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Abstract. Event cameras demonstrate unique characteristics such as
high temporal resolution, low latency, and high dynamic range to im-
prove performance for various image enhancement tasks. However, event
streams cannot be applied to neural networks directly due to their sparse
nature. To integrate events into traditional computer vision algorithms,
an appropriate event representation is desirable, while existing voxel grid
and event stack representations are less effective in encoding motion and
temporal information. This paper presents a novel event representation
named Neural Event STack (NEST), which satisfies physical constraints
and encodes comprehensive motion and temporal information sufficient
for image enhancement. We apply our representation on multiple tasks,
which achieves superior performance on image deblurring and image
super-resolution than state-of-the-art methods on both synthetic and
real datasets. And we further demonstrate the possibility to generate
high frame rate videos with our novel event representation.

Keywords: Event Camera, Image Enhancement, Event Representation.

1 Introduction

Event cameras, such as Dynamic Vision Sensor (DVS) [I6], can detect bright-
ness changes and trigger events whenever the increase (decrease) of latent irra-
diance exceeds a preset threshold. They are widely used in image enhancement
tasks since they possess clear advantages over traditional cameras in various as-
pects, such as high temporal resolution, low latency, and high dynamic range
(HDR). However, event streams are represented as multiple four coordinates
signals (z,y,t,p), and such continuous event signals cannot be processed by
traditional computer vision algorithms directly, which brings a natural gap to
leverage the advantages of events for image enhancement.

Finding a favored representation as input is important for event-based image
enhancement tasks. Discretizing event signals in the time domain is an intuitive
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(a) Blurry image (b) Event (c) eSL-Net x 4 (d) Ours x 4

Fig.1l. An example result of NEST-guided image enhancement with 4x super-
resolution. (a) Blurry image. (b) Corresponding events (color pair {blue, red} rep-
resents the event polarity {positive, negative} throughout this paper). (c) Result of
eSL-Net [31]. (d) Our result.

choice. This could be achieved by recording the timestamp of the last event in
each pixel location [I4], by inserting events into a voxel grid using a linearly
weighted accumulation similar to bilinear interpolation [37], or by merging and
stacking events within a time interval or a fixed number of events [32]. Despite
their simplicity, when the number of channels divided from events increases,
noisy events in such hand-crafted representations become hardly distinguishable
from useful signals.

Neural representation has become a popular choice in event embedding pro-
cedures recently. Useful features could be extracted from event sequences with
multi-layer perceptron (MLP) [6125], spike neural network (SNN) [35], long short-
term memory (LSTM) [3I20], and graph neural network (GNN) [IITI5]. Despite
their effectiveness in object recognition [GIBITEB5TI20] and segmentation [25],
these representations are not supposed to be optimized for image enhancement
tasks, since they focus more on preserving semantic information well instead of
caring about pixel-wise information, while the latter is crucial for image enhance-
ment. The fact that hand-crafted event representations are prone to noise and
neural representations sacrifice contextual information motivates us to propose
a tailored representation for event-based image enhancement.

In this paper, we introduce Neural Event STack (NEST), which satisfies
event physical constraints while faithfully encodes motion and temporal infor-
mation with less noise involved. We first propose a NEST estimator to transform
an event sequence into NESTs by a bidirectional convolutional long short-term
memory (ConvLSTM) block [28] in a data-driven manner to fulfill event embed-
ding. Tailored to the NEST, we then propose a NEST-guided Deblurring Net
(D-Net) for image deblurring and a NEST-guided Super-resolution Net (S-Net)
for image super-resolution, with simple architectures (a NEST-guided image
enhancement example is shown in Figure . By parallel processing multiple
NESTs with D-Net and S-Net, high frame rate (HFR) videos can be restored
with sharper edges and higher resolution.

Overall, this paper contributes in the following aspects:
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Table 1. Comparison of LSTM-based event representations. H and W denote the
image height and width, C' denotes the number of channels, and T denotes the number
of temporal bins.

. . . Characteristics
Representation  Dimensions

Direction = Resolution Hidden
States

PhasedLSTM [20] 1D vector
MatrixLSTM [3] CxHxW
NEST TxCx HxW Bi-direction Arbitrary  Preserved

Uni-direction Fixed Discarded

— a neural representation (NEST) comprehensively encoding motion and tem-
poral information from events in a noise-robust manner;

— event-based solutions for image deblurring and super-resolution taking ben-
efit from the new representation;

— a unified framework for HFR video generation guided by NESTs.

