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In the supplementary material, we present details such as the network archi-
tecture for each of the components in our architecture. We also provide additional
full-resolution results for our approach. Further, we provide additional ablations
and some more qualitative results. Concretely:

ś We provide the closed-form solution for the minimization problem stated for
our color mapping in the main paper (Sec. A).

ś We provide details about the network architecture and some other important
details for all the components in our framework (Sec. B).

ś We provide some additional ablations and qualitative results for the ablations
stated in the main paper (Sec. C).

ś We provide some additional full resolution results for our approach (Sec. D).
ś We provide some more qualitative results for state-of-the-art comparisons of

our method with other approaches (Sec. E).
ś We provide some example captures from our ISPW dataset (Sec. F).
ś We provide quantitative comparisons of our approach with some more meth-

ods (Sec. G).
ś We provide a detailed study on the computation time and model complexity

of our approach (Sec. H).
ś We visualize the intermediate results for our ISP in the wild pipeline (Sec. I).
ś We provide some additional experiments for our approach (Sec. J).

A Color Mapping

Here, we present the closed form solution to the minimization problem for learn-
ing the affine transformation for each bin centroid in our color mapping scheme
(Sec. 3.3 of the main paper) stated in equation (4) of the main paper. We deőne
V j
b ∈ R

4×1 as the affine transform calculated for bin centroid b and channel j.

V j
b is a column vector of length 4 that contains Aj

b ∈ R
3×1 as the őrst 3 elements

and Bj
b ∈ R as the last element. Using pseudo-inverses:

V j
b = (X̃T X̃)−1X̃T cj (1)
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Here, X̃ ∈ R
N×4, where N is the total number of pixels in x̃ which is the

output of our pre-processing network P (sec. 3.3 of the main paper). The ith

row of X̃, X̃i =
√

wj
ib[x̃

1

i x̃2

i x̃3

i 1]. And cj ∈ R
N×1 are the intensity values of

the jth channel in the target color image c. Note that the color image c is given
by the downsampled target DSLR sRGB during training and during inference,
c = G(x) is given by our color prediction network (Sec. 3.2 of the main paper).
Further, x̃1

i , x̃
2

i and x̃3

i are the intensity values of the red, green and blue channels,
respectively at the ith location in the pre-processed source image x̃ (Sec. 3.3 of
the main paper) . The weights wj

ib are calculated as in section 3.3 of the main
paper.

B Network Architecture and Other Details

In this section, we provide the network architectures for each of the components
proposed in the main paper.

B.1 The Color Conditional ISP Network

Here, we discuss the architecture for our color conditional RAW-to-sRGB net-
work. Our DSLR sRGB network F(x, ĉ) is conditioned on the color ĉ. Hence,
it takes a 7-channel input which we get by concatenating the 4-channel phone
RAW x and the 3-channel color ĉ in the channel dimension. Our restoration net
F comprises of a convolutional layer followed by 8 Residual-in-Residual Dense
Blocks (RRDB) [7]. The resulting feature map is 2x up-scaled using an upconv
layer. Our upconv layer applies a convolution followed by a leakyReLu to the 2x
up-scaled feature map from the RRDB layer via nearest-neighbour interpolation.

Fig. 1: Our color conditional DSLR sRGB restoration network F .
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B.2 The Pre-processing Network

Here, we state the architecture for our pre-processing net P. The pre-processing
net P comprises of a noise estimation module η. The architecture for our pre-
processing network P is shown in Fig. 2. It is important to note that 2-channel
2D positional coordinates are concatenated in the channel dimension to the 3-
channel processed RAW x′ to mitigate the effects of vignetting that is a common
phenomenon in RAW data.

Fig. 2: Our RAW pre-processing network P.

The processed phone RAW x′ = Γ (x) is a rough visualization of the RAW
data x. We deőne the operation Γ (x), henceforth. To get x′, we őrst neglect
one of the green channels in x and then normalize the resulting 3-channel image
between [0, 1]. Further, we apply a constant approximate gamma correction to
the őnal processed image x′. The scaling and gamma correction operations can
be listed as:

x′1 :=
(

x1/max(x1

max, 1/2.5)
)

1
2.2 (2)

x′2 :=
(

x3/max(x3

max, 1)
)

1
2.2 (3)

x′3 :=
(

x4/max(x4

max, 1/1.4)
)

1
2.2 . (4)

The above operations encompass the functional Γ (x). Here, x′1, x′2 and x′3

are the red, green and blue channels, respectively of x′. And, x1

max, x
3

max and
x4

max are the max values in the red, green (one of the green) and blue channels,
respectively of the RAW x. The speciőc scaling factors in the above mentioned
power law were arrived by quantitative evaluation of the data. Further, the
gamma correction factor of 1/2.2 is a commonly used value in imaging systems.

