
Supplementary Material
Physically-Based Editing of Indoor Scene

Lighting from a Single Image

Zhengqin Li1, Jia Shi1,3, Sai Bi1,2, Rui Zhu1, Kalyan Sunkavalli2, Miloš Hašan2,
Zexiang Xu2, Ravi Ramamoorthi1, and Manmohan Chandraker1

1UC San Diego 2Adobe Research 3Carnegie Mellon University

The supplementary material is organized as follows:
– A video to demonstrate the consistency of our scene editing results (Sec. 1)
– Network and training details (Sec. 2)
– More qualitative and quantitative light source prediction and neural rendering

results on our synthetic dataset (Sec. 3)
– Light editing results with predicted masks (Sec. 4).
– Limitations and future works (Sec. 5).

1 Video

We include a video covering various scene editing applications. In the video, we
move virtual light sources and objects to change highlights and shadows, and
gradually modify the wall color to edit global illumination. Even though we do
not explicitly add any smoothness constraint, our framework manages to achieve
consistent scene editing results. This is probably because our framework explicitly
follows the physics of the image formation process, which provides a natural
regularization for our rendering results to be consistent.

2 Network Architecture and Training Details

We train our network on the OpenRooms Dataset [4], which is the only dataset
that provides all the necessary ground truths for training our light source esti-
mation and neural rendering frameworks, including depth D, SVBRDF (diffuse
albedo A, normal N and roughness R), direct shading EL,W and shadow SL,W
for each individual light source, shading with indirect illumination E and per-pixel
lighting L. The dataset contains 1287 indoor scenes, with 118,233 images in total.
We utilize 108,159 images rendered from 1178 scenes for training and the rest
for testing. All the synthetic results are generated from the testing set. The
comprehensive supervision provided by the OpenRooms dataset [4] allows us
to train each module of our framework separately, which greatly simplifies the
training process. The number of iterations for training each network and batch
sizes are summarized in Tab. 3.

For all network figures in the supplementary, CX1-KX2-SX3-PX4-GX5 rep-
resents a convolutional layer with X1 channels, kernel size X2, stride size X3,

https://drive.google.com/file/d/1IuMuJ4QyVGIWNhN_HhwOhyJuQ7Ud26b5/view

2 Zhengqin Li et al.

Conv (C64-K4-S2-P1-G16)

Conv (C128-K4-S2-P1-G16)

Conv (C256-K4-S2-G16)

Conv (C512-K4-S2-P1-G16)

Conv (C1024-K4-S2-P1-G16)

U
p + Conv (C512-K3-S1-P1-G16)

U
p + Conv (C256-K3-S1-P1-G16)

U
p + Conv (C256-K3-S1-P1-G16)

U
p + Conv (C128-K3-S1-P1-G16)

U
p + Conv (C64-K3-S1-P1-G16)

U
p + Conv (C64-K3-S1-P1-G16)

Conv (C1/3-K3-S1-P1)

Encoder Decoder

Albedo A

Normal N

Roughness R

<latexit sha1_base64="Sh0FG1Xf4ZFJx76fg/wx1aY4plo=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcVNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhdjPtlytuzZ2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1ITXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdV7zLmvu/UWlXs3rKMIJnEIVPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBo3qQ0A==</latexit>

A

<latexit sha1_base64="DQCp4OA6o8P/QEX+n9CQxsjMB0U=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFN66kgn1gO5RMeqcNzWSGJCOUoX/hxoUibv0bd/6NaTsLbT0QOJxzLzn3BIng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKj72ImlEQZnfTfrni1tw5yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72TzxlJxZZUDCWNknDZmrvzcyGmk9iQI7OUuol72Z+J/XTU147WdcJqlByRYfhakgJiaz88mAK2RGTCyhTHGblbARVZQZW1LJluAtn7xKWuc177Lm3l9U6tW8jiKcwClUwYMrqMMtNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8ftzuQ3Q==</latexit>

N

<latexit sha1_base64="koWLnBwRHEV/5Ffs4mOfxqNCJWI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFNy6r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhdj/tlytuzZ2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1ITXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdV7zLmvu3UWlXs3rKMIJnEIVPLiCOtxCA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBvU+Q4Q==</latexit>

R

Conv (C256-K4-S2-P1-G16)

Input im
age I <latexit sha1_base64="nFhSd6hXP11NCAPS7v1T7CnqHL8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFN7qrYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2d20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nALDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHr6KQ2A==</latexit>I

Depth D <latexit sha1_base64="UU+IeS/Igyc47XqJzcMQ1TtA0aI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFXbisYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2e20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHqAmQ0w==</latexit>D

Fig. 1. Network architecture of
MNet for material parameter
prediction.

Encoder Decoder

Conv2D
(C128-K4-S2-P1-G16)

Conv2D
(C128-K4-S2-P1-G16)

Input image I
<latexit sha1_base64="nFhSd6hXP11NCAPS7v1T7CnqHL8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFN7qrYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2d20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nALDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHr6KQ2A==</latexit>

I Depth points D
<latexit sha1_base64="UU+IeS/Igyc47XqJzcMQ1TtA0aI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFXbisYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2e20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHqAmQ0w==</latexit>

D Albedo D
<latexit sha1_base64="Sh0FG1Xf4ZFJx76fg/wx1aY4plo=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcVNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhdjPtlytuzZ2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1ITXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdV7zLmvu/UWlXs3rKMIJnEIVPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBo3qQ0A==</latexit>

A

Conv2D
(C256-K4-S2-P1-G16)

Conv2D
(C256-K4-S2-P1-G16)

Conv2D
(C512-K4-S2-P1-G16)

Light source m
asks M

…
<latexit sha1_base64="t/rCKlCC9LonZH/YMZJ+oHMZZjU=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovQVUlEqsuCGzdCBfuAJpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z48ecKW3b31ZpbX1jc6u8XdnZ3ds/qB4edVWUSEI7JOKR7PtYUc4E7WimOe3HkuLQ57TnT69zv/dIpWKRuNezmHohHgsWMIK1kR7c1A2xnvhBepu52bBasxv2HGiVOAWpQYH2sPrljiKShFRowrFSA8eOtZdiqRnhNKu4iaIxJlM8pgNDBQ6p8tJ56gydGWWEgkiaJzSaq783UhwqNQt9M5lnVMteLv7nDRIdXHkpE3GiqSCLQ0HCkY5QXgEaMUmJ5jNDMJHMZEVkgiUm2hRVMSU4y19eJd3zhtNs2HcXtVa9qKMMJ3AKdXDgElpwA23oAAEJz/AKb9aT9WK9Wx+L0ZJV7BzDH1ifP+t5krQ=</latexit>{M

}

Conv2D
(C1024-K4-S2-P1-G16)

AvgPooling2D + Split channel-w
ise

Conv2D
(C256-K1-S1-G16)

Conv2D
(C256-K1-S1-G16)

Conv2D
(CX-K1-S1)

Conv2D
(CY-K1-S1)

Geom
etry

param
eters.

