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Abstract. We present a method for estimating lighting from a single
perspective image of an indoor scene. Previous methods for predicting
indoor illumination usually focus on either simple, parametric lighting
that lack realism, or on richer representations that are difficult or even
impossible to understand or modify after prediction. We propose a pipeline
that estimates a parametric light that is easy to edit and allows renderings
with strong shadows, alongside with a non-parametric texture with high-
frequency information necessary for realistic rendering of specular objects.
Once estimated, the predictions obtained with our model are interpretable
and can easily be modified by an artist/user with a few mouse clicks.
Quantitative and qualitative results show that our approach makes indoor
lighting estimation easier to handle by a casual user, while still producing
competitive results.
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1 Introduction

Mixing virtual content realistically with real imagery is required in an increasing
range of applications, from special effects to image editing and augmented reality
(AR). This has created the need for capturing the lighting conditions of a scene
with ever increasing accuracy and flexibility. In his seminal work, Debevec [6]
suggested to capture the lighting conditions with a high dynamic range light probe.
While it has been improved over the years, this technique, dubbed image-based
lighting, is still at the heart of lighting capture for high end special effects in movies
nowadays3. Since the democratization of virtual object insertion for consumer
image editing and AR, capturing light conditions with light probes restricts non
professional users to have access to the scene and to use specialized equipment.
To circumvent those limitations, approaches for automatically estimating the
lighting conditions directly from images have been proposed.

In this line of work, the trend has been to estimate more and more complex
lighting representations. This is exemplified by works such as Lighthouse [25],
which propose to learn a multi-scale volumetric representation from an input
stereo pair. Similarly, Li et al. [19] learn a dense 2D grid of spherical gaussians
over the image plane. Wang et al. [27] propose to learn a 3D volume of similar

3 See https://www.fxguide.com/fxfeatured/the-definitive-weta-digital-guide-to-ibl/.
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Fig. 1: Our method produces an estimation of the indoor lighting from a single
perspective image. Our lighting representation is composed of a 3D parametric
light source, a texture map and a coarse 3D layout of the scene. With this infor-
mation, it is possible to realistically insert 3D objects (like the golden armadillo
and sphere) into the scene. Because our lighting representation is interpretable
and intuitive, the user can experiment with possibilities by modifying, say, the
position of the light source in order to achieve the desired look.

spherical gaussians. While these lighting representations have been shown to
yield realistic and spatially-varying relighting results, they have the unfortunate
downside of being hard to understand: they do not lend themselves to being easily
editable by a user. This quickly becomes a source of limitation when erroneous
automatic results need to be corrected for improved accuracy or when creative
freedom is required.

In this work, we depart from this trend and propose a simple, interpretable,
and editable lighting representation (fig. 1). But what does it mean for a lighting
representation to be editable? We argue that an editable lighting representation
must: 1) disentangle various components of illumination; 2) allow an intuitive
control over those components; and, of course, 3) enable realistic relighting re-
sults. Existing lighting representations in the literature do not possess all three
properties. Environment maps [11,24,17] can be rotated but they compound
light sources and environment textures together such that one cannot, say, easily
increase the intensity of the light source without affecting everything else. Rotat-
ing the environment map inevitably rotates the entire scene, turning walls into
ceilings, etc., when changing the elevation. Dense and/or volumetric represen-
tations [12,19,25,27] are composed of 2D (or 3D) grids containing hundreds of
parameters, which would have to be modified in a consistent way to achieve the
desired result, an unachievable task for most. Parametric representations [10]
model individual light sources with a few intuitive parameters, which can be
modified independently of the others, but cannot generate realistic reflections.

Our proposed representation is the first to offer all three desired properties
and is composed of two parts: 1) a parametric light source for modeling shading
in high dynamic range; and 2) a non-parametric texture to generate realistic
reflections off of shiny objects. Our representation builds on the hypothesis (which
we validate) that most indoor scenes can accurately be modeled by a single,
dominant directional light source. We model this in high dynamic range with a
parametric representation [10] that explicitly models the light source intensity,
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size, and 3D position. This representation is intuitive and can easily be edited by
a user simply by moving the light source around in 3D.

This light source is complemented with a spatially-varying environment map
texture, mapped onto a coarse 3D representation of the indoor scene. For this,
we rely on a layout estimation network, which estimates a cuboid-like model of
the scene from the input image. In addition, we also use a texture estimation
network, whose output is conditioned on a combination of the input image, the
scene layout and the parametric lighting representation. By explicitly tying the
appearance of the environment texture with the position of the parametric light
source, modifying the light source parameters (e.g. moving around the light) will
automatically adjust the environment in a realistic fashion.

While our representation is significantly simplified, we find that it offers several
advantages over the previous approaches. First, it renders both realistic shading
(due to the high dynamic range of the estimated parametric light) and reflections
(due to the estimated environment map texture). Second, it can efficiently be
trained on real images, thereby alleviating any domain gap that typically arise
when approaches need synthetic imagery for training [25,19,27]. Third—and
perhaps most importantly—it is interpretable and editable. Since all automatic
approaches are bound to make mistakes, it is of paramount importance in many
scenarios that their output be adjustable by a user. By modifying the light
parameters and/or the scene layout using simple user interfaces, our approach
bridges the gap between realism and editability for lighting estimation.