We quantitatively and qualitatively evaluate our method on both synthetic and
real datasets and demonstrate its superior performance over state-of-the-art
methods.

2 Related Work

2.1 Event Representation

Event data possess many attractive advantages such as high speed and high
dynamic range. However, it is difficult to apply computer vision algorithms de-
signed for ordinary images to events, since event data are essentially different
from image frames. Many algorithms try to find an event representation com-
patible with frame-based data, and they can be divided into two categories:
hand-crafted representation and data-driven representation.

Hand-crafted representation. Lagorce et al. [14] proposed the time surface
representation, obtained by keeping track of the timestamp of the last event that
occurred in each location. Based on the time surface representation, Sironi et
al. [30] proposed using histograms of averaged time surfaces (HATS), preserving
more temporal information in histograms. To avoid the “motion overwriting”
problem in the time surface representation, Zhu et al. [37] proposed the voxel grid
representation, which inserts events into a voxel grid using a linearly weighted
accumulation similar to bilinear interpolation. Wang et al. [32] proposed an
event stack representation, which forms events as multiple frame event stacks by
merging and stacking them within a time interval or a fixed number of events.

Data-driven representation. Recently data-driven models show higher ro-
bustness for event representation. Sekikawa et al. [25] proposed a recursive ar-
chitecture and used MLP for computing a recursive formula. Gehrig et al. [0]
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used MLP to encode time information of event sequences and summed up values
from MLP to construct an event spike tensor. Inspired by biological mecha-
nisms, Yao et al. [35] encoded events with attention SNN by processing events
as asynchronous spikes. To better exploit the topological structure inside events
sequences, Bi et al. [I] and Li et al. [I5] used a graph to represent the event cloud
with GNN and further conducted graph convolutions to obtain the event repre-
sentation. Besides, to better exploit temporal information of events sequences,
Neil et al. [20] proposed PhasedLSTM with a new time gate for processing asyn-
chronous events. Cannici et al. [3] proposed the MatrixLSTM representation
which integrates event sequences conditionally with LSTM cells. Although these
representations show great potential in multiple computer vision tasks (e.g., ob-
ject recognition, segmentation, and optical flow estimation), hand-crafted rep-
resentations are still popular for image enhancement tasks, since data-driven
representations for these tasks are not readily available. Particularly, LSTM-
based methods show great potential in event representation. A comparison of
LSTM-based event representations and their design choices are summarized in
Table [I} The method in [3] emphasizes preserving sparsity when computing the
MatrixLSTM, it is not suitable for image enhancement tasks due to the loss
of connection around neighboring pixels. Thus, a proper event representation
method tailored to image enhancement tasks is desired.

2.2 Event-based Image Enhancement

Event-based image deblurring. Pan et al. [21] proposed a simple and effec-
tive approach, the Event-based Double Integral (EDI) model, to reconstruct an
HFR sharp video from a single blurry frame and corresponding event data. Jiang
et al.[T1] proposed a convolutional recurrent neural network and a differentiable
directional event filtering module to recover sharp images. Lin et al. [I7] pro-
posed a deep CNN with a dynamic filtering layer to deblur and generate videos
in a frame-aware manner. Wang et al. [31] proposed an event-enhanced sparse
learning network named eSL-Net to address deblurring, denoising, and super-
resolution simultaneously. Shang et al. [26] detected the nearest sharp frames
with events, and then performed deblurring guided by the nearest sharp frames.

Event-based image super-resolution. Jing et al. [I2] proposed an event-
based video super-resolution framework, which reconstructs high-frequency low
resolution (LR) frames interpolated with events and merges them to form a
high resolution (HR) frame. Han et al. [7] proposed a two-stage network to
fuse event temporal information with images and established event-based single
image super-resolution as a multi-frame super-resolution problem.