Radiance
param

eters.

Initialization
for visible

light sources

Fig. 2. Network architecture for
light source prediction. All four
light source prediction networks
share a similar architecture. Net-
works for visible light source pre-
diction have initialization of light
source geometry as inputs. The
numbers of output channels dif-
fer according to the light source
type.

padding size X4, followed by a group normalization layer with X5 channels per
group. Up represents a bilinear interpolation layer that doubles the resolution of
the input feature map.

2.1 Material Prediction

We first train MNet for SVBRDF prediction. The network architecture is shown
in Fig. 1. The input to the network is a 240×320 LDR image I and the depth map
D, while the outputs are diffuse albedo A, normal N and roughness R. Similar
to prior work [3], we use three decoders but one shared encoder to predict three
BRDF parameters because these parameters are correlated. We add skip-links
to help reconstruct details. The loss function is the sum of L2 loss on the three
BRDF parameters. ∑

X∈{A,N,R}

(X− X̄)2. (1)

Note that we normalize the ground-truth D so that its mean is equal to 3 before
we send it to every network. The reason is that there is a scale ambiguity for single
image depth prediction using DPT network [6]. We find that this is important
for the networks to generalize well to real images.

2.2 Light Source Prediction

Once we finish training the MNet, we use its predictions A, N and R as inputs,
combined with image I, depth map D and light source segmentation mask
Mj to train our light source prediction networks. We have four types of light
source prediction networks for four types of light sources, {visible/invisible} and
{lamp/window}, which share similar architectures but differ in parameterization

Title Suppressed Due to Excessive Length 3

Camera point Angular distribution for
invisible light sources

Z

X

Y

Camera

Image plane Fig. 3. Visualization of parameterization for the centers
of invisible light sources. Our parameterization encour-
ages centers of invisible light sources to be outside the
camera frustum.

sun sky ground

(λmin, λmax) (0.9, 1-10−6) (0, 1-10−4) (0, 1-10−4)

Table 1. The value of λmin and λmax for SGs correspond to sun, sky and ground
respectively. λmax is set slightly less than 1.

and inputs. As shown in Fig. 2, the encoder architecture consists of six 2D
convolutional layers with stride 2. We also tried to use pre-trained ResNet-18 [2]
but the results were worse.

Invisible light sources prediction The inputs to invisible window and invisible
lamp prediction networks are exactly the same, which include the LDR image (I),
depth (D), albedo (A) and the sum of light source masks M =

∑
j Mj. We first

project 1-channel depth map D into 3-channel point cloud before we concatenate
it with other inputs. The radiance of a lamp is controlled by intensity w only.
We use tan function to project the initial network output w̃ in range [0, 1] to
high dynamic range

w = tan(
π

2
w̃). (2)

The radiance of a window is controlled by 3 SGs, which correspond to sun, sky
and ground of outdoor illumination. We encourage the SG corresponding to sun
to represent high-frequency directional lighting. Therefore, we introduce two more
parameters λmax and λmin for each SG to constrain their bandwidth parameters.
Similarly, let w̃k, d̃k and λ̃k be the initial predictions, where d̃k is in the range
of [-1, 1], w̃k and λ̃k are in the range of [0, 1], we have

wk = tan(
π

2
w̃k) (3)

dk = normalize(d̃k) (4)

λk = tan(
π

2
(λ̃k(λ

max
k − λmin

k) + λmin
k)) (5)

The value of λmax and λmin parameters for sun, sky and ground are summarized
in Tab. 1.

We represent the geometry of the invisible window and invisible lamp using a
plane {c,x,y} and a 3D box {c,x,y, z} respectively, where c is the center and
{x,y, z} are the three axes. To recover axes for lamps, we predict Euler angles
α, β and γ as well as the axis length lx, ly and lz, which combined together can
be used to compute x,y, z. To recover axes for windows, we first predict initial

4 Zhengqin Li et al.

axes ỹ and z that are perpendicular to each other, as well as axis lengths lx and
ly. Let u = [0, 1, 0] be the up vector. The final axis predictions are computed as

y = normalize(ỹ + u)ly (6)

x = normalize(cross(z,y))lx (7)

The intuition of introducing u is that for most windows, their y is close to up
vector u. Therefore, we predict the difference between y and u to make the
training easier.

To predict centers of invisible light sources, we notice that if we directly output
center c, in some cases, the invisible light sources will be located inside the camera
frustum or even across scene geometry, causing artifacts in the rendering. Thus,
we change the parameterization to push their centers outside the camera frustum,
as visualized in Fig. 3. We decompose the center c into direction dc and length
lc. Let f be the field of view for the short axis of the image plane, and xc, yc

and zc be the camera coordinate system as shown in Fig. 3. We first predict
θc ∈ [0, π − f], ϕc ∈ [−π, π] and lc ∈ [0,∞]. Then, we compute center c:

dc = xc sin θc cosϕc + yc sin θc cosϕc (8)

+ zc cos θc (9)

c = dclc (10)

Visible window prediction Both geometry and radiance representations for visible
windows are the same as those of invisible windows. However, for visible windows,
instead of directly predicting their location from a single image, we first compute
their initial light source center cinit based on their segmentation masks MW and
depth D, send the initial results to the network and then predict the difference
between the initial estimation and the ground-truths. More specifically, we define
[X;Y;−1] to be a 3-channel image representing pixel locations on the image
plane. We introduce function Edge(M, n) to compute the edge pixels of mask
M, where

Edge(M, n) = dilation(M, n)−M. (11)

Formally, the initial center cinit is defined as

cinit = mean([X;Y;−1]MW , axis = 3)

mean(DEdge(MW , 7))

cinit is then sent to the network by concatenating with other inputs as an extra
3-channel image. Let c̃ be the output from the network. The final prediction c is
defined as

c = cinit + c̃ (12)