B.3 The Color Prediction Network

Encoder block: Figure 3 shows the architecture at each of the levels in the con-
tracting path of our U-Net. Each of these modules comprises of 2 convolutional
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layers comprising of successive convolution and leakyReLu activations. The con-
volutional layer is followed by an efficient Global . A skip connection between the
input and output of the Global Context Transformer makes the learning more
stable and efficient. The resulting feature map is then average pooled and passed
on to the next contracting level. The number of input channels at level l is given
by Dl = 64× 2l where l ∈ {1, 2, 3}. For level l = 0, Dl = 6 i.e. the phone RAW
data is concatenated with the 2D positional coordinates to mitigate vignetting
that is a common in RAW sensor data. For the Global Context Transformer, the

learned latent vector Zl ∈ R
1024

2l
×2

l+7

at level l of the contracting path. Fixing
the size of the latent vectors limits the computational complexity for attention
to linear in the input instead of quadratic. The number of levels in both, the
contracting and expanding path’s is set to 4.

Fig. 3: The encoder blocks in the contracting path of our DSLR color predictor
G.

Decoder block: Figure 4 shows the architecture at each of the levels in the
expanding paths (both our decoders). Each of these modules comprises of a
transposed2D convolution with kernel size=2 and the stride=2. This is followed
by concatenating the features from the corresponding level in the contracting
path. The resulting feature map is őnally passed through a couple of convolu-
tional layers comprising of successive convolutions and leakyReLu activations.

As a őnal layer, our RAW reconstruction decoder applies an extra 3× 3 con-
volution to the output of the respective U-Net decoder branch. And, the DSLR
color predictor branch employs a RRDB block to the output of the respective
decoding branch.

C Detailed Ablative Experiments

In this section, we provide additional ablations for our approach and provide
qualitative results for the ablations discussed in the main paper.
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Fig. 4: The decoder blocks in the expanding path of our color predictor G.

C.1 Additional Ablations

In addition to the ablations provided in the main paper, here we provide some
more ablations on the test set of the ZRR dataset. The evaluation criteria re-
mains the same as in the main paper.

Table 1: Impact of joint őne-tuning of our model components F and G, starting
from the independent training used in the paper. Results listed on the ZRR
dataset.

Independent Train Joint Fine-tuning

PSNR↑ 25.24 25.27
SSIM↑ 0.879 0.883

Impact of joint őne-tuning of our model components F and G, starting
from the independent training: Here, we do a comparative study of the
independent training of our ISP network F and Color Prediction G versus the
joint őne-tuning of F and G. Training F and G independently allows us to use
larger batch sizes, hence faster convergence of the training. We investigate joint
őne-tuning of both, our ISP net F and the Color Prediction net G by starting
from the independently pretrained F and G models. The batch size is reduced to
8 (versus 16 when we train F and G independently). Table 1 shows the effect of
this joint őne-tuning compared to independent training of our F and G on the
ZRR dataset. It is evident from Tab.1 that the improvement is negligible when
we jointly őne-tune our ISP net F and our color predictor G. Thus, justifying
our choice of independently training F and G.
Impact of different alignment strategies for ISP Network loss compu-
tation: Next, we analyze the different alignment strategies in our ISP Network
Loss (Eq. 6 of the manuscript). First, we report results for align the DSLR sRGB
with the phone RAW (Align GT with RAW) for ISP Network Loss calculation.
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Table 2: Impact of different alignment strategies for ISP Network Loss compu-
tation (Eq. 6) of the main paper. Results listed on the ZRR dataset.