2 Related work

For succinctness, we focus on single-image indoor lighting estimation methods in
the section below, and refer the reader to the recent survey on deep models for
lighting estimation for a broader overview [8].

Lighting estimation Gardner et al. [11] proposed the first deep learning-based
lighting estimation method for indoor scenes, and predicted an HDR environment
map (equirectangular image) from a single image. This representation was also
used in [17] for both indoors and outdoors, in [24] to take into account the object
insertion position, in [23] which presented a real-time on-device approach, in [22]
for scene decomposition, and in [3] which exploited the front and back cameras in
current mobile devices. Finally, [28] propose to learn the space of indoor lighting
using environment maps on single objects.

Other works explored alternative representations, such as spherical harmon-
ics [12,20,34] that are useful for real-time rendering but are typically unsuitable
for modeling high-frequency lighting (such as bright light sources) and are not
ideal for non diffuse object rendering. [10] proposed to estimate a set of 3 para-
metric lights, which can easily be edited. However, that representation cannot
generate realistic reflections. EMlight [33] propose a more expressive model by
predicting gaussians on a spherical model. Similar to us, GMlight [31] back-
projects the spherical gaussians to an estimated 3D model of the scene. This is
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further extended in [1] by the use of graph neural networks, and in [32] through
the use of spherical wavelets dubbed \needlets".

Recently, methods have attempted to learn volumetric lighting representations
from images. Of note, Lighthouse [25] learns multi-scale volumetric lighting from
a stereo pair, [19] predicts a dense 2D grid of spherical gaussians which is further
extended into a 3D volumetric representation by Wang et al. [27]. While these
yield convincing spatially-varying results, these representations cannot easily be
interacted by a user.

Scene decomposition Holistic scene decomposition [2] is deeply tied to lighting
estimation as both are required to invert the image formation process. Li et
al. [19] proposes to extract the scene geometry and the lighting simultaneously.
Similarly, [ 7] extract only the geometry of the scene by estimating the normal and
depth of the scene. These geometric representations are however non-parametric
and thus di�cult to edit or comprehend. [ 16] proposes a simpli�ed parametric
model where a room layout is recovered in the camera �eld of view. Similarly,
[35] presents a method to estimate the layout given a panoramic image of an
indoor scene. We use the method of [16] to estimate a panoramic layout given a
perspective image, thus providing a simple cuboid representation that allows for
spatially varying textured lighting representation.

3 Editable indoor lighting representation

We begin by presenting our hybrid parametric/non-parametric lighting represen-
tation which aims at bridging the gap between realism and editability. We also
show how that representation can be �tted to high dynamic range panoramas
to obtain a training dataset, and conclude by presenting how it can be used for
virtual object relighting.

3.1 Lighting representation

Our proposed light representation, shown in �g. 2, is composed of two main
components: an HDR parametric light sourcep; and an LDR textured cuboid C.

Light source As in [10], the light source parametersp are de�ned as

p = f l ; d; s;c; ag; (1)

where l 2 R3 is a unit vector specifying the light direction in XYZ coordinates, d
is the distance in meters,s the radius (in meters), c; a 2 R3 are the light source
and ambient colors in RGB, respectively. Here,l , d and s are de�ned with respect
to the camera. In contrast with [10], we use a single light source.
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Fig. 2: To render a virtual object with our proposed lighting representation, the
texture is �rst warped according to the layout (1st column), producing a textured
mesh (2nd). This mesh is combined with an emitting sphere representing the
parametric light (3rd) for rendering. The resulting rendering (4th) closely matches
the ground truth rendering obtained with the HDR environment map (last).

Textured cuboid The cuboid C = f T ; Lg is represented by a textureT 2
R2H � H � 3, which is an RGB spherical image of resolution 2H � H stored in
equirectangular (latitude-longitude) format, and a scene layoutL 2 R2H � H . The
layout is a binary image of the same resolution, also in equirectangular format,
indicating the intersections of the main planar surfaces in the room (walls, 
oor,
ceiling) as an edge map [9].

3.2 Ground truth dataset

The ground truth is derived from the Laval Indoor HDR Dataset [ 11], which
contains 2,100 HDR panoramas (with approximate depth labels from [10]). We
extract p and C from each panorama using the following procedure. First, the
HDR panorama is clipped to LDR (we re-expose such that the 90th-percentile is
0.8 then clip to [0, 1]) and directly used as the textureT . Then the intersection
between the main surfaces are manually labelled to de�ne the layoutL . Lastly,
we extract a dominant parametric light source from the HDR panorama. In order
to determine the main light source, the N = 5 brightest individual light sources
are �rst detected using the region-growing procedure in [10]. A test scene (9
di�use spheres arranged in a 3� 3 grid on a di�use ground plane, seen from top
as in �g. 4b) is rendered with each light source independently by masking out all
other pixels|the brightest render determines the strongest light source.