Visible lamp prediction The radiance of a visible lamp is simply represented by
intensity w. As shown in Fig. 5 in the main paper, the geometry of a visible
lamp is represented by reflecting the visible surface with respect to the center to

Title Suppressed Due to Excessive Length 5

compute the invisible and boundary area. Similar to the visible window case, we
first compute the initial center as

cinit = mean([X;Y;−1]MW , axis = 3)

mean(DMW)

Since lamps are usually small and errors in their geometry prediction can cause
highlight artifacts, we add a stronger regularization by requiring that the final
predicted center c must be in the same camera ray of the initial center cinit. We
decompose cinit into direction dinit

c and length linitc and predict l̃c so that we
have

c = dinit
c (linit

c + l̃c) (13)

Once we get the center c, we can compute invisible area and boundary area
based on that. Let q be one point on the visible area of a lamp, and N(q) be its
normal. Let H be the height of the image. Recall that f is the field of view for
the y axis. The area of p can be computed as

area(q) =

(
1

H
tan(

f

2
)

)2
1

max(N(q)T · [0; 0; 1], 0)
(14)

The corresponding invisible area q̂ can be computed as

q̂ = 2(c− (q · dc)dc) + q (15)

area(q̂) = area(q) (16)

N(q̂) = N(q)− 2(N(q) · dc)dc (17)

As for edge pixels, they can be computed as

Edge(ML,−1) = ML − erosion(ML, 1) (18)

We create edge surface with center qe so that

qe =
q+ q̂

2
(19)

area(qe) = ||q− q̂||
(

1

H
tan(

f

2
)

)
(20)

N(qe) = normalize(qe − c) (21)

Note that both q̂ and qe are differentiable with respect to predicted center c,
which allows us to supervise the center prediction using the chamfer distance
loss, which will be discussed below.
Loss functions We train the networks for visible lamps prediction using two loss
functions Lossjren and Lossjgeo. The Loss

j
ren is the L1 loss between the rendered

direct shading and the ground-truth of light source j

Lossjren = |Ej − Ēj|.

We also considered logL2 loss but find that it focuses too much on low intensity
regions and can cause wrong highlights. The geometry loss has two parts, a

6 Zhengqin Li et al.

ωsun ωsky ωgrd ωw ωd ωλ

1.0 0.2 0.2 0.001 1.0 0.001

Table 2. Value of coefficients for direct light
source loss Losssrc.

RMSE Chamfer distance loss and L1 area loss. To compute the RMSE Chamfer
distance loss, we randomly sample points on the surface of lamps and compute
their RMSE Chamfer distance between the points sampled from ground-truth
geometry. We find that compared to standard L2 Chamfer distance, RMSE
Chamfer distance can make the training more stable, especially for invisible light
sources. To compute the L1 area loss, we compute the sum of surface area of
the predicted lamp and the ground-truth lamp. We observe that the area loss
is important in preventing the network from predicting too large light sources,
which may cause shadows to be blurry.

Lossjgeo= Cham({qj}, {q̄j}) + ωa|area(j)− area(̄j)|,

where ωa is equal to 0.8.
For visible windows, we use the same Lossjren and Lossjgeo but also add

direct supervision on the light source spherical Gaussian parameters. The way we
compute the ground-truth window radiance parameters is introduced in Sec. 2.7.
In summary, we use L2 loss to supervise direction d and logL2 loss to supervise
intensity w and bandwidth λ.

LossWsrc =

sun, sky, grd∑
k

ωk

(
ωw|| log(wk+1)−log(w̄k+1)||2 (22)

+ωd||dk−d̄k||2+ωλ|| log(λk+1)−log(λ̄k+1)||2
)

The values of coefficients ω· are summarized in Tab. 2, which are determined
by first fine-tuning on a small training set and then applying to the whole dataset.
For invisible windows and lamps, we use the same loss functions as in the visible
cases. Note that we only predict one invisible lamp and one invisible window
for each image. When there is no invisible window or lamp, we only compute
the rendering loss by setting Ēj = 0. When there are more than one invisible
windows or lamps, we pick up the one whose direct shading Ēj has the highest
total energy and compute all losses with respect to it.

2.3 Shadow prediction.

For shadow prediction, we train DShdNet to in-paint and denoise the incomplete
shadow map due to the occlusion boundaries. The network architecture of
DShdNet is shown in Fig. 4, where we use a light-weight encoder-decoder
structure with skip-links. We train the shadow prediction network with scale-
invariant gradient based loss as proposed in [5] and find that it works much
better than standard L2 loss, especially on real images. Formally, let S and S̄ be

Title Suppressed Due to Excessive Length 7

Conv
(C32-K4-S1-P1-G16)

Depth point D
<latexit sha1_base64="UU+IeS/Igyc47XqJzcMQ1TtA0aI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFXbisYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2e20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHqAmQ0w==</latexit>

D Normal N
<latexit sha1_base64="DQCp4OA6o8P/QEX+n9CQxsjMB0U=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFN66kgn1gO5RMeqcNzWSGJCOUoX/hxoUibv0bd/6NaTsLbT0QOJxzLzn3BIng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKj72ImlEQZnfTfrni1tw5yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72TzxlJxZZUDCWNknDZmrvzcyGmk9iQI7OUuol72Z+J/XTU147WdcJqlByRYfhakgJiaz88mAK2RGTCyhTHGblbARVZQZW1LJluAtn7xKWuc177Lm3l9U6tW8jiKcwClUwYMrqMMtNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8ftzuQ3Q==</latexit>

N

Conv
(C64-K3-S1-P1-G16)

Conv
(C128-K4-S2-P1-G16)

Conv
(C256-K4-S2-P1-G16)

Conv
(C256-K4-S2-P1-G16)

Conv
(C256-K3-S1-P1-G16)

U
p + Conv

(C128-K3-S1-P1-G16)

U
p + Conv

(C128-K3-S1-P1-G16)

U
p + Conv

(C64-K3-S1-P1-G16)

concat

Conv
(C1-K3-S1-P1)

Initial shadow 𝑺𝑰𝒏𝒊𝒕

Encoder Decoder

Fig. 4. Network architecture for shadow
prediction.

