720P, and LSVQ1080p consists of
3,600 1080P high resolution videos. We also evaluate the generalization ability
of FAST-VQA on cross-dataset evaluations on KoNViD-1k [12] and LIVE-VQC
[33], two widely-recognized in-the-wild VQA benchmark datasets.
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Table 2: Comparison with existing methods (classical and deep) and our baseline (Full-
res Swin-T features). The 1st/2nd best scores are colored in red and blue, respectively.

Type/ Intra-dataset Test Sets Cross-dataset Test Sets

Testing Set/ LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC

Groups Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Existing
Classical

BRISQUE[29] 0.569 0.576 0.497 0.531 0.646 0.647 0.524 0.536

TLVQM[20] 0.772 0.774 0.589 0.616 0.732 0.724 0.670 0.691

VIDEVAL[36] 0.794 0.783 0.545 0.554 0.751 0.741 0.630 0.640

Existing
Deep

VSFA[23] 0.801 0.796 0.675 0.704 0.784 0.794 0.734 0.772

PVQwo/ patch[42] 0.814 0.816 0.686 0.708 0.781 0.781 0.747 0.776

PVQw/ patch[42] 0.827 0.828 0.711 0.739 0.791 0.795 0.770 0.807

Full-res Swin-T[28] features 0.835 0.833 0.739 0.753 0.825 0.828 0.794 0.809

FAST-VQA-M (Ours) 0.852 0.854 0.739 0.773 0.841 0.832 0.788 0.810

FAST-VQA (Ours) 0.876 0.877 0.779 0.814 0.859 0.855 0.823 0.844

Improvement to PVQw/ patch +6% +6% +10% +10% +9% +8% +7% +5%

Table 3: FLOPs and running time (on GPU/CPU, average of ten runs) comparison
of FAST-VQA, state-of-the-art methods and our baseline on different resolutions. We
boldface FLOPs ≤ 500G and running time ≤ 1s.

540P 720P 1080P

Method FLOPs(G) Time(s) FLOPs(G) Time(s) FLOPs(G) Time(s)

VSFA[23] 1024936.7× 2.603/92.761 1818465.2× 3.571/134.9 40919147× 11.14/465.6

PVQ[42] 1464652.5× 3.091/97.85 2202979.0× 4.143/144.6 58501210× 13.79/538.4

Full-res Swin-T[28] feat. 303210.9× 3.226/102.0 535719.2× 5.049/166.2 1185242.5× 8.753/234.9

FAST-VQA (Ours) 2791× 0.044/9.019 2791× 0.043/9.530 2791× 0.045/9.142

FAST-VQA-M (Ours) 460.165× 0.019/0.729 460.165× 0.019/0.613 460.165× 0.019/0.714

4.2 Benchmark Results

In Tab. 2, we compare FAST-VQA with existing classical and deep VQA meth-
ods and our baseline, the full-resolution Swin-T with feature regression instead
of end-to-end training (denoted as ‘Full-res Swin-T features’). With its video-
quality-related representations, FAST-VQA achieves at most 10% improvement
to PVQ, the existing state-of-the-art on LSVQ1080p. Even the efficient version
FAST-VQA-M can outperform existing state-of-the-art. FAST-VQA also shows
significant improvement to its fixed-feature-based baseline with the same back-
bone, demonstrating that the proposed new quality-retained sampling with end-
to-end training scheme for VQA is not only much more efficient (with only 2.36%
FLOPs required on 1080P videos, discussed in the next subsection) but also no-
tably more accurate (with 8.10% improvement on PLCC metric for LSVQ1080p)
than the existing fixed-feature-based paradigm.

4.3 Efficiency of FAST-VQA

To demonstrate the efficiency of FAST-VQA, we compare the FLOPs and run-
ning times on CPU/GPU (average of ten runs per sample) of the proposed
FAST-VQA with existing deep VQA approaches on different resolutions, see
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Fig. 6: The Performance-FLOPs curve of proposed FAST-VQA and baseline methods.

