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Abstract. We propose a trainable Image Signal Processing (ISP) frame-
work that produces DSLR quality images given RAW images captured
by a smartphone. To address the color misalignments between training
image pairs, we employ a color-conditional ISP network and optimize
a novel parametric color mapping between each input RAW and ref-
erence DSLR image. During inference, we predict the target color im-
age by designing a color prediction network with efficient Global Con-
text Transformer modules. The latter effectively leverage global infor-
mation to learn consistent color and tone mappings. We further propose
a robust masked aligned loss to identify and discard regions with in-
accurate motion estimation during training. Lastly, we introduce the
ISP in the Wild (ISPW) dataset, consisting of weakly paired phone
RAW and DSLR sRGB images. We extensively evaluate our method,
setting a new state-of-the-art on two datasets. The code is available at
https://github.com/4rdhendu/TransformPhone2DSLR.

1 Introduction

An Image Signal Processing (ISP) pipeline is characterized by a sequence of low-
level vision operations that are performed to convert RAW data from the camera
sensor to sSRGB images. Each camera has an inherent ISP that is implemented
on the device through hand-designed operations. With the advent of mobile pho-
tography, smartphones have become the primary source of photo capture due to
their portability. However, their strict size constraints enforces small sensor sizes
and compact lenses, which inevitably leads to higher sensor noise compared to
DSLR cameras. In this work, we therefore strive towards mitigating the hard-
ware constraints in mobile photography by designing a learnable alternative to
the ISP pipeline, utilizing DSLR quality sRGB images as reference.

Compared to standard image enhancement /restoration tasks, learning the
ISP mapping introduces new fundamental challenges, which require careful at-
tention. In the paired learning setting, a primary issue is that the color mapping
between the input RAW image and the DSLR sRGB image depends on partially
unobserved factors, such as camera parameters and the environmental condi-
tions. Further, the image pairs for training, each consisting of a smartphone
RAW and a DSLR sRGB, inevitably contain substantial spatial misalignment
that greatly complicate the learning. Despite recent efforts [8,4,24], these issues
remain central in the strive towards a fully learning-based ISP solution.
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(a) Phone RAW  (b) LiteISP-Net [24]. (c) Ours (d) DSLR sRGB

Fig. 1. Our learnable ISP generates a DSLR quality sSRGB image from RAW data cap-
tured by a smartphone camera. Our approach recovers rich details and produces colors
that are more consistent with the DSLR sRGB ground-truth, compared to LiteISPNet
(best performing competing method). Shown are the full resolution results on our ISP
in the Wild (ISPW) dataset. Best viewed with zoom.

In this work, we propose a learnable ISP framework that can be effectively
trained in the wild, using only weakly paired DSLR reference images with un-
known and varying color and spatial misalignments. Our approach is composed
of an ISP network that maps the input phone RAW to a DSLR quality output.
Contrary to much previous works, we further condition the network on a target
color image. This allows our ISP network to fully focus on the denoising and
demosaicing tasks, without having to guess the unknown color transformation.
To allow the target color image to be used during training, we propose a flexible
and efficient parametric color mapping. Our color mapping between the input
RAW and output DSLR sRGB image is individually optimized for every train-
ing image pair. The resulting mapping is then applied to the input RAW image
to generate the target color image for conditioning. Importantly, this approach
effectively mitigates information leakage from the target ground truth into the
network, while achieving a faithful color transformation.

In order to achieve the target color image during inference, we further propose
a dedicated target DSLR color prediction network, which solely takes the RAW
phone image as input. To predict an accurate target color image, exploiting both
local and global cues in an image is essential. While local information capture
high-frequency details, global information is important in order to achieve a glob-
ally consistent and realistic color mapping across the entire image. We achieve
the latter by designing an efficient Global Context Transformer block, which
aggregates global color information into a compact latent array through cross-
attention operations. This both alleviates the quadratic complexity of standard
transformer modules, and importantly enables a variable input size. Finally, we
address the problem of misaligned ground-truth by introducing a robust masked
aligned objective for training our ISP framework.