Conv
(C32-K4-S1-P1-G16)

Depth point D
<latexit sha1_base64="UU+IeS/Igyc47XqJzcMQ1TtA0aI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFXbisYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2e20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHqAmQ0w==</latexit>

D Albedo D
<latexit sha1_base64="Sh0FG1Xf4ZFJx76fg/wx1aY4plo=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcVNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhdjPtlytuzZ2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1ITXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdV7zLmvu/UWlXs3rKMIJnEIVPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBo3qQ0A==</latexit>

A Normal N
<latexit sha1_base64="DQCp4OA6o8P/QEX+n9CQxsjMB0U=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFN66kgn1gO5RMeqcNzWSGJCOUoX/hxoUibv0bd/6NaTsLbT0QOJxzLzn3BIng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKj72ImlEQZnfTfrni1tw5yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72TzxlJxZZUDCWNknDZmrvzcyGmk9iQI7OUuol72Z+J/XTU147WdcJqlByRYfhakgJiaz88mAK2RGTCyhTHGblbARVZQZW1LJluAtn7xKWuc177Lm3l9U6tW8jiKcwClUwYMrqMMtNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8ftzuQ3Q==</latexit>

N Light source masks M…
<latexit sha1_base64="t/rCKlCC9LonZH/YMZJ+oHMZZjU=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovQVUlEqsuCGzdCBfuAJpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z48ecKW3b31ZpbX1jc6u8XdnZ3ds/qB4edVWUSEI7JOKR7PtYUc4E7WimOe3HkuLQ57TnT69zv/dIpWKRuNezmHohHgsWMIK1kR7c1A2xnvhBepu52bBasxv2HGiVOAWpQYH2sPrljiKShFRowrFSA8eOtZdiqRnhNKu4iaIxJlM8pgNDBQ6p8tJ56gydGWWEgkiaJzSaq783UhwqNQt9M5lnVMteLv7nDRIdXHkpE3GiqSCLQ0HCkY5QXgEaMUmJ5jNDMJHMZEVkgiUm2hRVMSU4y19eJd3zhtNs2HcXtVa9qKMMJ3AKdXDgElpwA23oAAEJz/AKb9aT9WK9Wx+L0ZJV7BzDH1ifP+t5krQ=</latexit>{M}

Conv
(C64-K3-S1-P1-G16)

Conv
(C128-K4-S2-P1-G16)

Conv
(C256-K4-S2-P1-G16)

Conv
(C256-K4-S2-P1-G16)

Conv
(C512-K4-S2-P1-G16)

Conv
(C512-K4-S2-P1-G16)

U
p + Conv

(C256-K3-S1-P1-G16)

U
p + Conv

(C128-K3-S1-P1-G16)

U
p + Conv

(C128-K3-S1-P1-G16)

U
p + Conv

(C64-K3-S1-P1-G16)

concat

U
p + Conv

(C1-K3-S1-P1)

Reflectance (Albedo * Direct shading) Direct shading 𝑬𝒅

Encoder Decoder

Fig. 5. Network architecture for indirect
shading prediction.

Input image Initial shadow

Shadow completion
with L2 loss

Shadow completion
with gradient loss

Fig. 6. Qualitative comparison of shadow
completion network trained with L2 loss
and gradient-based loss. The orange circle
highlights the artifacts in the result trained
with L2 loss.

the predicted and ground-truth shadows, the loss function is defined as

Lossshd =

1,2,4,8∑
h

∑
i,j

||gh[S](i, j)− gh[S̄](i, j)||2,

where

gh[S](i, j)=

(
S(i+h, j)−S(i, j)

|S(i+h, j)+S(i, j)| ,
S(i, j+h)−S(i, j)

|S(i, j+h)+S(i, j)|

)
.

Fig. 6 compares the shadow completion network trained with standard L2 loss and
the gradient-based loss on a real image from the Replica dataset [8]. We observe
that compared to L2 loss, gradient-based loss leads to smoother prediction with
fewer artifacts.

2.4 Indirect illumination prediction

The network architecture for indirect shading prediction is shown in Fig. 5.
which has an encoder-decoder architecture with a large receptive field so that
the network can learn the non-local global information. We train this module

8 Zhengqin Li et al.

Conv
(C32-K4-S1-P1-G16)

Conv
(C64-K3-S1-P1-G16)

Depth D
<latexit sha1_base64="UU+IeS/Igyc47XqJzcMQ1TtA0aI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFXbisYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSE2e20X664NXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1nnNu6y59xeVejWvowgncApV8OAK6nAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHqAmQ0w==</latexit>

D Albedo D
<latexit sha1_base64="Sh0FG1Xf4ZFJx76fg/wx1aY4plo=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcVNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhdjPtlytuzZ2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1ITXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdV7zLmvu/UWlXs3rKMIJnEIVPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBo3qQ0A==</latexit>

A Normal N
<latexit sha1_base64="DQCp4OA6o8P/QEX+n9CQxsjMB0U=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFN66kgn1gO5RMeqcNzWSGJCOUoX/hxoUibv0bd/6NaTsLbT0QOJxzLzn3BIng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKj72ImlEQZnfTfrni1tw5yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72TzxlJxZZUDCWNknDZmrvzcyGmk9iQI7OUuol72Z+J/XTU147WdcJqlByRYfhakgJiaz88mAK2RGTCyhTHGblbARVZQZW1LJluAtn7xKWuc177Lm3l9U6tW8jiKcwClUwYMrqMMtNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8ftzuQ3Q==</latexit>

N Roughness N
<latexit sha1_base64="koWLnBwRHEV/5Ffs4mOfxqNCJWI=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFNy6r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhdj/tlytuzZ2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1ITXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdV7zLmvu3UWlXs3rKMIJnEIVPLiCOtxCA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwBvU+Q4Q==</latexit>

R

Shading N
<latexit sha1_base64="JE4uwaH5upn4YBzOV2XzL44sFxs=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRUZcFEVxWsA9sh5JJ77ShmcyQZIQy9C/cuFDErX/jzr8xbWehrQcCh3PuJeeeIBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6HSPJYPZpKgH9Gh5CFn1FjpsRdRMwrC7HbaL1fcmjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/myeekjOrDEgYK/ukIXP190ZGI60nUWAnZwn1sjcT//O6qQmv/YzLJDUo2eKjMBXExGR2PhlwhcyIiSWUKW6zEjaiijJjSyrZErzlk1dJ67zmXdbc+4tKvZrXUYQTOIUqeHAFdbiDBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kDqY6Q1A==</latexit>