Tab. 3. We also draw the performance-FLOPs curve on LSVQ1080p and LIVE-
VQC in Fig. 6. As we can see, FAST-VQA reduces up to 210× FLOPs and
247× running time than PVQ while obtaining notably better performance. The
more efficient version, FAST-VQA-M, only requires 1/1273 FLOPs of PVQ and
1/258 FLOPs of our full-resolution baseline while still achieving slightly better
performance. Moreover, FAST-VQA (especially FAST-VQA-M) also runs very
fast even on CPU, which reduces the hardware requirements for the applications
of deep VQA methods. All these comparisons show the unprecedented efficiency
of proposed FAST-VQA. 4

4.4 Transfer Learning with Video-quality-related Representations

With fragments, FAST-VQA also enables the pretrain-finetune scheme on VQA
with affordable computation resources. This is important as many VQA datasets
[33,12,40,31,7] in specific scenarios are with much smaller scale than datasets
for other video tasks [16,2,9] and it is relatively hard to learn robust qual-
ity representations on these small VQA datasets alone. With FAST-VQA, we
can pretrain with large VQA datasets in end-to-end manner to learn qual-
ity related features, and then transfer to specific VQA scenarios where only
small datasets are available. We use LSVQ as the large dataset and choose five
small datasets representing diverse scenarios, including LIVE-VQC (real-world
mobile photography, 240P-1080P), KoNViD-1k (various contents collected on-
line, all 540P), CVD2014 (synthetic in-capture distortions, 480P-720P), LIVE-
Qualcomm (selected types of distortions, all 1080P) and YouTube-UGC (user-
generated contents, including computer graphic contents, 360P-2160P5). We di-
vide each dataset into random splits for 10 times and report the average result
on the test splits. As Tab. 4 shows, with video-quality-related representations,

4 Also, RAPIQUE[37] can also infer rapidly on CPU that requires 17.3s for 1080P
videos. Yet, it is not compatible with GPU Inference due to its handcrafted branch.

5 Due to privacy reasons, the current public version of YouTube-UGC is incomplete
and only with 1147 videos. The peer comparison is only for reference.
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Table 4: The finetune results on LIVE-VQC, KoNViD, CVD2014 and YouTube-UGC
datasets, compared with existing classical and fixed-backbone deep VQA methods, and
ensemble approaches of classical (C) and deep (D) branches.
Finetune Dataset/ LIVE-VQC KoNViD-1k CVD2014 LIVE-Qualcomm YouTube-UGC

Groups Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Existing
Classical

TLVQM[20] 0.799 0.803 0.773 0.768 0.83 0.85 0.77 0.81 0.669 0.659

VIDEVAL[36] 0.752 0.751 0.783 0.780 NA NA NA NA 0.779 0.773

RAPIQUE[37] 0.755 0.786 0.803 0.817 NA NA NA NA 0.759 0.768

Existing
Fixed
Deep

VSFA[23] 0.773 0.795 0.773 0.775 0.870 0.868 0.737 0.732 0.724 0.743

PVQ[42] 0.827 0.837 0.791 0.786 NA NA NA NA NA NA

GST-VQA[3] NA NA 0.814 0.825 0.831 0.844 0.801 0.825 NA NA

CoINVQ[38] NA NA 0.767 0.764 NA NA NA NA 0.816 0.802

Ensemble
C+D

CNN+TLVQM[21] 0.825 0.834 0.816 0.818 0.863 0.880 0.810 0.833 NA NA

CNN+VIDEVAL[36] 0.785 0.810 0.815 0.817 NA NA NA NA 0.808 0.803

Full-res Swin-T[28] features 0.799 0.808 0.841 0.838 0.868 0.870 0.788 0.803 0.798 0.796

FAST-VQA-M (Ours) 0.803 0.828 0.873 0.872 0.877 0.892 0.804 0.838 0.768 0.765

FAST-VQA w/o VQ-representations (Ours) 0.765 0.782 0.842 0.844 0.871 0.888 0.756 0.778 0.794 0.784

FAST-VQA (ours) 0.849 0.865 0.891 0.892 0.891 0.903 0.819 0.851 0.855 0.852

Improvements led by VQ-representations +11.0% +10.6% +5.8% +5.7% +2.3% +1.7% +8.3% +9.4% +7.7% +8.7%

the proposed FAST-VQA outperforms the existing state-of-the-arts on all these
scenarios while obtaining much higher efficiency. Note that YouTube-UGC con-
tains 4K(2160P) videos but FAST-VQA still performs well. Even without video-
quality-related representations, FAST-VQA also still achieves competitive per-
formance, while these features steadily improve performance on all cases.
It implies that the pretrained FAST-VQA could be able to serve as a strong
backbone that boost further downstream tasks related to video quality.