Align GT Align GT Align Prediction
with RAW with Prediction with GT

PSNR↑ 25.09 25.24 25.26
SSIM↑ 0.874 0.879 0.881
Training time (hrs)↓ 26.0 26.8 29.2

We observe a drop in performance compared to the case where we align the DSLR
sRGB with the ISP Net prediction (Align GT with Prediction). This drop can
be explained by the fact that aligning the DSLR sRGB with the RAW involves
estimation of the optical ŕow in a low resolution (downsampled DSLR sRGB
aligned with x′) and then upscaled (via bilinear interpolation) by a factor of 2.
This introduces some warping inaccuracies and hence, the drop in performance.
On the other hand, aligning the ISP Net prediction with the DSLR sRGB (Align
Prediction with GT) gives a very slight improvement in terms of the PSNR while
increasing the training time of the ISP Net F by almost 10% because this align-
ment strategy involves differentiating through the warping process. Hence, we
align the DSLR sRGB with the ISP Net prediction for the ISP Network Loss
calculation.

We also time each of our training iterations (with a batch size of 16). Compu-
tation of the optical ŕow and warping in each training step is not the bottleneck:
only 11% of the time in a training iteration (2.6s). The forward time was found
to be 1.1s, while the backward time was 0.9s. The total loss calculation takes
0.6s (this also encompasses the optical ŕow). It is important to note that the
timings are a bit inŕated because of the time() function usage in python.

Table 3: Additional ablative study for our color mapping scheme - unlike the
ablation provided in the main paper (Tab. 1 of the main paper), we feed in
directly the color ĉ = G(x) into F without the color mapping C during inference.
Results listed on the ZRR dataset.

PSNR↑ SSIM↑

NoColorPred 21.27 0.844
ColorBlur 23.43 0.857
LinearMap 22.16 0.839
ConstValMap 22.96 0.860
AffineMapIndep 23.90 0.863
AffineMapDep 24.46 0.873
+Preprocess 25.19 0.878

Effect of color mapping during inference: We additionally ablate the use
of our color mapping scheme C at inference for our approach. In table 1 of the
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main paper, we provided the ablation for various color mapping schemes. Here,
we provide an additional ablation (Tab. 3) where unlike in the main paper we
feed in directly the color ĉ = G(x) into F without the color mapping C during
inference. For each of the ablations the corresponding network is still trained
with the respective color mapping scheme. From Tab. 3, it is evident that for
the less powerful color mapping schemes, it is better to directly feed in the the
color image ĉ = G(x) into our color conditional restoration network F . On the
other hand, we observe that using a powerful and a more ŕexible color mapping
scheme like ours is beneőcial during inference giving a boost of 0.05 in PSNR
over the case where we do not employ the color mapping at inference (Tab. 3).
Hence, in our őnal architecture we apply our color mapping from Pre-processed
RAW x̃ to the predicted color c by our color prediction net G during inference.
This provides an additional regularization for spurious local colors that may
occur in c.

Table 4: Inŕuence of using a processed RAW x′ in place of a 3-channel version
of x (by neglecting one of the green channels) for our color mapping and pre-
processing network. Results listed on the ZRR dataset.

PSNR↑ SSIM↑

Ours-RAW 24.97 0.875
Ours 25.24 0.879

Effect of using x′ instead of a 3-channel version (by neglecting one of
the green channels) of the RAW x in our framework: Here, we provide
an ablation for the utility of using the processed RAW x′ (Eq. (2)) instead of a
3-channel version of x (by neglecting a green channel) in our color mapping C
and our pre-processing network P. Table 4 shows that using a processed RAW
x′ (Ours) aids both, our color mapping C and our pre-processing net P. Hence,
achieving an improvement in PSNR by 0.27 dB in comparison to the version
where we use the RAW x (Ours-RAW).

Table 5: Ablative study for exploiting the 2D positional coordinates of the RAW
to counter vignetting. Results listed on the ZRR dataset.

PSNR↑ SSIM↑

Ours-No2DCoords 25.07 0.877
Ours 25.24 0.879

Effect of concatenating the 2D positional coordinates to the input
RAW for our pre-processing network and the color predictor: Table 5
shows that using the 2D positional coordinates in our pre-processing network
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and the color predictor provides us an improvement of 0.17 dB in PSNR over
Ours-No2DCoords where we do not concatenate the 2D positional information
to the raw input in the pre-processing network P and our color predictor G. It is
important to note that we found concatenating the positional information only
in P and G to be beneőcial. We believe that this is due to the fact that our color
conditional restoration net F is very efficient in exploiting the color information
c provided by the color predictor G.