To aid in extensive benchmarking and evaluation of RAW-to-sRGB mapping
approaches for weakly paired data, we introduce the ISP in the Wild (ISPW)
dataset. This dataset comprises of pairs of RAW sensor data from a recent
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smartphone camera and sRGB images taken from a high-end DSLR camera.
Our dataset consists of 197 captured 10+ MegaPixel image pairs, resulting in
over 35,000 crops of size 320 x 320 for training, validation, and test. We perform
extensive ablative and state-of-the-art experiments on the Zurich RAW-to-RGB
(ZRR) dataset [8] and our ISPW dataset. Our approach outperforms all previ-
ous approaches by a significant margin, setting a new state-of-the-art on both
datasets. Example visual results are provided in Fig. 1.Contributions: Our
main contributions are summarized as: (i) We propose a color conditional train-
able ISP in the wild. (ii) We propose a color prediction network that integrates a
global-context transformer module for efficient and globally coherent prediction
of the target colors. (iii) We condition on color information from the reference
image during training by introducing a flexible parametric color mapping, which
is efficiently optimized for a single RAW-sRGB training pair. (iv) We employ a
loss masking strategy for robust learning under alignment errors. (v) We intro-
duce the ISPW dataset for learning the camera ISP in the wild.

2 Related Work

Despite the successes of deep-learning for low-level vision tasks, its application
to camera ISP in the wild has been much less explored. Among the existing
methods, CycleISP [22] and Invertible-ISP [21] propose a full camera imaging
pipeline in the forward and reverse directions. These methods learn the ISP
in a well aligned setting, where the RAW-sRGB training pairs originate from
the same device. For RAW-to-sRGB mapping in the wild, the goal of the AIM
2020 challenge [8] on learned image processing pipeline was to map the orig-
inal low-quality RAW images captured by a phone to a DSLR sRGB image.
In particular, the CNN approaches inspired by the Multi-level Wavelet CNNs
(MWCNN) [13] obtained the best results. Among the MWCNN-based methods
both, MW-ISPNet [8] and AWNet [4] employ different variations of a U-Net for
generation of appealing sSRGB images.

More recently, LiteISPNet [24] propose an aligned loss by explicitly calculat-
ing the optical flow between the predicted DSLR image and the ground truth.
The idea of the aligned loss using optical flow in case of misaligned data was first
used in DeepBurstSR [2] for burst super-resolution. Prior to DeepBurstSR, other
efforts to handle misaligned data include a contextual bilateral loss (CoBi) [23]
or primarily relying on a deep perceptual loss function, as in MW-ISPNet [§]
and AWNet [4].

Another bottleneck for the field has been the dearth of datasets for camera
ISP learning and benchmarking. The datasets MIT5K [3], DND [16], SIDD [1]
and Zoom-to-Learn [23] capture several images from the same device under dif-
ferent settings. Moreover, [3,16,1] collect images in very controlled settings, where
accurate alignment is possible. They are therefore unfit for designing approaches
for ISP in the wild. Further, DPED [7]| provides RGB images from different de-
vices but does not contain RAW images and thus cannot be used for our task of
designing and training the full ISP pipeline. In contrast, we aim to learn the ISP
from a constrained device, i.e. smartphone, using high-quality DSLR images.
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Fig. 2. An Overview of our learnable ISP framework: We learn a color conditional
framework F(z,¢) for RAW-to-sRGB mapping in the wild (Sec. 3.1). The estimated
target color image ¢ is achieved by our color mapping ¢ = C(z, ¢) (Sec. 3.3), which maps
the raw input x to the color space of ¢. During training c is given by the downsampled
ground truth. During inference, the DSLR-quality color content is predicted by the
dedicated global attention based color prediction network G(z), using only the raw
image x as input (Sec. 3.2). Finally, for robust learning of the ISP in the presence of
even substantial misalignments (see Fig. 1), we propose a masked aligned loss (Sec.
3.4), which is robust to errors in the computed optical flow.

The BurstSR dataset [2] is designed for the burst super-resolution task. Most
related is the ZRR dataset [8]. Our ISPW dataset contains RAW images col-
lected via a more modern smartphone. Additionally, our ISPW dataset contains
important meta information, such as the ISO and exposure settings, that can
further be exploited by the community for controllable and conditional learning
of the RAW-to-sRGB mapping for weakly paired data.

3 Method

In this work, we strive towards a fully deep learning based ISP module, which
predicts a high-quality sSRGB image y € R3*#*W given the RAW image = €
RAX 5 x5 captured by a mobile phone camera. Specifically, our aim is to learn
such a module from a set of weakly paired training samples {(z*,y*)}x. Our
approach is illustrated in Fig. 2. It is comprised of a color conditional restoration
network F(z,¢) (Sec. 3.1). The color information ¢ is provided by a dedicated
color prediction network G(z) during inference (Sec. 3.2) and by the ground
truth DSLR sRGB during training. To avoid the network from cheating during
training, we propose a color mapping approach (Sec. 3.3) that maps the RAW
sensor data to the target DSLR sRGB. During inference, our color mapping
module works as a regularizer for our color predictor network in case of spurious
inaccurate local colors predicted. Further, there also exists a spatial misalignment
between the noisy mobile sensor data and the target DSLR sRGB image. To
handle misalignment between the RAW-sRGB pairs, we propose a robust masked
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aligned loss (Sec. 3.4) that also takes into account the inaccuracies that are
introduced during the alignment operation.