E

Light source masks M…
<latexit sha1_base64="t/rCKlCC9LonZH/YMZJ+oHMZZjU=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovQVUlEqsuCGzdCBfuAJpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z48ecKW3b31ZpbX1jc6u8XdnZ3ds/qB4edVWUSEI7JOKR7PtYUc4E7WimOe3HkuLQ57TnT69zv/dIpWKRuNezmHohHgsWMIK1kR7c1A2xnvhBepu52bBasxv2HGiVOAWpQYH2sPrljiKShFRowrFSA8eOtZdiqRnhNKu4iaIxJlM8pgNDBQ6p8tJ56gydGWWEgkiaJzSaq783UhwqNQt9M5lnVMteLv7nDRIdXHkpE3GiqSCLQ0HCkY5QXgEaMUmJ5jNDMJHMZEVkgiUm2hRVMSU4y19eJd3zhtNs2HcXtVa9qKMMJ3AKdXDgElpwA23oAAEJz/AKb9aT9WK9Wx+L0ZJV7BzDH1ifP+t5krQ=</latexit>{M}

Conv
(C64-K3-S1-P1-G16)

Conv
(C128-K4-S2-P1-G16)

Conv
(C256-K4-S2-P1-G16)

Conv
(C256-K4-S2-P1-G16)

Conv
(C512-K4-S2-P1-G16)

Conv
(C512-K4-S2-P1-G16)

Conv
(C1024-K4-S2-P1-G16)

U
p + Conv

(C512-K3-S1-P1-G16)

U
p + Conv

(C512-K3-S1-P1-G16)

U
p + Conv

(C256-K3-S1-P1-G16)

U
p + Conv

(C256-K3-S1-P1-G16)

U
p + Conv

(C128-K3-S1-P1-G16)

U
p + Conv

(C128-K3-S1-P1-G16)

concat

Conv
(C36/12-K3-S1-P1)

Encoder Decoder

Intensity {𝒘}

Direction {𝒅}

Bandwidth {𝝀}

Fig. 7. Network architecture for
lighting prediction.

Mat.
Window Lamp

Shadow Indirect Lighting
Vis. Inv. Vis. Inv.

Iter(k) 135 120 200 120 150 70 180 240

Batch 12 9 9 9 9 3 3 3
Table 3. The number of iterations and batch size for training each network. For all
networks, we use Adam optimizer with learning rate 10−4 and betas = (0.9, 0.999).

independently by taking the ground-truth direct shading Ēd as input and predict
the indirect shading.

Eind = IndirectNet(Ēd,D,N,A) (23)

E = Eind + Ēd (24)

The loss function is the L1 loss of the final shading prediction Lossshg = |E− Ē|.

2.5 Per-pixel lighting prediction

As shown in Fig. 7, the network architecture of LightNet for per-pixel lighting
prediction is exactly the same as in [3]. The only difference is that we replace
the input image I with the ground-truth per-pixel shading Ē.

L = LightNet(Ē,M,A,N,R,D) (25)

The loss function is the log L2 loss on the predicted per-pixel lighting plus a L1

shading loss. To compute the shading loss, we integrate the per-pixel lighting L
to get shading prediction EL and compute its difference from Ē.

Losslight = || log(L+ 1)−log(L̄+ 1)||2 + ωr|EL − Ē|

where ωr is set to be 0.01.

2.6 Differentiable Direct Shading Rendering Layer

We first discuss how we uniformly sample the surface of light sources. Let u, v
be two random variables sampled from a uniform distribution in the range of
[−1, 1]. To sample a point on the window surface, we have

q = c+ 0.5ux+ 0.5vy (26)

Title Suppressed Due to Excessive Length 9

The invisible lamp is represented by a 3D bounding box. Thus, we sample each
of the 6 faces separately, for example,

q = c+ 0.5x+ 0.5uy + 0.5vz. (27)

For visible lamps, we treat every visible point q, invisible point q̂ and edge point
qe as a plate whose normal N and area can be computed as in Eq. (14)-(21).
Replacing these sampled points into Eq. (1) in the main paper allows us to
compute the direct shading for every light source.

For window light sources specifically, we observe that it is necessary to sample
according to the angular distribution of high-frequency directional sunlight (Fig. 4
in the main paper). To achieve this, we use standard Monte Carlo sampling by
first computing the CDF of Gsun = {wsun,dsun, λsun} and then sampling the
lighting direction using its inverse function. We define θsun and ϕsun to be the
polar angle and azimuthal angle in a coordinate system where dsun is the z axis.
The PDF for θsun and ϕsun are

Pr(ϕsun) =
1

2π

Pr(θsun) =
λsun exp(λsun(cos θsun − 1) sin θsun

1− exp(−2λsun)

Pr(ϕsun, θsun) = Pr(ϕsun)Pr(θsun)

Similar as when we sample the surface of light sources, let u, v be two random
variables. To sample ϕsun, since it distributes uniformly, we simply have

ϕsun = uπ

To sample θsun, we first compute the CDF of its distribution

F(θsun) =
exp(λsun)− exp(λsun cos θsun)

exp(λsun)− exp(−λsun)
,

and then compute θsun by inverting its CDF

θsun = arccos

(
log(1− v+1

2 (1− exp(−2λsun)))

λsun
+ 1

)
Given θsun and ϕsun, the sampled lighting direction l can be computed as

l = xsun sin θsun cosϕsun + ysun sin θsun cosϕsun

+ dsun cos θsun

which can be replaced into Eq. (2) in the main paper to compute the direct
shading. Here xsun and ysun are two arbitrary orthogonal vectors perpendicular
to dsun. Note that we implement all the sampling algorithms in pytorch so that
our rendering layer is differentiable.

In Fig. 4 in the main paper and Fig. 8, we demonstrate that sampling according
to both the geometry and radiance distribution of a window following the MIS
rule can lead to much less noise with similar number of samples, compared to
only uniformly sampling the surface area of the window.

10 Zhengqin Li et al.

Input image GT direct shading

MIS sampling, 200 sppArea sampling, 200 spp

L1 Err = 0.371 L1 Err = 0.104

Fig. 8. Comparions of direct shading ren-
dered by sampling area uniformly or using
MIS sampling. Our MIS sampling has much
less noise with the same number of sam-
ples. This makes it possible for us to train
our networks with rendering loss, which is
essential to achieve accurate light source
reconstruction.