C.2 Color Mapping

Figure 5 shows the qualitative results for our ablative study for our proposed
ŕexible soft attention based color mapping scheme (Sec. 3.3 of the main paper).
The qualitative results clearly demonstrate that having a more expressive and
ŕexible color mapping scheme like ours is pivotal in capturing accurate colors
of the target DSLR. The qualitative results reiterate the trends noticed in the
quantitative results presented in the main paper. A simple feed forward network
without a color prediction network (NoColorPred) produces less accurate colors
since it does not inherently capture many other factors like camera parameters
and external environmental conditions that effect the color in an image. Incor-
porating a color prediction network in our DSLR sRGB restoration network
provides us with a boost as seen in Fig. 5. Among the various alternatives that
were tried, the CycleISP [8] inspired ColorBlur version fails to capture the sud-
den changes of color in the image contour and produces blurry results. On the
other hand LinearMap computes a global color correction matrix which produces
inaccurately colored images specially in terms of contrast due to its non-local
addressing of the problem by LinearMap.

Among the ŕexible parametric color mapping based versions of our color-
mapping scheme C (Sec. 3.3 of the main paper), the ConstValMap version that
learns a őxed numeric value for each bin centroid is not powerful enough in
terms of expressivity and having just 15 bins does not suffice for a reasonable
performance. The accuracy in colors predicted by AffineDepMap in comparison
to AffineIndepMap clearly demonstrates the the utility of exploiting the depen-
dence between the color channels in an image for our color-mapping. Further,
pre-processing the RAW (as discussed in Sec. 3.2 of the main paper) aids our
color mapping immensely by getting rid of the noise that is detrimental for color
mapping. As seen in the results, our Color conditional RAW-to-sRGB pipeline
aided by our color prediction module G achieves almost identical colors to the
target DSLR sRGB

C.3 Loss

Here, we show qualitatively the effectiveness of using a masked aligned loss for
learning accurate RAW-to-sRGB mapping in the wild. Figure 6 shows the visual
results for the ablation study of our robust masked aligned loss (refer to Sec.
5.1.2 of the main paper). The qualitative results show that computing a non-
aligned loss (NoAlign) produces a blurry result due to the misalignment between
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the phone RAW and the corresponding DSLR sRGB during training. Further,
aligning the RAW-sRGB pairs (+AlignedLoss) during training by explicit opti-
cal ŕow computations [6] improves the results but, the output during inference
still remains blurry and is characterized by a noticeable color shift. This is due to
the fact that we do not account for the inaccuracies in optical ŕow computations
that may occur due to many reasons such as occlusions and inaccurate ŕows in
homogeneous regions or regions with repeating patterns. To mitigate these inac-
curacies in the optical ŕow computation, employing a forward-backward optical
ŕow consistency mask (Sec. 3.4 of the main paper) to our aligned loss (+Mask)
produces a more detailed output with colors consistent with the target DSLR
sRGB. This shows that accurate supervision using our masked loss during train-
ing provides immense gains to our DSLR sRGB restoration network.

C.4 Color Prediction

In this section, we provide the the qualitative results for our color prediction net-
work G. Figure 7 shows the qualitative results for the ablative study on our color
prediction network. From Fig. 7, it becomes evident that conditioning RAW-to-
sRGB pipeline on the color information (+U-Net) is pivotal for RAW-to-sRGB
mapping in the wild. Introducing a reconstruction loss (+Reconstruct) on the
reconstructed phone RAW, further improves the visual quality. Speciőcally, we
notice that +Reconstruct accurately determines the lighting conditions (and
other parameters on which the color in an image depends) at the time of cap-
ture. Thus, pointing to the utility of the reconstruction branch that helps our
encoder in the color predictor module to encapsulate all the information into the
encoding that is necessary for accurate color prediction. Finally, integrating our
Global Context Block (+GlobalContext) outputs more coherent and consistent
colors with the target DSLR sRGB. For the őrst example in Fig. 7, exploiting
global cues helps our ISP Net to predict a sRGB image more consistent (see top
right corner of the image) with the DSLR sRGB. And, in the second example
the Global-Context transformer aids in predicting accurate colors for the green
leaves in the image. Our őnal version produces colors almost identical to that of
the target DSLR sRGB.