3.1 ISP Network

As motivated in Sec. 1, there exists an unknown color mapping between the in-
put z¥ and the target y*, which further varies between each capture (z*,4*) due
to changes in the parameters and environment. Modelling the ISP pipeline in the
wild as a single feed-forward network y = F(x) can therefore prove detrimental
to the learning of an accurate RAW-to-sRGB mapping as no fixed global color
mapping exists. In order to learn effectively the RAW-to-sRGB mapping in these
conditions, we propose a network y = F(z, ¢) that is conditioned on the desired
output color information ¢. During training, the color information is extracted
from the RAW-sRGB pair using a flexible parametric formulation, which is de-
tailed in Sec. 3.3. This allows us to capture a rich color mapping model from a
single training pair (z*,y*), while preventing the network F to cheat. Addition-
ally, our dedicated RAW pre-processing network discussed in Sec. 3.3 mitigates
the ill-effects that noise in the RAW sensor data has on our color mapping es-
timation module. During inference, the color information ¢ is predicted by a
dedicated color predictor network G(x) (Sec. 3.2) and the color mapping module
(Sec. 3.3). Compared to a handcrafted ISP pipeline, demosaicing, denoising, and
detail enhancement is performed by our ISP net, while color correction, gamma,
and tone is handled by the color prediction network (Sec. 3.2).

3.2 Color Prediction

In this section, we propose a low-resolution reference color prediction network
¢ = G(x). This network aims to predict a low-resolution image ¢ with the color
content and dynamic range of the target DSLR camera. It is then the task of our
ISP network F, to predict a detailed high-resolution image, conditioned on this
color information. The measured colors and intensities depend on the camera
parameters during capture, along with various other environmental factors, such
as the properties of the illuminants in the scene. These conditions vary on a
capture to capture basis. Hence, a simple feedforward network fails to capture
the DSLR sRGB color accurately.

Color prediction network: To circumvent this drawback of feed-forward nets,
we design an encoder-decoder based color prediction network (Fig. 3a).

Cc= g(-f) = DpsLr (Ephone(x))~ (1)

Here, Dpgrr is the DSLR decoding network that predicts a low resolution tar-
get SRGB color. Predicting the target SRGB colors in low resolution makes the
learning easier and leads to a faster convergence. We employ a U-Net inspired
architecture (Fig. 3a) for our encoder-decoder. This is because U-Net [17] effec-
tively expands the receptive field by integrating pooling operations and exploit-
ing contextual information at different scales using skip connections. Further, a
U-Net is relatively insensitive to small misalignments in the image due to the
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(a) Architecture overview. (b) Global Context Transformer.

Fig. 3. Illustration of the full Color Prediction Network (a) with its Global Context
Transformer module (b).

low-resolution of core features, achieved by successive pooling operations. Our
U-Net encoder Eppone exploits local and global cues by integrating a successive
convolutional layer and an efficient global context transformer.

Global Context Transformer: For target color prediction, capturing a global
context is pivotal since color in one patch of the image can be related to the
color in a spatially distant patch of the same image. Hence, attending to differ-
ent patches in the image may prove beneficial for predicting an accurate target
color. Using standard transformers [19] for global attention is a viable option.
However, its quadratic computational complexity w.r.t. the number of patches
in the image/feature map makes it unsuitable for our color prediction network.
Furthermore, our network needs to be able to process an image of arbitrary res-
olution, which brings further challenges to a standard transformer architecture.

We therefore design our Global Context Transformer block by taking in-
spiration from the Perceiver [10,9] architecture. Specifically, we perform cross
attention operations between an auxiliary latent space Z’ € RXXC and the in-
put feature map I; € H; x W; x D, followed by self attention layers on Z’. Here,
1) is extracted from the U-Net encoder at level . The latent space contains K
tokens of dimension C, as is initialized by a learned constant array Z € R5*¢,
The majority of the computation thus happens on Z’. This reduces the complex-
ity of the attention operations from quadratic to linear in the input size, and
crucially enables a variable input image size.