An initial estimate of the light parameters p are obtained by the following.
The distanced is approximated by using the average depth of the region, direction
l as the region centroid, the angular size from the major and minor axes of an
ellipse �tted to the same region. Finally, the light color c and ambient term a
are initialized with a least-squares �t to a rendering of the test scene using the
HDR panorama. From the initial parameters, p is further re�ned:

p � = arg min
p

jjR (p) � R ( ~P)jj2 : (2)

R(x) is a di�erentiable rendering operator (implemented with Redner [18]) that
renders a test scene usingp. The optimization is performed using gradient descent
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Fig. 3: Our method takes as input a perspective, RGB image and its scene layout
representation, passes the RGB to a CNN to predict a parametric light, and
passes the partial layout to another CNN to predict the full panorama layout.
The parametric light is converted to a binary mask panorama, which is then sent
together with the full layout prediction and the input RGB image to a third
network which outputs an LDR texture with the light at the desired location.

with Adam [ 15]. Finally, the texture map T is rescaled with the estimated ambient
term a� to ensure that the texture yields the same average RGB color.

3.3 Virtual object rendering

To render a virtual object using our lighting representation, we employ the Cycles
rendering engine4. A scene, as shown in �g. 2, is composed of a 3D emissive
sphere for the parametric light p and the textured cuboid meshC. The cuboid
mesh is derived by detecting the cuboid corners from the layout using high pass
�lters. We use the following geometric constraints to simplify the back-projection
of the scene corners to 3D. First, the shape is limited to a cuboid, meaning that
opposing faces are parallel. Second, the panorama layouts were trained using a
camera elevation of 0� (pointing at the horizon) and height of 1.6 meter above
the ground. Using these constraints, the bottom corners can easily be projected
on the ground plane, and the top corners can be used to compute the ceiling
height (averaged from the 4 corners). A texture map can then be computed using
every planar surfaces of the cuboid. Finally, the parametric light and the texture
are rendered in two rendering passes. After rendering, the relit virtual object can
be composited into the image using di�erential rendering [6].

4 Approach

Our approach, illustrated in �g. 3, is composed of three main networks: light,
layout, and texture which are combined together to estimate our light represen-

4 Available within Blender at https://www.blender.org .
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tation (c.f., sec. 3) from an image. We assume that the layout of the input image
is available, in practice this is obtained with an o�-the-shelf solution [30].

Light network A \light" network is trained to learn the mapping from input
image I 2 R128� 128� 3 to estimated lighting parameters p (sec. 3) using a sim-
ilar approach to [10]. Speci�cally, the light network is composed of a headless
DenseNet-121 encoder [14] to produce a 2048-dimensional latent vector, followed
by a fully-connected layer (512 units), and ultimately with an output layer
producing the light source parametersp.

The light network is trained on light parameters �tted on panoramas from
the Laval Indoor HDR Dataset [11] using the procedure described in sec. 3.2. To
generate the input image from the panorama, we follow [11] and extract recti�ed
crops from the HDR panoramas. The resulting images are converted to LDR
by re-exposing to make the median intensity equal to 0.45, clipping to 1, and
applying a 
 = 1=2:4 tonemapping. The same exposure factor is subsequently
applied to the color c and ambient a light parameters to ensure consistency.
Note that the training process is signi�cantly simpli�ed compared to [ 11] as the
network predicts only a single set of parameters.

We employ individual loss functions on each of the parameters independently:
L2 for direction l , depth d, sizes, and ambient color a, and L1 for light color c.
In addition, we also employ an angular loss for both the ambient and light colors
a and c to enforce color consistency. The weights for each term were obtained
through a Bayesian optimization on the validation set (see supp. mat.).

Layout network The mapping from the input RGB image I and its layout
(obtained with [ 30]) to the estimated scene layoutL̂ (sec. 3) is learned by the
\layout" network whose architecture is that of pix2pixHD [ 26]. Both inputs are
concatenated channel-wise. The layout network is trained on both the Laval and
the Zillow Indoor Dataset [5], which contains 67,448 LDR indoor panoramas of
1575 unfurnished residences along with their scene layouts. To train the network,
a combination of GAN, feature matching and perceptual losses are employed [26].
The same default weights as in [26] are used in training.

Texture network Finally, the estimated environment texture T̂ is predicted by
a \texture" network whose architecture is also that of pix2pixHD [ 26]. It accepts
as input a channel-wise concatenation of three images: the input RGB imageI ,
the estimated light parameters p̂ projected in an equirectangular format, and the
estimated scene layoutL̂ . The equirectangular images are vertically concatenated
to the input image. Note that the p̂ projection is performed using a subset of all
parameters (direction l and sizes only).

The texture network is also trained on both Laval and Zillow datasets. To
obtain the required light source position from the Zillow dataset, we detect the
largest connected component whose intensity is above the 98th percentile over
the upper half of the panorama. To convert the Laval HDR panoramas to LDR,
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