Input

Input

GT direct shading 1 SG approximation 3 SG approximation

L1 Err=0.159 L1 Err=0.094

L1 Err=0.066 L1 Err=0.041

Fig. 9. A demonstration of di-
rect shading rendered from our
ground-truth window radiance
parameters. Our ground-truth 3
SGs can be used to render direct
shading that closely matches the
ground-truth and is more expres-
sive compared to a single SG rep-
resentation, which cannot capture
the ambient lighting.

2.7 Ground-truth Window Radiance Parameters

Our Monte Carlo-based differentiable direct shading rendering layer allows us
to compute ground-truth radiance parameters for windows, by minimizing the
rendering loss between the rendered direct shading EW and the ground-truth
direct shading ĒW provided by the OpenRooms dataset,

Lossren = |EW − ĒW | (28)

Here we use L1 loss instead of logL2 loss because we observe that the latter
can recover low-intensity regions more accurately but meanwhile can lead to
highlight artifacts. To encourage the 3 SGs to represent 3 physically meaningful
light sources, sun, sky and ground respectively, we first render a panorama facing
outside the window and then select the brightest direction in the panorama as
the sunlight direction and keep it fixed through the optimization process. As for
the other 2 SGs corresponding to sky and ground, we initialize their direction
with up vector [0, 1, 0] and minus up vector [0, -1, 0] in the world coordinate
system. In addition, we also apply the λ constraint as shown in Tab. 1 so that
the high-frequency directional lighting can be mainly represented by the Gsun.

In Fig. 4 in the main paper and Fig. 9, we demonstrate that our ground-truth
3 SGs parameters can be used to render direct shading very close to the ground-
truth, with both high-frequency directional lighting and ambient lighting being
correctly modeled, while the 1 SG representation applied by prior work [9] can
only capture the directional lighting. Our ground-truth 3 SGs parameters are

Title Suppressed Due to Excessive Length 11

Real image Light sources
Invisible

lamp

Visible
lamp

Predicted direct shading Refined direct shading Predicted shading Refined shading Predicted re-rendered Refined re-rendered

Invisible
lamp

Invisible
window

Rendered shading and images with
randomly initialized light source radiances

L1 Err = 0.186 L1 Err = 0.067

L1 Err = 0.074 L1 Err = 0.041

L1 Err = 0.128 L1 Err = 0.100

Fig. 10. Comparisons of light source prediction and re-rendered image before and after
optimization. We observe that while the optimization-based refinement can help predict
more consistent light source intensity, it also relies on a good initialization from the
network to converge to a good result: a random initialization cannot lead to accurate
recovery of light source radiance through pure optimization. This is especially true for
more complex sunlight coming through windows. Note that the direct shading from the
invisible window for the first example is always 0 and therefore is not shown here.

Material
Light Direct

Shadow
Indirect Per-pixel

Total
source shading shading lighting

299ms 19.7ms 595ms 1309ms 19.1ms 19.35ms 2.26s
Table 4. Inference time of each step of our framework.

used to compute the LossWsrc as shown in Eq. (22) in the training process and
demonstrated to help capture more accurate and interpretable lighting in Sec. 3.

2.8 Optimization-based Refinement

Our differentiable rendering pipeline allows us to refine the light source radiance
parameters based on rendering loss. We find that this is especially useful when
the intensity of light source prediction can be slightly off sometimes. Given
the light source parameters {W} and {L}, which cover visible/invisible and
windows/lamps, we can render shading E. We define the rendering loss as the L2

loss between the rendered image and the input LDR image,

Lossren = ||min(EA, 1)− I||2, (29)

where A is the predicted albedo. Note that we have already transformed the input
LDR image into linear RGB space. One alternative to compute the rendering
loss is to use per-pixel lighting L so that we can also render specularity. However,
we observe that it will cause the optimization to be unstable.

Fig. 8 and Fig. 10 compares the light source prediction and re-rendered image
before and after optimization, where we observe that our rendering error-based
optimiztion can effectively correct the intensity of the light source prediction.
However, we also observe that for more complex sunlight coming through a
window, it is important to provide a good initial prediction from the network.
Otherwise, a pure optimization-based method cannot recover light source radiance
correctly. In the second example in Fig. 10, we randomly initialize the light source
radiance and observe that reconstructed direct shading and final re-rendered
image may not be accurate.

12 Zhengqin Li et al.

Rendered image Albedo Normal Roughness Direct shading Shading Per-pixel lighting

Ground
truth

Gt.
depth

Pred.
depth

Ground
truth

Gt.
depth

Pred.
depth

Fig. 11. Material predictions and neural rendering results on the OpenRooms synthetic
dataset with predicted and ground-truth depth. We observe that with both ground truth
our method can render high-quality direct shading, shading, per-pixel environment map
and final image from our light source and material predictions, with non-local shadows
and interreflection being correctly modeled.

2.9 Inference Time

The inference time for each step of the network to process one image is summarized
in Tab. 4. The most time consuming step is to render shadows from depth using
path tracing. Note that while our framework handles many complex light transport
effects, including global illumination, the total time for it to reconstruct and
re-render an indoor scene is only less than 3 s.

3 Synthetic Experiments on OpenRooms

We present more qualitative and quantitative results on the synthetic OpenRooms
dataset [4]. More specifically, we test the effectiveness of different loss terms
and how imperfect depth prediction can impact our light source prediction and
neural rendering results. Our depth prediction are produced by DPT [6] without
fine-tuning on our synthetic dataset. We train all our models on ground-truth
depth and, as shown in multiple figures (e.g. Fig. 1, 12 and 13) in the main paper
and Fig. 11 and 12, find that they generalize well to predicted depth for both
real and synthetic data in most cases.

Title Suppressed Due to Excessive Length 13

!"#"$%&'(")*+(

!"#"$%&'%,-.

/)0"#"$%&'(")*+(

/)0"#"$%&'%,-.