For these event-based image enhancement methods, event stack is the most
widely adopted choice [TTIT7I26/33IT0OIT2I7] for representation due to simplicity,
despite its poor robustness to noise. In the next section, we will first revisit
the formulation of deblurring and super-resolution with events and analyze the
demerits of applying the event stack representation method for image enhance-
ment. We then propose the NEST representation to solve these problems.
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3 NEST: Representation

In this section, we first derive the formulation of bidirectional event summations,
which bridge the gap between low-quality images and high-quality images with
events in Section [3.1] Based on bidirectional event summations, we briefly an-
alyze the advantages and disadvantages of event stack representation. To avoid
noisy events interference, we propose a neural representation to robustly imple-
ment bidirectional event summations in Section [3.2] Finally, we introduce the
model design of our NEST estimator in Section [3.3

3.1 Bidirectional Event Summation

An event e is a quadruple (z,y,t,p) triggered when the log intensity change
exceeds a preset threshold ¢, i.e.,
|log(I, ) — log(T; ;") > c, (1)

in which Itm’y and Itz’_At represent the instantaneous intensity at time ¢ and
t — At respectively for pixel (z,y), and At denotes the time interval since the
last event occurred at the same position. Polarity p € {1,—1} indicates the
direction (increase or decrease) of intensity change. Equation applies to each
pixel (z,y) independently, and pixel indices are omitted henceforth.

Given two instantaneous intensity frames I'" and I, let’s assume there are
N, events triggered between time ¢, and ¢;, denoted as {ek}ivgl. According to
the physical model of the event camera, if ¢, < ¢;, the event makes a connection
between I'" and I' as:

Ne
I'i =1 . exp(z Cr - eg)
k=1
t. &Cr
=I"-8S,, (tr < ti)» (2)
S Cr . . . .
where S,_,; denotes event summation from time ¢, to ¢; in the exponential space

with a time-varying threshold ¢,. ¢, approximately follows a normal distribution
over time [22].

Deriving from Equation (2)), we can also obtain I'" from I' by reversing the
event summation (¢, > t;). Thus, we formulate the bidirectional event summation

cr . )
.+, to consider both cases, i.e.,

SCT = Tj}i‘ i (3)

Combining Equation , Equation can be further expanded to include
both forward and reverse event summation:

I -1 S (4)
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Image enhancement with events. Ill-posedness is a common problem in im-
age enhancement tasks, such as image deblurring and super-resolution. For image
deblurring, a blurry image B can be modeled as the average over a sequence of
latent sharp frames {I" iV:fl [210:

1
Br — ) I, (5)
i

in which Ny is the number of latent sharp frames. Obviously, there are multiple
groups of latent frames satisfying Equation 7 which brings difficulty to recover
sharp frames from a single blurry image.

For image super-resolution, an HR frame can be reconstructed by a sequence

of latent sharp frames {I%R}fv:fl, i.e.,

. t; N
IgR =t {ILR}jzfu (6)

where 1} denotes the multi-frame super-resolution operator, combining informa-
tion from multiple LR frames to recover details that are missing in individual
frames. However, it is hard to record multiple latent sharp frames with tradi-
tional cameras, which means we need to generate an HR frame with a single LR
frame leading to ill-posedness.

As Equation has shown the relationship of two latent frames by corre-
sponding events, ill-posedness can be relieved by integrating image and events.
By combining Equation and Equation , we obtain:

Ny
|
B%It“(EZSHﬂ (7)

j=1

By substituting Equation , we can rewrite Equation @ as follows:

ty tq i N
L =1 {ILR ’ Sg—>j}j:fl' (8)
Since the bidirectional event summations {S{’,; ;»V:fl are independent of the la-
tent frames, we can restore arbitrary sharp latent frames from a single blurry
image or reconstruct arbitrary HR frames from a single LR frame with the cor-
responding events directly.

3.2 Neural Representation

According to Section the bidirectional event summation establishes the rela-
tionship between low-quality (blurry, LR) images and high-quality (sharp, HR)
images. As shown in Equation and Equation , image deblurring needs the
average value of the set, and image super-resolution depends on the magnitude
difference of each element in the set for recovering details. Thus, the event signal
can be discretized in the time domain to form bidirectional event summations

;AN . S
ci f Jea
{S; iti=1 which can guide image enhancement tasks.
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Event stack forms events as multiple frames by merging and stacking them
within a time interval or a fixed number of events [32]. Intuitively bidirectional
event summations can be seen as a combination of event stacks with linear
weights, which can be learned implicitly by a neural network, so that event
stack works well in image enhancement tasks. However, event stack will be noise-
sensitive when the time resolution increases since they become sparser with more
channel numbers, which degrades the restored image quality. Thus, it is necessary
to transform event stacks [32] into a more robust representation.