D Results on Full Resolution Images

In this section, we present full resolution results for our approach. Fig. 8 shows
the full resolution (2736x3648) predictions of our approach on the ISPW dataset.
Our approach produces accurate globally coherent colors w.r.t. the DSLR sRGB.
On the other hand, LiteISPNet [9] produces dull inaccurate colors. Thus, under-
lining the utility of leveraging global context by our color prediction network.
Importantly, our efficient őxed size latent-array based global attention aids in
applying our models on large images since the computational complexity of our
Global Context Transformer layer scales linearly with the image size. Addition-
ally, LiteISPNet results in loss of detail compared to the DSLR quality sRGB
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images produced by our approach. This shows the effectiveness of employing a
masked aligned loss during training.

E Qualitative State-of-the-Art Comparisons

In this section, we exhibit our results qualitatively in comparison to other exist-
ing methods on the test sets of ZRR dataset [4] and our ISPW dataset. Figures 9
and 10 show the state-of-the-art comparison of our approach with other existing
approaches on the ZRR and the ISPW datasets, respectively. The visual results
clearly show the supremacy of our method in comparison to previous meth-
ods. In particular MW-ISPNet [4] and AWNet [2] produce blurry results hence
demonstrating their ineffectiveness in handling misalignment between the phone
RAW and the DSLR sRGB pairs during training. The effect is more adverse
in case of the ISPW dataset where the degree of the aforementioned pairwise
misalignment is worse as compared to the ZRR dataset. Further, the LiteISP-
Net [9] uses an aligned loss for learning a mapping between the phone RAW and
the DSLR sRGB. Though, this reduces the blur (does not completely get rid of
it) in the results as in previously mentioned methods, it lacks detail and suffers
a signiőcant color shift. Our approach on the other hand leapfrogs LiteISPNet
signiőcantly by providing very crisp results capturing rich details and accurate
colors. This is clearly evident from our visual results. Further, in Fig. 10 we also
show the results from the phone ISP. We notice that in many cases our results
are richer in detail as compared to the target DSLR sRGB and the resulting
sRGB from the phone ISP. This underlines the effectiveness of our approach for
RAW-to-sRGB mapping in the wild.

F ISP in the Wild (ISPW) dataset

Here, we demonstrate a few example images captured in our ISP in the Wild
(ISPW) dataset. Fig. 11 demonstrates that our ISPW dataset is captured in
varying lighting and weather conditions. Thus making ISPW a very challenging
dataset for training and benchmarking ISP pipelines in the wild.

Further, we provide a few example crops from our ISPW dataset after data
processing (Sec. 4 of the main paper). We capture the DSLR sRGB at 3 different
exposures for the same phone RAW (Fig. 12). We consider the DSLR sRGB
captured with an EV setting 0 as the target for our RAW-to-sRGB mapping in
the wild. Apart from providing various additional metadata that can further aid
RAW-to-sRGB mapping in the wild research, we also provide the DSLR sRGB
at 2 additional exposure settings which can be further used by the community for
research directions such as automatic exposure correction [1] and various other
avenues. In Tab. 6, we show the distributions for the time of day and shutter
speed for the phone camera, proving the variability in the dataset.
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Time of the day Shutter speed
1000hrs 1200hrs 1400hrs 1600hrs 1800hrs 2000hrs 1/8000s 1/4000s 1/2000s 1/1000s 1/500s 1/250s 1/125s

10.14% 25.57% 19.07% 28.43% 13.21% 3.58% 11.27% 18.51% 12.36% 24.29% 26.14% 5.4% 2.03%

Table 6: Distribution of capture time and shutter speed in ISPW dataset.

STAIR [5] Baidu [5] skyb [5] Airia_CG [5] PyNet [3] MW-ISPNet [5] AWNet [2] LiteISPNet [9] Ours

PSNR 21.57 21.91 21.93 22.26 22.73 23.13 23.52 23.81 25.24
SSIM 0.785 0.783 0.787 0.791 0.845 0.849 0.855 0.873 0.879

Table 7: More state-of-the-art comparison on the ZRR dataset.

Ours OursV1.1 OursV1.2 OursFast LiteISPNet [9]

PSNR 25.05 25.02 24.76 24.57 23.51
SSIM 0.821 0.819 0.816 0.815 0.809
Time (320x320 crop) 55.7ms 41.3ms 20.3ms 13.8ms 17.2ms
Time (2736x3648 full res. image) 2.1s 1.3s 0.52s 0.34s 0.46s

Table 8: Time and performance comparison on ISPW dataset.