!"#$%&'()*+ ,-+./&0'*1%&
23$-4+

56&0'*1%&
23$-4+

,-+./&.'-+4%&
21).'"*

56&.'-+4%&
21).'"*

,-+./&.'-+4%&
21).'"*&7'%1
#-+./&.+#%1

,-+./&0'*1%&
23$-4+&7'%1
#-+./&.+#%1

56&.+#%1,-+./ .+#%1

Fig. 12. Light source prediction results on the synthetic dataset for various types of
light sources with ground-truth and predicted depth. In most cases, our method can
recover both the geometry and radiance of light sources similar to ground truth with
either predicted or ground-truth depth. We also show one example on the fourth row,
as marked by the red rectangle, where the inaccurate depth prediction leads to poor
geometry prediction of a visible lamp, causing the highlight in the shading to be missing.

3.1 Material prediction

Unlike the prior method [3], which first uses scale-invariant loss for albedo
prediction and adopts a linear regression to solve the scale ambiguity, we use the
absolute loss for both diffuse albedo and light intensity prediction. The reason
is that our method needs to recover the radiance of multiple light sources in
the scene and it is difficult to recover consistent intensities across multiple light
sources through simple linear regression.

Tab. 5 compares our material prediction with [4]. We report the quantitative
numbers with both ground-truth and predicted depth maps as inputs. When using
ground-truth depth as an input, our normal prediction is much more accurate
compared to [4]. Our roughness quality is similar to [3]. Both the roughness and
albedo predictions are relatively insensitive to the depth accuracy. In Fig. 11
and Fig. 10 in the main paper, we present our material predictions on both

14 Zhengqin Li et al.

No render loss No src loss

GT direct shading All losses

Input
Fig. 13. Ablation studies on different loss
combinations for window light source pre-
diction. Our network trained with both ren-
dering loss Lossjren and light source loss
Lossjsrc predicts the most accurate radi-
ance, with both high-frequency directional
lighting and ambient lighting closely match-
ing the ground-truth.

Albedo 10−2 Normal 10−2 Roughness 10−2

A N R

Ours
Gt. Pred. Gt. Pred. Gt. Pred.
1.81 2.48 1.39 6.52 6.22 6.58

Li et al. [4] - 4.51 6.59
Table 5. Material predictions on the OpenRooms testing set. We report L2 error of our
material predictions. We report our results with both ground-truth depth and predicted
depth as inputs. The network is trained with ground-truth depth and not fine-tuned
with predicted depth.

real and synthetic data. On synthetic data, we show that our diffuse albedo,
roughness and normal predictions are reasonably close to the ground truths. For
real images, even though we do not have ground-truths, our material predictions
are high-quality enough to enable realistic re-rendering of the scene.

3.2 Light source prediction

In Fig. 12, we show more qualitative light source prediction results using either
ground-truth or predicted depth. The quantitative numbers are summarized in
Tab. 3 in the main paper. In most cases, our light source prediction models, even
though trained on ground-truth depth only, can generalize well to predicted depth
and can recover geometry and radiance of all 4 types of light sources accurately. In
the reconstructed direct shading, small errors can be seen caused by the imperfect
depth prediction with less details, which might be inevitable. Our visible lamp
reconstruction is more sensible to depth accuracy compared to other kinds of
light sources due to its geometry representation. In the fourth row, we show one
example where the inaccurate depth prediction causes the lamp position to be
closer to the camera than the ground truth. Hence, the highlights on the floor is
missing. This example may suggest that utilizing lighting information to improve
geometry reconstruction can be an interesting future direction.

Ablation study Tab. 6 and Fig. 13 verifies the effectiveness of our loss functions for
window light source prediction. We observe that while training with light source
loss Lossjsrc can lead to the prediction closest to our optimized ground-truth

Title Suppressed Due to Excessive Length 15

Number of
visible lamps

Number of
visible windows

Number of
invisible lamps

Number of
invisible windows

Number of
total light sources

Direct shading
𝑬𝒅

Shading
𝑬

Perpixel envmap
𝑳

Fig. 14. Rendering error distribution with respect to the number of light sources. We
observe that error increases when the number of windows increases, which is because
the radiance of windows are more complex and difficult to predict.

light source parameters, the rendering error is significantly higher because it is
difficult to find the best balance across different parameters that can minimize the
rendering error. Training with Lossjren alone leads to reasonable direct shading
prediction. However, the light source parameters are less interpretable, as shown
in Tab. 6 and the rendered direct shading tends to be oversmoothed, as shown in
Fig 13. Combining the two losses together, on the contrary, allows us to render
direct shading closer to the ground-truth, with high-frequency lighting being
correctly modeled, as shown in both Tab. 6 and Fig. 13.

3.3 Neural rendering

In Fig. 11, we also show more neural rendering results with both predicted and
ground-truth depth. Our physically-based neural rendering module is reasonably
robust to depth inaccuracy, which can reconstruct high-quality direct shading,
shading and per-pixel lighting similar to the ground truths.

Error distribution We report distribution of errors in Tab. 4 in the main paper
with respect to the number of light sources in Fig. 14. Error increases when a scene
has more windows or total number of light sources. It decreases or fluctuates with
more lamps possibly because radiance of lamps can be predicted more accurately.

4 Light Editing with Predicted Masks

In all our prior synthetic and real experiments, we assume that the light source
segmentation masks are given. While not being our focus, we fine-tuned a Mask

16 Zhengqin Li et al.

Visible Rendering Light source
window Direct Intensity Direction Bandwidth

Ej w d λ

w/o Lossjren 1.276 7.972 0.386 4.369

w/o Lossjsrc 0.859 17.73 0.503 7.492

All 0.849 10.28 0.369 4.419

Invisible Rendering Light source
window Direct Intensity Direction Bandwidth

Ej w d λ

w/o Lossjren 1.786 10.817 0.545 4.770

w/o Lossjsrc 0.334 44.04 1.432 70.48

All 0.312 18.15 0.536 8.168
Table 6. Ablation studies on window light source prediction. We report L1 loss for
direct shading Ej , L2 loss for direction d and logL2 loss for intensity w and λ.

Fig. 15. Light source detection and in-
stance segmentation results on the Open-
Rooms dataset [4].

RCNN [1] on the OpenRooms dataset and report its performances. The fine-tuned
Mask RCNN can detect and segment 4 types of objects, windows and lamps,
on and off. Quantitative and qualitative results are summarized in Tab. 7 and
Fig. 15 respectively, where we observe our fine-tuned model works well on the
synthetic dataset. This fine-tuned model can be used for real image editing by
providing the initial light source segmentation masks, as will be discussed next.