Fig. 3b details the architecture of our global context block. It comprises
multiple cross and self-attention layers on the fixed-size auxiliary latent array Z'.
Cross-attention has a complexity of O(NK) = O(N) (here N = H; x W;) since
K < N is a small constant. Moreover, self-attention is only performed on Z,
leading to a complexity of O(K?) = O(1). Hence, decoupling the network depth
from the input size. Through the global attention operations, the learned latent
arrays Z' can encode color transformations. The final decoder module then maps
information encapsulated in Z’ to the output array O through cross attention
with the input query ¢;. We integrate our Global Context Transformer block
in the contracting path of our color prediction module after each convolutional
block (Fig. 3a). This aids in exploiting local cues as well as global cues while
remaining computationally efficient.
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Reconstruction branch: In addition to the DSLR specific decoder, we also
employ a decoder Dphone for reconstructing the RAW input x such that & =
Dphone(Ephone (7)) (Fig. 3a). Employing a RAW reconstruction decoder equips
our color prediction framework to learn an optimal phone-specific embedding
Ephone () that encodes various meta-information that was not provided with the
RAW data for reconstructing the RAW input x. Hence, intuitively our DSLR-
specific decoder learns a mapping from the phone ISP to the DSLR ISP.

3.3 Color Mapping Module

In this section we introduce our approach for estimating the color transforma-
tion between the RAW input = and a target color sSRGB image c. For this, we
design a module é = C(x, ¢) that estimates a color mapping between a single pair
(z,c), and applies it to x. The result represents the RAW image x transformed
according to the target color space in c. Our approach is particularly important
during training, when c is derived from the ground-truth image y through down-
sampling and alignment. It supplies our ISP network, conditioned on ¢, with the
correct color transformation between the pair (z,y) while preventing informa-
tion leakage from the ground-truth y. During inference, C works as a regularizer
for our color predictor network (1) for spurious inaccurate local colors predicted.
Pre-processing network: Real world training image pairs, apart from being
weakly paired in terms of alignment, pose many other challenges. In particular,
the RAW sensor data from the phone is prone to noise due to the limited sensor
size, along with other interference from the environment. The noise may be
signal-dependent or signal-independent. A noisy source image z inhibits the
performance of the color mapping significantly. Hence, removing noise from the
RAW data is pivotal. In this direction, we design a pre-processing module for
removing noise from the RAW data, thereby aiding our color mapping module.

Our RAW pre-processing network P aims to retrieve the clean source image
Z given a noisy RAW z,

P(z) =2 =a" —n(a'), where 2’ = I'(z). (2)

Here, 1 is our noise estimation net and is implemented as a CNN with residual
connections. For our framework, x’ is a processed version of the mobile RAW
sensor data . We obtain z’ by neglecting one of the green channels in z and
normalizing the resulting 3-channel image between [0, 1] uniformly. To further
reduce the non-linearities in the color mapping, we apply a constant approxi-
mate gamma correction to obtain the final processed image z’. The processing
operation I'() is detailed in the supplementary.

Color mapping: Formulating our color mapping scheme, we define a set of B
equally spaced bins between the range of values in each channel of the source
image Z (Eq. 2). The b"" bin centroid for color channel j is denoted as kj. The
goal is to map the image Z to the target color image as,

B
& = wh(A)E; + BY), (3)

b=1
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using a learned affine transformation Aia?i + Bg for each bin b. Here, Ag €
R™3 and B} € R are the parameters of the affine map, while 7; € R? (Eq. 2)
denotes the color values at pixel i after the pre-processing network. The result
é{ is the mapped intensity at channel j and location ¢. The soft bin assignment
weights in (3) are calculated as w/, = Soft%\/[ax(—Hoﬁg — K]||?/T), where, T is a

temperature parameter. Hence, our color mapping (3) can be seen as an attention
mechanism, with the source image attending to the learned values through the
bin centroids. The motivation of learning an affine transformation instead of a
fixed numeric value for each bin centroid is providing each bin more expressive
power leading to better color mapping even with less number of bins.

In (3), the parameters (Aj, Bj) of the affine mapping are learned using only
a single pair (Z,c). This is performed by minimizing the following squared error
to the target color value ¢/,

A}, B] = argmin > w? || AZ; + B - c]||3. (4)
A,B p

Here, the weights wgb = SoftMax(—||# — kg||2/T). These set of weights signify
K2
how much each target intensity affects the affine transformation learned for each

bin centroid. The objective (4) corresponds to a linear least squares problem,
which can efficiently be solved in closed form as detailed in the supplementary.