4.5 Ablation Studies on fragments

For the first part of ablation studies, we prove the effectiveness of fragments by
comparing with other common sampling approaches and different variants of
fragments (Tab. 5). We keep the FANet structure fixed during this part.

Table 5: Ablation study on fragments: comparison with resizing, cropping (Group 1)
and different variants for fragments (Group 2).

Testing Set/ LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC

Methods/Metric SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Group 1: Naive Sampling Approaches

bilinear resizing 0.857 0.859 0.752 0.786 0.841 0.840 0.772 0.814

random cropping 0.807 0.812 0.643 0.677 0.734 0.776 0.740 0.773

- test with 3 crops 0.838 0.835 0.727 0.754 0.841 0.827 0.785 0.809

- test with 6 crops 0.843 0.844 0.734 0.761 0.845 0.834 0.796 0.817

Group 2: Variants of fragments

random mini-patches 0.857 0.861 0.754 0.790 0.844 0.845 0.792 0.818

shuffled mini-patches 0.858 0.863 0.761 0.799 0.849 0.847 0.796 0.821

w/o temporal alignment 0.850 0.853 0.736 0.779 0.823 0.816 0.764 0.802

fragments (ours) 0.876 0.877 0.779 0.814 0.859 0.855 0.823 0.844
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Comparing with resizing/cropping In Group 1 of Tab. 5, we compare the pro-
posed fragments with two common sampling approaches: bilinear resizing and
random cropping. The proposed fragments are notably better than bilinear re-
sizing on high-resolution (LSVQ1080p) (+4%) and cross-resolution (LIVE-
VQC) scenarios (+4%). Fragments still lead to non-trivial 2% improvements
than resizing on lower-resolution scenarios where the problems of resizing is not
that severe. This proves that keeping local textures is vital for VQA. Fragments
also largely outperform single random crop as well as ensemble of multiple crops,
suggesting that retaining the uniform global quality is also critical to VQA.

Comparing with variants of fragments We also compare with three variants of
fragments in Tab. 5, Group 2. We prove the effectiveness of uniform grid par-
tition by comparing with random mini-patches (ignore grids while sampling),
and the importance of retaining contextual relations by comparing with shuffled
mini-patches. Fragments show notable improvements than both variants. More-
over, the proposed fragments show much better performance than the variant
without temporal alignment especially on high resolution videos, suggesting that
preserving the inter-frame temporal variations is necessary for fragments.

Table 6: Ablation study on FANet design: the effects for GRPB and IP-NLR modules.
Testing Set/ LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC

Variants/Metric SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

w/o GRPB 0.873 0.872 0.769 0.805 0.854 0.853 0.808 0.832

partial -GRPB on Layer 1/2 0.873 0.875 0.772 0.809 0.856 0.851 0.812 0.838

linear Regression 0.872 0.873 0.768 0.803 0.847 0.849 0.810 0.835

PrePool non-linear Regression 0.873 0.874 0.771 0.805 0.851 0.850 0.813 0.834

FANet (ours) 0.876 0.877 0.779 0.814 0.859 0.855 0.823 0.844

4.6 Ablation Studies on FANet

Effects of GRPB and IP-NLR In the second part of ablation studies, we ana-
lyze the effects of two important designs in FANet: the proposed Gated Rela-
tive Position Biases (GRPB) and Intra-Patch Non-Linear Regression (IP-NLR)
VQA Head as in Tab. 6. We compare the IP-NLR with two variants: the linear
regression layer and the non-linear regression layers with pooling before regres-
sion (PrePool). Both modules lead to non-negligible improvements especially on
high-resolution (LSVQ1080p) or cross-resolution (LIVE-VQC) scenarios. As the
discontinuity between mini-patches is more obvious in high-resolution videos,
this result suggests that the corrected position biases and regression head are
helpful on solving the problems caused by such discontinuity.

