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1 Proof of Proposition 1

Proof. Without loss of generality, we prove for the 1D case where Y ,X,K∗,N ,U

are vectors. The extension to 2D case is straightforward. Denote N̂ = N + U

and Ñ = N −U , i.e., (
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Ñ

)
=
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)(
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)
. (1)

Recall that N and U are i.i.d. Gaussian noise with zero mean and variance Σ.
It yields that (
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)
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Thus the joint distribution of N̂ and Ñ is still Gaussian:(
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)
∼ N
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)
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)
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where

Σ′ =

(
I I
I −I

)(
Σ 0
0 Σ

)(
I I
I −I

)
=

(
2Σ 0
0 2Σ

)
. (4)

Hence we have that N̂ and Ñ are independent, which leads to

EN ,U (N −U)⊤(K∗ ⊗ (F(K∗ ⊗X +N +U)−X))

=E
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Then we can rewrite the loss Lr as follows:

EN ,U∥K∗ ⊗F(Y +U)− (Y −U)∥2F
=EN ,U∥K∗ ⊗ (F(K∗ ⊗X +N +U)−X)− (N −U)∥2F
=EN ,U

{
∥K∗ ⊗ (F(K∗ ⊗X +N +U)−X)∥2F

− 2(N −U)⊤(K∗ ⊗ (F(K∗ ⊗X +N +U)−X))

+ (N −U)⊤(N −U)
}

=EN ,U∥K∗ ⊗ (F(K∗ ⊗X +N +U)−X)∥2F + 2Trace(Σ).

The proof is done by noting EN ,U (N−U)⊤(N−U) = 2Trace(Σ) is a constant.

2 Performance Gain versus Ensemble Size in Inference

Fig. 2 shows how the performance of UNID scales up with the increase of en-
semble size (i.e. the number of inferences) in the ensemble inference on Levin et
al.’s and Lai et al.’s datasets. It can be seen that with more inferences used
for averaging, the overall performance increases and then becomes stable with a
sufficient number of inferences for averaging.
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Fig. 1. PSNR versus ensemble size in ensemble inference on (a) Levin et al.’s dataset
with kernels estimated by [5] and (b) Lai et al.’s dataset with kernels estimated by [7]

3 Visual Comparison on More Images

See Fig. 2-3 for the results on motion deblurring with erroneous kernels, Fig. 4-6
for the results on motion deblurring with accurate kernels, and Fig. 7-10 for the
deblurring results on some real samples. The visual quality achieved by UNID
is quite competitive to that by the supervised methods.
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Fig. 2. NBID results on an image from Sun et al.’s dataset [6] with WG noise of
σ = 2.55 and erroneous blur kernel of size 27× 27 estimated by [7]
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Fig. 3. NBID results on an image from Levin et al.’s dataset [2] with WG noise of
σ = 2.55 and erroneous blur kernel of size 13× 13 estimated by [6]
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Fig. 4. NBID results on an image from Set12 [3] with WG noise of σ = 2.55 and an
accurate blur kernel of size 19× 19
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Fig. 5. NBID results for Sun et al.’s dataset [6] with WG noise of σ = 7.65 and an
accurate blur kernel of size 15× 15
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Fig. 6. NBID results for Sun et al.’s dataset [6] with WG noise of σ = 12.75 and an
accurate blur kernel of size 15× 15
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Fig. 7. NBID results on an image “boy statue” from the real dataset in Lai et al.’s [1]
with an erroneous blur kernel estimated by [4]
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Fig. 8. NBID results on an image “car5” from the real dataset in Lai et al.’s [1] with
an erroneous blur kernel estimated by [5]
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Fig. 9. NBID results on a patch of “face” from the real dataset in Lai et al.’s [1] with
an erroneous blur kernel estimated by [5]
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Fig. 10. NBID results on an image “cross stitch” from the real dataset in Lai et al.’s [1]
with an erroneous blur kernel estimated by [7]
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