Inspired by data-driven representations in the deep learning field, to fully
utilize such information to address these problems, we propose a robust neural
representation, named Neural Event STack (NEST), to replace {S;*, ; };V:fl and
guide image enhancement. NEST representation explicitly learns the combina-
tion parameters of event stack to achieve a robust representation. By substituting
bidirectional event summations with NEST's, high-quality frames can be restored
according to Equation and Equation as below:

I = f, (B,EY), (9)
I?R =fs (I?R’ Ez) ) (10)

where f; and fs are implicit functions derived from Equation and Equa-
tion , and E’ denotes a NEST.

From Equation @ and Equation , we could see that once the NEST E’
is properly estimated, image enhancement tasks such as deblurring and super-
resolution can be solved in a more robust manner. Besides, since the NEST is im-
plemented by deep neural networks in a data-driven manner, it naturally extracts
semantic information in the event sequence, which can facilitate the reconstruc-
tion of high-quality images. Therefore, our goal turns into estimating NEST's
first, and then using NESTs to guide image deblurring and super-resolution
procedures. To achieve that goal, we propose three specific sub-networks for es-
timating NESTs and modeling the implicit functions f; and fs respectively, as
introduced in the following sections.

3.3 NEST Estimator

To obtain robust event representation, we design a NEST estimator to transform
event stacks [32] into NESTs. From Equation , we can divide E’ into two
parts. The preceding part {S;, ; };;11 is represented by E;, and the following part
{Sis,; jV:fZ is represented by Ef, which encodes the events before and after time
t; respectively. Therefore, we design the NEST estimator to encode preceding
and following events separately as shown in Figure [2| Such a network can be

expressed as:
i\ NV i i NV i+1 N
(B} = {(B BDYY, = fu (fe1%)), (11)

where f,, denotes our NEST estimator and {e}?r1 represents the events triggered
in ti to ti+1.
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—* Data Flow
{e}‘:“ {e}i+z Voxelization

i i+1
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Fig. 2. The architecture of our NEST estimator, which consists of a parameter-shared
feature extractor and a bidirectional ConvLSTM block. The input raw events {e}:™*
(triggered in t; to t;41) are first binned into an event stack (voxelization), and then
transformed into a NEST E*. ConvLSTM,, encodes the preceding part and ConvLSTM;
for the following part of events.

We first use a feature extractor block, consisting of multiple dense convolution
layers [9], to perform local event feature extraction. Recent work has shown that
dense convolution can extract high-level features, and filter most noisy events [4].
Then a bidirectional ConvLSTM block [28] is used to construct NESTs, which
can not only encode temporal information lying in events but also fuse spatial
information and reconstruct gradient information by the convolution operation.

From the event formation model [B], the expectation of event noise is zero.
Since NESTs are generated by bi-directional encoding, paired noisy events are
combined with temporal-variant thresholds, effectively suppressing noisy events.
Besides, thanks to the data-driven encoding operation, NESTs also contain con-
textual information of the scene, which cannot be encoded by hand-crafted rep-
resentations like event stacks [32]. As the example shown in Figure [3] NESTs
contain the statistical event information such as event-triggered frequency (Fig-
ure[3] (c)) to indicate the blurry region, and a rough segmentation (Figure[3](d))
of the captured frame to distinguish the less blurred background, which both
serve as global priors for reconstructing the high-quality image.

4 NEST: Application

In this section, we conduct three experiments: image deblurring (Section [4.1]),
super resolution (Section , and HFR video generation (Section guided
by NESTs to validate the effectiveness of NEST.
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(a) Blurry image (b) Error map (c) 27" layer of NEST (d) 94" layer of NEST

Fig. 3. An example of NEST layer visualization. (a) Blurry image. (b) The error map
between blurry image and ground truth, indicating the blurry region with higher differ-
ence values. (¢) Visualization of the 27" layer of NEST, illustrating the blurry region.
As highlighted in orange boxes, the blurry region has a higher response value, since
more events are generated in this region. (d) Visualization of the 94 layer of NEST,
separating less blurry sky apart from the foreground with different response values.

