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This supplementary file provides the details that were not presented in the
main paper due to page limitations. First, we give more details about our con-
structed Real-RawVSR dataset. Second, we give the network details for the
temporal fusion module. Third, we provide the ablation study results for 2x
SR. Fourth, to verify the effectiveness of our proposed network tailored for raw
sequence input, we retrain our network on the synthetic RawVSR, dataset, i.e.,
RawVD [2], and give comparison results with state-of-the-art methods. Here-
after, to verify the generalization of the model trained on our dataset, we provide
test results on new frames captured by other devices. Finally, we provide the SR
results for large scenes.

1 Real-RawVSR Dataset

We totally captured 450 LR-HR video pairs for 3 magnification ratios. The HR
scenes are captured with focal length setting to 72mm and the LR scenes for
the three magnification ratios are captured with focal length setting to 36mm,
24mm, and 18mm respectively. Table [I] lists the detailed information in terms
of resolutions and scene numbers for our Real-RawVSR dataset. Fig. [I]| presents
some examples of our captured scenes, including sports, animals, playgrounds,
cityscape, indoors, streets, etc.

We would like to point out that there may be small misalignments between
the moving area in LR and HR frames when the captured object is moving fast.
Even though we utilize an infrared remote control to signal both cameras to
capture at the same time, it is difficult to keep synchronization for capturing
rapid movements. Fortunately, it only happens in a few scenes.

2 Network Structure

Temporal Fusion. After the interaction module, we get the combined aligned
frames F? and [?, whose temporal length is 4N + 2. Since our temporal fusion
module is the same for the two branches, in the following, we take the Bayer
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Table 1. Detailed settings for our Real-RawVSR dataset.

Number of Videos
Scale Pair Focal Length Resolution Frames per Video

Indoor Outdoor Total

LR 36mm 320 x 720

2% 120 — 160 19 131 150
HR 72mm 640 x 1440
LR 24mm 224 x 480

3% 120 — 160 19 131 150
HR 72mm 672 x 1440
LR 18mm 160 x 360

4x 120 — 160 19 131 150

HR 72mm 640 x 1440

Playgrounds

Indoors Streets

Fig. 1. Examples of our captured scenes.

pattern branch as an example. As shown in Fig. |2 we first utilize a temporal non-
local attention, similar to that in [5], to aggregate long-range temporal features
of F b to enhance the feature representations along the time dimension. Then
we utlhze temporal-spatial attention (TSA) [4] based fusion method to fuse the
4N + 2 features along the temporal dimension and FP is set as the reference
frame.

3 Ablation Study for 2x SR

We further present the ablation experiments for 2x SR to verify the effectiveness
of our proposed modules. For 2x SR, our key module achieves larger gains
compared with those in 4x SR (see Table . For example, 0.55, 0.3, and 0.2
dB gain are achieved by two-branch structure, interaction, and co-alignment
modules, respectively.

4 Results on Synthetic RawVSR Dataset

Besides our constructed Real-RawVSR dataset, we further evaluate our proposed
network on synthetic RawVSR dataset, i.e., RawVD [2]. The LR raw sequences
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Fig. 2. The temporal fusion module for the Bayer pattern branch, where N = 2.

Table 2. Ablation study (2x) for the key modules in our network.

Sep-alignment X v X
Alignment Co-alignment X X v
PSNR/SSIM 37.06/0.9690 37.18/0.9702 37.38/0.9705
i Interaction X '
Interaction
PSNR/SSIM 37.08/0.9694 37.38/0.9705
SKF X v
Channel Fusion Concat v X
PSNR/SSIM 37.12/0.9691 37.38/0.9705
Matrix-based X v X
Color Correction Channel-based X X v
PSNR/SSIM 33.56/0.9627 37.23/0.9682 37.38/0.9705
Bayer Branch v X v
Branch Sub-frame Branch X v v
PSNR/SSIM 36.65/0.9670 36.83/0.9677 37.38/0.9705