We apply the fine-tuned MaskRCNN described above on a real image and see
if an imperfect light source segmentation mask can still enable high-quality light
editing applications. We first use our fine-tuned MaskRCNN to get an initial
segmentation mask and then use the GrabCut method [7] to refine its boundaries.
The results are summarized in Fig. 16. We observe that even though the mask
prediction is not perfect, our light editing results are very similar to those shown
in Fig. 12 in the main paper with a manually created mask, which suggests that
our light source prediction and neural renderer can be robust to small mask
prediction errors.

Title Suppressed Due to Excessive Length 17

Light src mask (MaskRCNN) Light src mask (grabCut) Object insertion (surface)

Object insertion (floating) Insert vis lamp, close window Edit materials

Fig. 16. Real image light edit-
ing results with predicted light
source segmentation mask. The
light editing results from a man-
ually created mask are shown in
the insets.

Metric/Type bbox seg

AP(0.5:0.95) 65.4 59.4
AR(0.5:0.95) 85.1 78.1

AP-windows-on 75.4 57.0
AP-lamp-on 70.4 72.1

AP-windows-off 54.0 50.0
AP-lamp-off 61.8 63.6

Table 7. Quantitative evaluation on
bounding box regression and mask on
OpenRooms[4] for light source (windows
and lamps) detection and instance segmen-
tation.

5 Limitations and Future Works

In this section, we analyze the limitations of our indoor light editing framework.
We mainly focus on failure cases caused by our deliberate design choices to
highlight the trade-offs being made to build our framework.

Non-symmetric lamps Our visible lamp representation assumes that lamps are
symmetric with respect to their centers. While this simple assumption holds in
many cases, especially for ceiling lamps, it can fail and cause highlight artifacts.
Fig. 17 shows an example where the geometry of the lamp cannot be simply
represented by reflecting its visible area. Our visible lamp representation will
cause highlight artifacts projected on the wall in this example. The same artifact
can be observed by comparing Fig. 1 (d) and (d.1) in the main paper, as in Fig.
1(d) our lamp model projects wrong highlights on the wall behind.

Separation of shading and visibility Our neural rendering framework separates
visiibility (Sj) and shading (Ej) by assuming the direct shading Ed can be
computed as

Ed =
∑
j

SjEj. (30)

There are two reasons we make this assumption. The first is that we hope to
avoid checking the visibility for each ray in the rendering layer, which is too
expensive and hard to be differentiable. The other is that we hope to introduce
the shadow inpainting network DShdNet, which can handle artifacts caused by
occlusion boundaries robustly and is necessary when we render shadow from a
mesh created from a single depth map. While Eq. (30) works well for diffuse area
lights, it may not work on directional light, where the visibility of each sampled
ray should be considered separately. Fig. 18 compares Ed computed as in Eq. (30)

18 Zhengqin Li et al.

Fig. 17. A example where an indoor lamp
is not symmetric and does not emit light
uniformly in every direction.

Input image Ground-truth direct shading Predicted direct shading

Fig. 18. While our separation of
shading and shadow is necessary
for indoor scene light editing, it
can cause missing details in direct
shading Ed, as shown in the green
circle.

and the ground-truth direct shading. We can see that the ground-truth direct
shading has more detailed highlight boundaries.

Missing geometry While our shadow inpainting network can handle artifacts
caused by occlusion boundaries, it cannot handle the case when occlusion causes
a large region of geometry to be missing. Fig. 19 shows an example where rays
go through the object because part of it is occluded and therefore cannot be
reconstructed from a depth map. Some holistic single view mesh completion
methods may help solve this problem, but this is beyond the scope of this paper.

One invisible lamp While our one invisible lamp assumption works well practically,
it can cause errors in specific regions. One example is shown in Fig. 1 (c) in the
main paper. Compared to the real photo Fig. 1 (c.1), the lamp near the bed
projects a wrong shadow on the wall because there are several small lamps on
the ceiling lining against the wall in the real environment, while our method only
predicts the major bright invisible lamp on top of the ceiling.

Future works Currently, our framework can only handle a single image as the
input. However, multi-view inputs can potentially lead to more complete and
more accurate geometry reconstruction and more observation of the intensity
distribution across the room. Therefore, it will be interesting to see how these
multi-view inputs can help improve the indoor light editing results.

References

1. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017) 16

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
CVPR (2016) 3

3. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse ren-
dering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from
a single image (2020) 2, 8, 13

Title Suppressed Due to Excessive Length 19

Input image GT shadow

Predicted shadowInitial shadow

Fig. 19. Our shadow rendering framework
cannot handle the situation when a large
part of the object is not reconstructed due
to occlusions, as shown in the errors in the
orange circles.

4. Li, Z., Yu, T.W., Sang, S., Wang, S., Song, M., Liu, Y., Yeh, Y.Y., Zhu, R., Gun-
davarapu, N., Shi, J., Bi, S., Xu, Z., Yu, H.X., Sunkavalli, K., Hašan, M., Ra-
mamoorthi, R., Chandraker, M.: OpenRooms: An end-to-end open framework for
photorealistic indoor scene datasets. In: CVPR (2021) 1, 12, 13, 14, 16, 17

5. Niklaus, S., Mai, L., Yang, J., Liu, F.: 3d ken burns effect from a single image. ACM
Transactions on Graphics (TOG) 38(6), 1–15 (2019) 6

6. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
In: ICCV. pp. 12179–12188 (2021) 2, 12

7. Rother, C., Kolmogorov, V., Blake, A.: ” grabcut” interactive foreground extraction
using iterated graph cuts. ACM transactions on graphics (TOG) 23(3), 309–314
(2004) 16

8. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., Clarkson, A., Yan, M., Budge, B., Yan, Y., Pan,
X., Yon, J., Zou, Y., Leon, K., Carter, N., Briales, J., Gillingham, T., Mueggler,
E., Pesqueira, L., Savva, M., Batra, D., Strasdat, H.M., Nardi, R.D., Goesele, M.,
Lovegrove, S., Newcombe, R.: The Replica dataset: A digital replica of indoor spaces.
arXiv preprint arXiv:1906.05797 (2019) 7

9. Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with
3D spatially-varying lighting. In: ICCV (2021) 10

	Supplementary Material Physically-Based Editing of Indoor Scene Lighting from a Single Image