4.7 Reliability and Robustness Analyses

As FAST-VQA is based on samples rather than original videos while a single
sample for fragments only keeps 2.4% spatial information in 1080P videos, it is
important to analyze the reliability and robustness of FAST-VQA predictions.
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Reliability of Single Sampling. We measure the reliability of single sampling in
FAST-VQA by two metrics: 1) the assessment stability of different single sam-
plings on the same video; 2) the relative accuracy of single sampling compared
with multiple sample ensemble. As shown in Tab. 7, the normalized std. dev. of
different sampling on a same video is only around 0.01, which means the sampled
fragments are enough to make very stable predictions. Compared with 6-sample
ensemble, sampling only once can already be 99.40% as accurate even on the
pure high-resolution test set (LSVQ1080P). They prove that a single sample of
fragments is enough stable and reliable for quality assessment even though only
a small proportion of information is kept during sampling.

Table 7: Assessment stability and relative accuracy of single sampling of fragments.
Testing Set/ LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC

Score Range 0-100 0-100 1-5 0-100

std. dev. of Single Samplings 0.65 0.79 0.046 1.07

Normalized std. dev. 0.0065 0.0079 0.0115 0.0107

Relative Pair Accuracy compared with 6-samples 99.59% 99.40% 99.45% 99.52%

Robustness on Different Resolutions To analyze the robustness of FAST-VQA on
different resolutions, we divide the cross-resolution VQA benchmark set LIVE-
VQC into three resolution groups: (A) 1080P (110 videos); (B) 720P (316 videos);
(C) ≤540P (159 videos) to see the performance of FAST-VQA on different res-
olutions, compared with several variants. As the results shown in Tab. 8, the
proposed FAST-VQA shows good performance (≥ 0.80 SRCC&PLCC) on all
resolution groups and most superior improvement than other variants on Group
(A) with 1080P high-resolution videos, proving that FAST-VQA is robust and
reliable on different resolutions of videos.

Table 8: Performance comparison on different resolution groups of LIVE-VQC dataset.
Resolution (A): 1080P (B): 720P (C): ≤540P

Variants SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

Full-res Swin features (Baseline) 0.771 0.774 0.584 0.796 0.811 0.602 0.810 0.853 0.625

bilinear resizing (Sampling Variant) 0.758 0.773 0.573 0.790 0.822 0.599 0.835 0.878 0.650

random cropping (Sampling Variant) 0.765 0.768 0.565 0.774 0.787 0.581 0.730 0.809 0.535

w/o GRPB (FANet Variant) 0.796 0.785 0.598 0.802 0.820 0.608 0.834 0.883 0.649

FAST-VQA (Ours) 0.807 0.806 0.610 0.803 0.825 0.610 0.840 0.885 0.654

4.8 Qualitative Results: Local Quality Maps

The proposed IP-NLR head with patch-wise independent quality regression en-
ables FAST-VQA to generate patch-wise local quality maps, which helps us to
qualitatively evaluate what quality information can be learned in FAST-VQA.
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Re-projected Quality Map Quality of Mini-patchesOriginal Frame fragments

Video 1 
Frame 12

Video 1 
Frame 24

Video 1 
Frame 0

Video 2 
Frame 9

Fig. 7: Spatial-temporal patch-wise local quality maps, where red areas refer to low
predicted quality and green areas refer to high predicted quality. This sample video
is a 1080P video selected from LIVE-VQC [33] dataset. Zoom in for clearer view.

We show the patch-wise local quality maps and the re-projected frame qual-
ity maps for a 1080P video (from LIVE-VQC [33] dataset) in Fig. 7. As the
patch-wise quality maps and re-projected quality maps in Fig. 7 (column 2&4)
shows, FAST-VQA is sensitive to textural quality information and distinguishes
between clear (Frame 0) and blurry textures (Frame 12/24). It demonstrates
that FAST-VQA with fragments (column 3) as input is sensitive to local tex-
ture quality. Furthermore, the qualities of the action-related areas are notably
different from the background areas, showing that FAST-VQA effectively learns
the global scene information and contextual relations in the video.

5 Conclusions

Our paper has shown that proposed fragments are effective samples for video
quality assessment (VQA) that better retain quality information in videos than
naive sampling approaches, to tackle the difficulties as results of high comput-
ing and memory requirements when high-resolution videos are to be evaluated.
Based on fragments, the proposed end-to-end FAST-VQA achieves higher effi-
ciency (−99.5% FLOPs) and accuracy (+10% PLCC) simultaneously than exist-
ing state-of-the-art method PVQ on 1080P videos. We hope that the FAST-VQA
can bring deep VQA methods into practical use for videos in any resolutions.
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