in this dataset are obtained by blurring, downsampling and Bayer extraction of
the HR demosaiced linear raw sequences. Noise is also introduced to simulate
the noise embedded in the LR raw sequences. However, there is no processing to
simulate the color and brightness differences between the LR and HR sequences,
which usually exist in real LR-HR pairs. Considering this fact, we did not utilize
our color correction module designed for real LR-HR pairs and choose to uti-
lize the color correction branch proposed in [2], which is suitable for synthetic
pairs. Besides retraining our network, we also retrain RawEDVR, for reference.
Similarly, the color correction branch for synthetic pairs is also introduced to
RawEDVR. As shown in Table [3] compared with the sSRGB domain methods,
e.g. EDVR, our method achieves more than 1.4 dB gain. This demonstrates that
raw domain processing is beneficial for video SR. In addition, our method out-
performs RawVSR and RawEDVR by 0.5 dB and 0.42 dB for 4x video SR. This
demonstrates that our proposed co-alignment and interaction strategy is supe-
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Table 3. Quantitative comparison on RawVD [2] for 4x video SR. The best results
are highlighted in bold and the second best results are underlined.

Bicubic TDAN [3] EDVR [4] RawVSR [2] RawEDVR Ours

PSNR 23.78 26.85 27.81 28.76 28.84 29.26
SSIM  0.6389  0.7422 0.7734 0.7939 0.8001  0.8043
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Fig. 3. Visual comparisons on RawVD for 4x video SR.

rior to other modules without specific processing for raw sequence inputs. The
visualization comparison results are shown in Fig. 3| It can be observed that our
method generates much sharper details compared with state-of-the-arts. Specif-
ically, only our method can recover the dense edges on the wall (see the bottom
row). In a word, our network is a strong benchmark network for RawVSR.

5 Generalization

We evaluate the generalization ability of our pre-trained model on the Real-
RawVSR dataset by directly testing on LR sequences captured by other different
devices. Since most devices cannot capture raw videos directly, we utilize three
mobile phones, i.e., Huawei P20, Xiaomi 10 Ultra, and Redmi K50, to capture
burst raw images to simulate video sequences. Since there are large differences
between the ISP modules on different devices, the testing result is corrected
by the color correction coefficients calculated between the output and the LR
sRGB image to make the output have similar color tones as that of the LR
sRGB image. The results are shown in Fig. [d] Fig. [5] and Fig. [6] respectively.
The bicubic results, which are generated by directly upsampling the LR sRGB
frame by bicubic interpolation, are given for reference. It can be observed that
although the SR model is trained on Canon LR-HR pairs, it can also generate
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details for the frames captured by different devices. Note that, our SR results
may have a color cast due to the gap between the raw inputs captured by different
devices. In this work, we focus on detail generation, which is the main task of
SR. Therefore, the readers are encouraged to pay more attention to the sharp
edges generated by our method.

Note that, the Bayer patterns of the three phones are BGGR, GRBG, and
GBRG, respectively. The Bayer pattern for our captured Canon LR-HR pairs are
RGGB. This demonstrates that our network can be extended to different Bayer
patterns. For other CFA patterns, such as X-Trans patterns, the raw frame can
be packed in terms of 6 x 6 blocks, similar to that in [I].

R
LR input Bicubic Ours
Fig.4. SR (4x) results on frames captured by Huawei P20.

LR input Bicubic Ours

Fig. 5. SR (4x) results on frames captured by Xiaomi 10 Ultra.

Bicubic

L iput Ours
Fig. 6. SR (4x) results on frames captured by Redmi K50.
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6 SR Results on Wide View Videos

We also test our model on scenes with large view angles, and the resolution of
the LR input is 800 x 1600. Since there are no ground truths for these scenes,
we only give the visual results. As shown in Fig. [7] and Fig. [§] our SR results
contain rich details, and the noise embedded in the LR input is also reduced.
Therefore, our model is an effective tool to get both HR and wide-angle videos.
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Fig. 7. SR (4x) results on a video frame with a large view angle.
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Ours

Fig. 8. SR (4x) results on a video frame with a large view angle.
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