G Comparison with more methods

We report more works in Tab. 7. We outperform all previous approaches by a
large margin. Since learning-based ISP is an emerging research direction, there
are very few existing works in CVPR/ICCV/ECCV. We believe that our work
and dataset will bring further interest to this important research direction.

H Computation Time and Model Complexity

We report computation time and performance of ours compared to LiteISPNet
in Tab. 8. We evaluate 3 additional settings of our approach. In OursV1.1 we
omit the color mapping regularization C after the color prediction network. In
OursV1.2 and OursFast we further reduce the number of parameters by ∼2×
and ∼3× resp., by reducing the depth of all three networks and dimensionality of
the Global Context Block. Our fastest setting outperforms LiteISPNet by 1.06dB
while being 26% faster, requiring only 0.34s for full resolution images. Further,
Tab. 9 reports the component wise #params and runtime for our network. The
color prediction net and ISP net have similar contribution to #params and
runtime.

I Visual results for various components in our ISP
pipeline

In this section, we show the visual results for different components in our RAW-
to-sRGB mapping in the wild pipeline. Figure 13 shows the intermediate results
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Ours OursV1.1 OursV1.2 OursFast
#params time #params time #params time #params time

Preprocessing Net 5.1M 4.9ms 5.1M 4.9ms 3.7M 3.4ms 2.3M 2.1ms
Color Prediction Net 17.7M 21.1ms 17.7M 21.1ms 9.2M 10.1ms 6.5M 7.2ms
Color Mapping 0 14.4ms - - - - - -
ISP Net 12.4M 15.3ms 12.4M 15.3ms 5.9M 6.8ms 4.6M 4.5ms

Total 35.2M 55.7ms 35.2M 41.3ms 18.8M 20.3ms 13.4M 13.8ms

Table 9: Parameters and runtime for each network component.

for our ISP Network. We show that x′ = Γ (x) (Eq. 2) provides our pipeline
with a rough visualization for the phone RAW x. This processed RAW x′ aids
in creating a mask for regions where alignment is difficult leading to a more
accurate training supervision. We also see that, our Global-Context transformer
based color predictor predicts a color image c = G(x) that is consistent with the
colors in the target DSLR sRGB y. Our ŕexible parametric color mapping scheme
is powerful enough to color-map the pre-processed RAW x̃ to the predicted color
image c = G(x) very accurately with just 15 bins. Finally, our RAW-to-sRGB
restoration network predicts the DSLR quality sRGB image y = F(x, ĉ).

J Additional Experiments

Feature maps from our Color-Prediction Net: Figure 14 shows the feature
maps from different encoder decoder levels in our U-Net color predictor network
G. The network captures detailed image information at different levels.
Cross-dataset experiment: Next, to check how our models perform on datasets
they are not trained on. We do inference on the ISPW dataset using the model
trained on the ZRR dataset and vice versa. Figures 15 and 16 show the visual
results on example crops from both the datasets. It is evident from the qualita-
tive results that our framework is able to produce feasable DSLR quality sRGB’s
even when it is run on a dataset it is not trained on.
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1a) NoColorPred 1b) ColorBlur 1c) LinearMap 1d) ConstValMap

1e) AffineMapIndep 1f) AffineMapDep 1g) +Preprocess 1h) DSLR sRGB

2a) NoColorPred 2b) ColorBlur 2c) LinearMap 2d) ConstValMap

2e) AffineMapIndep 2f) AffineMapDep 2g) +Preprocess 2h) DSLR sRGB

Fig. 5: Qualitative results for the ablation of our color mapping (Sec. 3.3 of
the main paper). These results demonstrate qualitatively our ablation study in
section 5.1.1 of the main paper. The crops are taken from the ZRR dataset. Best
viewed with zoom.
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(a) NoAlign (b) +AlignedLoss (c) +Mask (d) DSLR sRGB

Fig. 6: Qualitative results for the ablation of our robust masked loss (Sec. 3.4 of
the main paper). These results demonstrate qualitatively our ablation study in
section 5.1.2 of the main paper. The crops are taken from the ZRR dataset. Best
viewed with zoom.