4.1 NEST-guided Image Deblurring

After embedding events as NESTSs, we can use them to conduct image deblur-
ring. Since NESTSs contain not only motion information but also global semantic
information (an example shown in Figure 3| (c) and (d)), we propose the NEST-
guided D-Net to perform image deblurring by making full use of motion and
global semantic information. Guided by NESTs, the image deblurring can be
viewed as multi-modality fusion tasks. Thus, we adopt a U-Net-like [23] network
architecture to perform image deblurring. We also formulate it as the residual
learning with global connection, by fusing motion and intensity information to
calculate the residual between the blurry image and the sharp oneEl

Experiment result. Our experiment can be divided into 3 parts. The first part
(I) compares NEST-guided image deblurring with a state-of-the-art learning-
based video deblurring method ESTRNN [36] and three state-of-the-art event-
based image deblurring methods: EDI [2I], LEDVDI [I7], and eSL-Net [31].
To validate the effectiveness of the NEST representation, the second part (II)
compares with the event stack representation method and another two data-
driven event representations combined with our D-Net (denoted EvST+D/S [32],
EST+D/S [6] and MatrixLSTM+D/S [3]). Besides, the third part (III) re-
places eSL-Net’s event stack representation with NEST representation (named
NEST+eSL) to better illustrate the robustness of NEST. For a fair comparison,
we retrained ESTRNN [36] on our training datasetEl

The quantitative comparison results are shown in Table [2] (a) and qualitative
comparisons are shown in Figure [l We can see that our method outperforms
others on all metrics. Compared to the video deblurring method ESTRNN [36],
our method recovers sharper details encoding inside NESTs. As for event-based
methods and other event representation methods, our method restored sharp
images with fewer artifacts, with NEST’s robust event representation. Thanks
to the motion and semantic information encoded inside the NESTSs, our network
can handle blurry images with complicated real scenarios. Besides, as comparison

! Detailed D-Net and S-Net configurations are in the supplementary material.
2 % denotes retraining on our training dataset.
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(a) Blurry image (c) Ours (e) LEDVDI (g) ESTRNN (1) EST+D/S

5 RS CRRNNES TS TRRRE VR

(b) Ground Truth (d) Matrix+D/S (f) eSL-Net (h) EvST+D/S (j) EDI

(2) ESTRNN

(a) Blurry image (c) Ours (e) LEDVDI

(i) EST+D/S

T -- - 4

(b) Event (d) Matrix+D/S (f) eSL-Net (h) EvST+D/S () EDI

Fig. 4. Qualitative comparisons for deblurring application on synthetic data (upper)
and real data (lower). (a) Blurry image. (b) Ground truth (synthetic data) / Event
(real data). (c)~(j) Deblurring results of ours,Matrix+D/S [3], LEDVDI [I7], eSL-
Net [31], ESTRNN [36], EvST+D/S [32], EST+D/S [6], and EDI [21]. Close-up views
are provided below each image.

between eSL-Net [3I] and NEST+eSL has shown Table [2| much lower LPIPS
values demonstrate NEST representation can improve the performance.

4.2 NEST-guided Image Super-resolution

Event cameras show higher temporal resolution than traditional cameras, which
demonstrates the possibility of performing single image super-resolution like
multi-frame super-resolution with events to relieve the ill-posed issue. However,
frame alignment is an unavoidable difficulty for multi-frame super-resolution.
Fortunately, the high temporal resolution property of events only brings slight
changes for consecutive latent frames. Besides, our NEST estimator adopts a
bidirectional ConvLSTM block, which also aligns temporal information implic-
itly. To better exploit semantic information hidden in NESTSs, we design the
NEST-guided S-Net for image super-resolution.