3.4 Learning the Camera ISP

The RAW-sRGB pairs taken from two different devices are misaligned. The
reasons are the different fields of view for both the cameras, parallax, and small
motion of objects in the scene. Misalignment in the RAW-sRGB pair makes
training the ISP pipeline difficult. Trying to learn in such a setting produces
blurry results and significant color shift (Fig. 4). Hence, a robust loss applicable
to the weakly paired setting is pivotal. In this section, we introduce an aligned
masked loss for robust learning in a weakly paired setting. We then introduce
the objectives for our main ISP network, pre-processing network, and the color
prediction network. Lastly, we provide training strategies and details.
Alignment: We calculate aligned losses for learning our color conditional RAW-
to-sRGB network in the wild. For alignment, we use the PWC-net [18] for com-
puting optical flow. We denote by ¢,» = W(c, f(c,2")) the color image ¢ aligned
with respect to the processed RAW 2z’ (Sec. 3.3). Here, f(c,z’) is the optical
flow from the color image ¢ to the processed RAW z’. While we found PWC-Net
to be robust to substantial color transformations between the input images, we
use the processed RAW z’ as input as it has a much smaller difference in color
and intensity to the reference color image c. Further, the loss masking discussed
next aids in a more robust loss calculation for inaccurately aligned regions.
Loss masking: Although, employing an aligned Li-loss partially handles the
misalignment problem for ISP learning in the wild, the flow estimation itself can
introduce errors. In particular, optical flow is often inaccurate in the presence
of repeating patterns, occlusions, and homogeneous regions. This leads to an
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incorrect training signal which degrades the quality of the ISP network. We
therefore propose a mask for our loss by identifying regions where the optical
flow is inaccurate. Inspired by [15], we use the forward-backward consistency
constraint to filter out regions with inaccurate flow. The optical-flow consistency
mask m is set to 1 where the following condition holds true, and otherwise to 0:

[£@ 1) + Fh @) < an (£ M)+ [F@h,a)[F) +as (5)

Here, 2’ is the processed RAW sensor data (Sec. 3.3). And, y* is the target sSRGB
image bilinearly downsampled by a factor of 2. And, a:; . is 2’ aligned with y*.
Thus, the mask m aids in masking out inaccurately aligned regions.

ISP Network Loss: The masked target sSRGB prediction loss is given by:

9 = F(z,¢), where é = C(Z,¢z)
Lpred@ay) = ||mT © (yy - g)Hl (6)

Here, y; is the target DSLR sRGB aligned w.r.t. the final predicted sRGB 7. We
did not see a significant difference in performance when we align the predicted
sRGB § w.r.t. the target DSLR sRGB for our loss calculation (see supplemen-
tary). This choice further circumvents the need of differentiating through the
warping process. During training, the color image ¢ = y* is the 2x downsam-
pled ground truth sRGB. Further, ¢z is the color image ¢ aligned with & (Eq. 2).
Lastly, m' is the 2x upsampled mask m via nearest neighbour interpolation.
Pre-processing Network Loss: The pre-processing net (Sec. 3.3) aims at
providing a source image that aids our learned parametric color mapping scheme
(Sec. 3.3) and denoising the processed RAW 2’ (Sec. 3.3). Motivated by this, we
design loss for our pre-processing net P as,

Lmap(c(jvcw’)mw’) = |lm ® (C(%, cer) — car)|l1, and

Lconstraint($/7j) = ||b*$1_b*§jH1 (7>

Here, & is the output of our Pre-processing Net (Eq. 2) and b is a predefined
blurring kernel. The 10SS L¢onstraint constrains P to keep the color of z’. The color
image ¢ = y* is the 2x downsampled ground truth sRGB. And, ¢, is the color
image c aligned with z’. These losses aid the pre-processing network in not only
denoising the RAW sensor data but also allows for the network to be flexible
enough to learn a color space where the color mapping (Sec. 3.3) is optimal.
Color Prediction Network Loss: To train our target color prediction network
(Sec. 3.2), we employ a color prediction loss on the predicted low resolution
target color image §°" = G(z) and a reconstruction loss on the reconstructed
RAW sensor data Z,
;

Lyeconstruct (j7 l‘) = Hl‘ - j"Hl (8)

Litai™ ) = [m (57 - cx)
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Here, ¢,y = yi, is the 2x downsampled ground truth sRGB aligned with z’.
Hence, ¢,/ serves as the target color image for training our color prediction
network in the loss Lglrred. The reconstruction 1oss Lyeconstruct further encourages
the encoder Ephone() to preserve important image details.

Training: Thanks to the independent objectives, we can train our color condi-
tional ISP network F and the color prediction network G separately. This allows
use of larger batch sizes and reduced training times significantly. A comparative
study with the joint fine-tuning of both the networks is provided in the sup-
plementary. The final training loss for F is given by (6) and (7). The loss for
the color prediction net G is given by (8). Each batch for training both, F and
G comprises 16 pairs of randomly sampled RAW phone images z € R**80x80
and DSLR sRGB images y € R3*160%160 Dyring training, we augment the data
by applying random flips and 90 deg rotations. To increase the robustness of
our color conditional ISP network F, we employ color augmentations on the
ground truth DSLR sRGB during training. Specifically, we randomly jitter the
hue, saturation, brightness and contrast in a range [—0.2,0.2].