(a) NoColor-
Pred

(b) +U-Net (c) +Recon-
struct

(d) +Global-
Context

(e) DSLR sRGB

Fig. 7: Qualitative results for the ablation of our color prediction network (Sec.
3.2 of the main paper). These results demonstrate qualitatively our ablation
study in section 5.1.3 of the main paper. The crops are taken from the ZRR
dataset. Best viewed with zoom.
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1a) RAW Visualized 1b) LiteISPNet

1c) Ours 1d) DSLR sRGB

2a) RAW Visualized 2b) LiteISPNet

2c) Ours 2d) DSLR sRGB

Fig. 8: Full resolution results on our ISPW dataset. We compare our method
against the best performing competing method LiteISPNet [9]. Our approach
captures more details and more accurate colors w.r.t. the DSLR sRGB. On the
other hand, LiteISPNet produces dull colors and results in loss of detail. Best
viewed with zoom.
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(a) MWISPNet (b) AWNet (c) LiteISPNet (d) Ours (e) DSLR sRGB

Fig. 9: Some more visual results for state-of-the-art comparison on the ZRR [4]
dataset. Best viewed with zoom.



Learning ISP in the Wild - Supplementary Material 17

(a) MWISPNet (b) AWNet (c) LiteISPNet (d) Ours (e) DSLR sRGB

Fig. 10: Some more visual results for state-of-the-art comparison on our ISPW
dataset. Best viewed with zoom.
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Fig. 11: Example captures from our ISPW dataset. We show some example cap-
tures from the DSLR camera. As demonstrated, the ISPW dataset is collected
in various lighting and weather conditions which makes it a very challenging
dataset for learning and benchmarking the full ISP pipeline in the wild.

(a) Phone RAW (b) DSLR sRGB:
EV = -1

(c) DSLR sRGB:
EV = 0

(d) DSLR sRGB:
EV = 1

Fig. 12: Example crops from our ISPW dataset. We collect DSLR sRGB’s at three
different exposure settings. Note that we use the DSLR sRGB at EV setting of
0 for training our Color conditional DSLR sRGB restoration network.
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(a) x (b) x
′ (c) x̃ (d) c (e) ĉ (f) ŷ (g) y

Fig. 13: We show the intermediate predictions in our framework for a few exam-
ples in the ZRR dataset. In the őgure, x is the visualized RAW from the phone
and x′ = Γ (x) (Eq. 2). The output of the Pre-processing network (Sec. 3.3 of
the main paper) x̃ is shown in column 3. Further, c = G(x) is the predicted
low-resolution color image by our color prediction network (Sec. 3.2 of the main
paper) that integrates a global context transformer to integrate global cues for
predicting accurate colors. The pre-processed RAW x̃ is then color mapped to
c using our parametric color mapping formulation (Sec. 3.3 of the main paper).
The color mapped image ĉ = C(x̃, c). During inference the parametric color map-
ping C aids in smoothing out the spurious color predictions that may occur in c.
Finally, our ISP network predicts the őnal DSLR quality ŷ = F(x, ĉ). The last
column shows the DSLR sRGB (y) crop. Best viewed with zoom.
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1a) RAW 1b) encode-l1 1c) encode-l2 1d) encode-l3 1e) encode-l4

1f) decode-l1 1g) decode-l2 1h) decode-l3 1i) decode-l4 1j) c

Fig. 14: We show the visualized (by taking the őrst 3 channels) resulting feature
maps at each U-Net level (both encoder and the DSLR decoder) for an example
crop from our ISPW dataset. Here, encode-ln signiőes the feature map output
from our encoder block at level n. Similarly, decode-ln is the feature map output
from our encoder block at level n. Best viewed with zoom.

(a) DSLR sRGB (ZRR
dataset)

(b) Ours-ZRR (c) Ours-ISPW

Fig. 15: Testing our model trained on the ISPW dataset on two example crops
from the ZRR dataset. Ours-ISPW shows the results for the model trained on
our ISPW dataset. Ours-ZRR is the result of the model trained on the ZRR
dataset. produces
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(a) DSLR sRGB
(ISPW dataset)

(b) Ours-ISPW (c) Ours-ZRR

Fig. 16: Testing our model trained on the ZRR dataset on two example crops
from the ISPW dataset. Ours-ISPW shows the results for the model trained on
our ISPW dataset. Ours-ZRR is the result of the model trained on the ZRR
dataset.
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