In our S-Net, we use multiple Residual in Residual Dense Blocks (RRDBs) as
proposed in ESRGAN [34] to extract different features from NESTs and images
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Table 2. Quantitative comparisons for deblurring (a) and super-resolution (b) appli-
cation on the synthetic testing dataset. 1 (}) indicates the higher (lower), the better.
The best performances are highlighted in bold. Our experiment can be divided into 3
parts: The first part (I) is to compare with state-of-the-art image-based and event-based
image enhancement methods; the second part (II) compares “X+D/S”, where “X” is
other event representation methods; and the third part (III) compares “NEST+X”,
where “X” is another state-of-the-art event-based image enhancement method;

W (a) Deblurring (b) Super-resolution
Methods PNSR 1 SSIM 1 LPIPS ||[PSNR 1 SSIM 1 LPIPS |

EDI [21] 20.96 05752 0.2537 | - - -
LEDVDI [17] 22.08 0.6222 0.1905 | - - -

; ESTRNN" [36] 3052 0.8001 0.1105 | - - -
SPSR* [I§] - - - 27.63  0.7471 0.2763
RBPN* [§] - - - 27.23  0.7738 0.2956
EvIntSR [7] - - - 2752 0.7334 0.2893

EvST+D/S [32] 31.09 0.8977 0.0689 | 28.89 0.7992 0.3150
II EST+D/S [6] 2410 0.6987 0.2253 | 13.14 0.6574 0.4765
Matrix+D/S [3] 31.28 0.9022 0.0596 | 27.88 0.7966 0.2844

I eSL-Net [31] 29.73  0.8697 0.1078 | 28.23 0.7783 0.3950
NEST+eSL [3I] 29.92 0.8935 0.0634 | 28.87 0.7961 0.3096
Ours 32.56 0.9354 0.0422‘ 29.43 0.8128 0.2745

independently. Besides, we incorporate features extracted from NESTSs to the
image branch, fusing temporal and global semantic information hidden in the
NESTS to guide image super-resolution. Finally, we add a pixel shuffle layer [27]
to rearrange features and predict image residual between LR image and HR
image. By employing it to the upsampled image with bilinear interpolation, the
super-resolved image can be restored.

Experiment results. Similar to deblurring application, the first part (I) com-
pares NEST-guided image super-resolution with two state-of-the-art learning-
based image super-resolution methods SPSR [I8] (taking in a single frame) and
RBPN [§] (taking in multiple frames from a video), and two state-of-the-art
event-based image super-resolution methods: eSL-Net [3I] and EvIntSR [7]. The
second part (II) compares with event stack representation method and two data-
driven event representations combined with our S-Net (denoted EvST+D/S [32],
EST+D/S [6] and MatrixLSTM+D/S [3]). The third part (III) replaces eSL-
Net’s event stack representation with NEST (named NEST+eSL).

The quantitative comparison results are shown in Table [2[ (b) and qualitative
comparisons are shown in Figure[5] As experiments on real data show in Figure
results obtained by compared methods are distorted by noise, since the quality
of intensity frames captured by DAVIS346 cameras is lower than the outputs of



12 M. Teng et al.

(a) LR i 1mage _ (c) Ours (e) SPSR (g) EvIntSR 1) EST+D/S

e N e N e Y --

(b) Ground Truth (d) Matrix+D/S (f) eSL-Net (h) EvST+D/S (j) RBPN

y, g ) ( '
(b) Event (d) Matrix+D/S (f) eSL-Net (h) EvST+D/S (j) RBPN

Fig. 5. Qualitative comparisons for super-resolution application on synthetic data (up-
per) and real data (lower). (a) LR image. (b) Ground truth (synthetic data) / Event
(real data). (c)~(j) Super-resolved 4x results of ours, Matrix+D/S [3], SPSR [18],
NEST+eSL [31], EvIntSR [7], EvST+D/S [32], EST+D/S [6], and RBPN [8]. Close-up
views are provided below each image.

traditional cameras. But our method is noise-resistant thanks to NEST’s robust
representation. Like the deblurring application, eSL-Net [3I] can achieve better
performance combined with NESTEl

4.3 NEST-guided HFR Video Generation

As Equation shows, we can obtain multiple NESTs in one pass by ConvL-
STM. As shown in Table [I] compared to other LSTM-based event representa-
tions such as MatrixLSTM [3] or PhasedLSTM [20], our method preserves the
intermediate states of ConvLSTM cells. Therefore, it brings the possibility to
extend our D-Net and S-Net to process multiple NESTs in parallel to produce
HFR videos without modifying the original architecture. To implement this, af-
ter event sequence was transformed into NESTs. We can then generate multiple

3 Qualitative comparison between eSL-Net and NEST+eSL on deblurring and SR
applications can be found in the supplementary material.
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(a) Reconstructed (c) Reconstructed video of eSL-Net
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(b) Reconstructed video of LEDVDI (d) Reconstructed video of ours

Fig. 6. Qualitative comparisons for HFR video generation application on synthetic
data. The crop of reconstructed video frames from (a) EDI [21], (b) LEDVDI [17], (c)
eSL-Net [31], and (d) ours are shown.

sharp images in parallel by D-Net by combining multiple NESTs with a single
blurry image. After that, S-Net can generate multiple deblurred HR frames from
LR frames to form an HFR video.