The blurring kernel b in (7) is a 9 x 9 Gaussian with the standard deviation in
each of the dimension set to 2. The constants a; and as for computing m are set
to 0.01 and 0.5, respectively. The number of bins B in our color mapping 3.3 is set
to 15 and the temperature parameter 7' = (1/B)?. Finally, to handle vignetting
(dark corners) that occurs in RAW sensor data, we append the RAW data with a
pixel-wise function of 2D coordinate map for the inputs to our pre-processing net
P and the color prediction net G. We use the ADAM algorithm [12]| as optimizer
with f1 = 0.9 and B3 = 0.99. The initial learning rate for training both our
networks is set to 2e — 4 which is halved at 50%, 75%, 90% and 95% of the
total number of epochs respectively. The networks are trained separately for 100
epochs on a Nvidia V100 GPU. The training time for our F and G nets was 27
hours and 22 hours, respectively.

4 Dataset

We propose the ISP in the Wild (ISPW) dataset for learning the camera ISP
in the wild. The ISPW dataset consists of a set of 197 high-resolution captures
from a Canon 5D Mark IV DSLR camera (with a lens of focal length 24mm)
and a Huawei Mate 30 Pro mobile phone. Each capture comprises of the RAW
sensor data from the mobile phone (4x1368x1824) and 3 sSRGB DSLR images
(3%x4480x6720) of the same scene taken at different exposure settings (EV val-
ues: -1, 0 and 1). All DSLR images were captured with an ISO of 100 for more
detail and less noise. Further a small aperture of F18 was used for a large depth
of field. The dataset was collected over several weeks in a variety of places and
in various illumination and weather conditions to ensure diversity of samples.
During the capture, both the devices were mounted on a tripod using a cus-
tom made rig to ensure no blur due to camera motion. Collection was focused
on predominately static scenes in order to ease the alignment between the two
cameras. However, small motion is inevitable in most settings, and thus need
to be handled by our data processing and robust learning objectives. We split
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the ISPW dataset into 160, 17, and 20 high-resolution captures for training,
validation, and test, respectively. We believe that it can serve as an important
benchmarking and training set for RAW-to-sRGB mapping in the wild.

Data processing: We describe the pre-processing pipeline for our ISPW data
here. We consider the DSLR image taken at EV value 0 as the target DSLR
sRGB in this work. We first crop out the matching field of view from the phone
and the DSLR high-resolution captures using SIFT [14] and RANSAC [5]. Crops
of size 320x320 are then extracted in a sliding manner (stride of 160) from
both, the DSLR sRGB and the phone sRGB. Local alignment is performed by
estimating the homography between two crops. The corresponding 4-channel
RAW crop from the phone of size 160 x 160 is extracted using the coordinates
of the 320 x 320 phone sRGB crop and paired with the DSLR sRGB crop. To
filter out crops with extreme scene mismatch, we discard the pairs which have a
normalized cross-correlation of less than 0.5 between them.

5 Experiments

Here, we perform extensive experiments to validate our approach. We evaluate
our approach on the test sets of the ZRR dataset [8] and ISPW datasets (Sec. 4).
The methods are compared in terms of the widely used PSNR and SSIM [20]
metrics. For a fair comparison, we align the ground truth DSLR sRGB with the
phone RAW for the computation of PSNR and SSIM metrics. See supplementary
for more qualitative and quantitative results,

5.1 Ablative Analysis of the Color Mapping

Here, we study the effectiveness of our color mapping scheme (Sec. 3.3) compared
to other alternatives. The results on the ZRR dataset are reported in Tab. 1.

NoColorPred: As a baseline for evaluating our color mapping scheme, we
train F(x,¢) with the color information ¢ set to 0. This implies a simple feed-
forward network setting. We do not include the color mapping module C in this
version. NoColorPred achieves a PSNR of 21.27 dB and a SSIM of 0.844. This
variation learns average average and dull colors and is not able to account for
various factors on which the color in an image depends. ColorBlur: Next, as
in CycleISP [22], we train F(xz,¢) where the target color é = z * yi, is achieved
by blurring the 2x downsampled target DSLR sRGB (aligned with z’) with a
Gaussian kernel z during training. At inference, we apply the same blurring to
our predicted target color ¢ = zxG(x). As in NoColorPred, we do not include the
color mapping module C in this version. ColorBlur achieves a gain of 2.16 dB in
PSNR over NoColorPred. Although being better than NoColorPred, ColorBlur
fails to capture the sudden changes of color in the image contour.

We further evaluate different versions of the color mapping scheme C. Lin-
earMap: First, we consider learning a 3 x 3 global color correction matrix be-
tween the processed RAW 2’ and the color ¢ for each training pair, as in [2]. Lin-
earMap produces inaccurately colored images specially in terms of the contrast,
since it cannot represent more complex color transformations and tone curves.
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Table 1. Ablative study of our color mapping scheme (Sec. 3.3) on the ZRR dataset.

NoColorPred ColorBlur LinearMap ConstValMap AffineMapIndep AffineMapDep +Preprocess

PSNRT 21.27 23.43 21.89 22.65 23.78 24.41 25.24
SSIMT 0.844 0.857 0.832 0.859 0.861 0.873 0.879

Table 2. Ablative study of our loss Table 3. Ablative study of our color prediction

(Sec. 3.4) on the ZRR dataset. network (Sec. 3.2) on the ZRR dataset

NoAlign + AlignedLoss +Mask NoColorPred 4+U-Net +Reconstruct +GlobalContext
PSNRt  20.56 24.62 925.24 PSNR?T 21.27 24.09 24.43 25.24
SSIM?T 0.785 0.867 0.879 SSIM T 0.844 0.865 0.871 0.879

ConstValMap: Here, we use a simplified version of our approach (Sec. 3.3)
as C by using fixed values for each bin instead of the affine mapping learned
in Sec. 3.3. Channel dependence is not exploited in this version for calculating
the values. This achieves a substantial improvement of 0.76 dB in PSNR over
LinearMap. Thus, proving the utility of using a more flexible color mapping for-
mulation. AffineMaplIndep: Setting C to our color mapping scheme (Sec. 3.3)
but without any channel dependence boosts the PSNR by a further 1.13 dB over
ConstValMap. Increasing the expressive power of each bin by predicting an affine
transform instead of a constant is thus pivotal for better performance of our color
conditional RAW-to-sRGB mapping. AffineMapDep: Here, C is set to our full
formulation discussed in Sec. 3.3. Thus, exploiting channel dependence in C is
beneficial as quantified by the PSNR increase of 0.63 dB w.r.t.AffineMapIndep.
+Preprocess: Finally, we add our pre-processing network P (Sec. 3.3) to the
AffineMapDep version. This gives an impressive boost of 0.83 dB in PSNR over
AffineMapDep hence, validating the need to remove noise and pre-process the
phone RAW before color mapping.

5.2 Ablative Study of the Training Loss

Here, we study the effect of our masked aligned loss (Sec. 3.4). The results on
the ZRR dataset are reported in Tab. 2.

NoAlign: As a baseline for ablating our loss, we employ an unaligned L1-loss
for all our objectives (Eq. (6), (7) and (8)). The mask m is set to 1 at all locations.
+AlignedLoss Further, employing alignment before the loss calculation leads
to more crisp predictions, giving a large improvement of 4.06 dB in PSNR and a
relative gain of 10.4% in SSIM. Although improving the results, the prediction
lacks detail and is characterized by a noticeable color shift. This is due to the
inaccuracies in optical flow computations that may occur due to occlusions and
homogenous regions. +Mask Finally, our masking strategy using Eq. (5) leads
to a significant gain of 0.62 dB in PSNR. (+Mask) produces a more detailed
output with colors consistent with the target DSLR sRGB. This shows that
accurate supervision using our masked loss during training is beneficial to our
DSLR sRGB restoration network.

5.3 Ablative Study of the Color Prediction Network

Next, we study the effect of our color prediction module (Sec. 3.2). The results
on the ZRR dataset are reported in Tab. 3.
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(a) MWISP- (b) AWNet (c) LiteISP- (d) Ours (e) OursFast (f) GT
Net Net

Fig. 4. Visual results for state-of-the-art comparison on our ISPW dataset (first row)
and the ZRR dataset (second row). Best viewed with zoom.