Experiment results. We conduct qualitative comparisons on synthetic data
in Figure [0] for generating HFR videos from a single blurry image, compared
with three state-of-the-art event-based HFR video generation methods: EDI [21],
LEDVDI [I7], and eSL-Net [3I]. The results demonstrate that our method can
generate frames with sharper edges and better visual quality than other state-
of-the-art methods.

4.4 Implementation Details

Loss function. We use the same loss function for training D-Net and S-Net,
which is defined as

L=o- £2(107 Igt) + ﬂ : Eperc(:[m Igt); (12)

where I, denotes output image, I, for ground truth, and o and § are set to 200
and 0.5 respectively. £, denotes the loss on Ly norm and L, for perceptual
loss, which is defined as

Cperc(Ioa Igt) = £2 (¢h (Io)a ¢h(Igt))7 (13)

where ¢, denotes the feature map from h-th layer of VGG-19 network [29] pre-
trained on ImageNet [24], and we use activations from VGGs 3 and VGGs 5
convolutional layer here.

Training details. We implement our method using PyTorch on an NVIDIA
3090Ti GPU. D-Net and S-Net are both trained for 100 epochs and after the
first 50 epochs, we linearly decay the learning rate to 0 over the next 50 epochs.
The initial learning rate is set to 1 x 1072 for D-Net and 1 x 10=* for S-Net,
respectively, and ADAM optimizer [I3] is used in the training procedure.
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Table 3. Quantitative evaluation results of ablation study on the synthetic testing
dataset.

W (a) Deblurring (b) Super-resolution
Methods PSNR 4+ SSIM 1 LPIPS | |PSNR + SSIM 4 LPIPS |
W /o global 30.74  0.8932 0.0569 | 28.66 0.7917  0.3075

W/o feature 31.68  0.9064 0.0520 29.20  0.8096  0.2768
Our complete model 32.56 0.9354 0.0422 | 29.43 0.8128 0.2745

Dataset. Our training and testing datasets are adopted from Wang et al. [31].
As their datasets only contain the gray-scale images, we regenerate RGB blurry
images and LR images from the original REDS dataset [19] as Wang et al. [31]
suggested. And our real data are captured by a DAVIS346 camera.

4.5 Ablation Study

We conduct a series of ablation studies. The quantitative comparison results of
deblurring application are shown in Table [3| (a) and super-resolution application
for Table [3] (b), to verify the validity of each model design choice. We first show
the effectiveness of the feature extractor in the NEST estimator by removing it
(W /o feature). Next, we show the effectiveness of learning the residual in D-Net
and S-Net by removing the global connection (W /o global). As the results show,
our complete model achieves the best performance.

5 Conclusion

We propose a novel event representation (NEST) and apply it to event-based
image deblurring, super-resolution, and HFR video generation. Thanks to the
advantage of NESTSs, all these image enhancement methods demonstrate supe-
rior performance over state-of-the-art methods.

Discussion. Limited by the low quality of the intensity frame captured by a
DAVIS346 camera, although this paper demonstrates convincing evidence of fus-
ing event data to improve the quality of an intensity frame, the final quality still
has a gap with sharp frames captured by a modern DLSR camera. In our future
work, we hope to build an event-RGB hybrid camera to fuse with high-quality
intensity frames. Although event cameras also demonstrate the high dynamic
range property (130 dB for DAVIS240 [2]), due to the lack of HDR paired im-
ages in our training dataset, we do not optimize the results to handle the HDR
issue from a single LDR image with corresponding events. Extending NEST with
a well-designed HDR dataset and network is also left as our future work.
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of China (2021ZD0109803) and National Natural Science Foundation of China
under Grant No. 62136001, 62088102.
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