NoColorPred: This is the same baseline as in Sec. 5.1, which employs no
explicit color prediction or conditioning. U-Net: Integrating a low resolution
U-Net based color predictor without the reconstruction branch or global con-
text transformer leads to an impressive gain of 2.82 dB over NoColorPred. This
demonstrates the effectiveness of conditioning F on the color image for robust
ISP learning and prediction. +Reconstruct: Further, integrating a reconstruc-
tion branch in our color predictor helps G(x) in learning a more informative
encoding Ephone(), leading to a 0.34 dB increase in PSNR. Thus, +Recon-
struct facilitates our encoder in the color predictor module to encapsulate all
the information into the encoding that is necessary for accurate color prediction.
+GlobalContext: Finally, integrating the global context transformer (Sec. 3.2)
in our U-Net color predictor G(x) provides our color conditional ISP net F(x, ¢)
with a substantial gain of 0.81 dB. This clearly demonstrates the importance of
exploiting global information in predicting coherent colors.

5.4 State-of-the-Art Comparison

In this section, we compare our color conditional ISP network with state-of-the-
art methods for RAW-to-sRGB mapping, namely PyNet [6], MW-ISPNet [§],
AWNet [4] and LiteISPNet [24]. We evaluate on the test splits of the ZRR
dataset [8] and our ISPW dataset (Sec. 4). Among these methods, MW-ISPNet,
AWNet and LiteISPNet employ discrete wavelet transforms for incorporating
global context. To deal with misalignments, MW-ISPNet, AWNet and PyNet
incorporate the VGG perceptual loss [11], while LiteISPNet employs an aligned
loss using optical flow computation [18].

Table 4 lists the quantitative results on the test split of the ZRR dataset that
contains 1203 RAW-sRGB crop pairs of size 448 x448. Our method outperforms
all previous approaches by a significant margin, achieving a gain of 1.43 dB
PSNR compared to the second best method: the very recent LiteISPNet. We
then run the best performing methods on the test split of our ISPW dataset,
that contains 3023 RAW-sRGB crop pairs of size 320x320. For a fair comparison,
all the methods were retrained on our dataset using apt train settings. The
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Table 4. State-of-the-Art comparison on the ZRR [8] and our ISPW datasets.

ZRR Dataset ISPW Dataset
#Params(M)| PSNRT SSIM?t Time(ms)| PSNR?T SSIM? Time(ms)/|

PyNet [6] 47.6 2273  0.845 62.7 - - -
MW-ISPNet 3] 29.2 23.13  0.849 111.3 2243  0.746 99.4
AWNet [4] 52.2 23.52  0.855 63.4 23.10  0.787 50.8
LiteISPNet [24] 11.9 23.81 0.873 23.3 23.51 0.809 17.2
Ours 35.2 25.24 0.879 67.6 25.05 0.821 55.7
OursFast 13.4 24.70 0.876 18.2 24.57 0.815 13.8

performance gap between our color conditional ISP network and other methods
is more stark for the ISPW dataset, with our approach achieving a PSNR 1.54
dB higher than the second best LiteISPNet. Efficiency is crucial for deploying
the model on a smartphone. We therefore evaluate a faster and lighter version
of our approach. In OursFast, we omit the color mapping regularization C after
the color prediction network. We further reduce the number of parameters by
~ 3%, by reducing the depth of all three networks and dimensionality of the
Global Context Block. OursFast outperforms Lite[SPNet by 1.06dB while being
20.2% faster on the ISPW dataset. Further details on the model complexity and
execution times are given in the supplementary.

Figure 4 shows the visual results for our color conditional ISP compared to
the top three performing methods. Compared to our approach, all the other three
methods fail to capture the accurate color of the target DSLR sRGB. Moreover,
the results for MW-ISPNet and AWNet are blurry due to their inability to
handle misalignment well. On the other hand, although Lite[SPNet employs an
aligned loss, it fails to account for inconsistent flow computations hence leading
to significant color shift and loss of detail. Conversely, our approach produces
crisp DSLR-like sSRGB predictions with accurate colors, thus proving the utility
of our global attention based color predictor paired with our masked aligned loss.
The blur and color shift effect is more intense for all other methods on our dataset
that contains misaligned RAW-sRGB pairs. Finally, we calculate the average
inference time per image for our method on both the datasets. We achieve an
average per image inference times of 67.6 ms and 55.7 ms, respectively on the
sRGB images of sizes 448x448 (ZRR dataset) and 320x320 (ISPW dataset).

6 Conclusion

We address the problem of mapping RAW sensor data from a phone to a high
quality DSLR image by modelling it as a conditional ISP framework on the
target color. To aid our color conditional ISP net during inference, we propose a
novel encoder-decoder based color predictor that encapsulates an efficient global
attention module. A flexible parametric color mapping scheme from RAW to the
target color is integrated for a robust training and inference. Finally, we propose a
masked aligned loss for filtering out regions with inconsistent optical flow during
aligned loss calculations. We perform experiments on the ZRR dataset and our
ISPW dataset, setting a new state-of-the-art on both the datasets.
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