
Fast Two-step Blind Optical Aberration

Correction - Supplementary material

We provide additional results and companion analyses to those of the main pa-
per. Section A provides more details on the blind deblurring algorithm, Section B
focuses on the proposed CNN and its impact on the restoration pipeline, Sec-
tion C discusses general implementation details of the method, and Section D
shows additional qualitative results for raw images we have taken as well as the
JPEG images of [9].

A Deblurring implementation details

A.1 Normalizing function

The normalizing function of Delbracio et al. [3] ensures that the images all have
ideal latent edges between 0 and 1. We have observed that this is a critical com-
ponent to make the blur estimation algorithm work. We use the same function
as Delbracio et al., defined by
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where vG[q] is the q-th quantile of the pixel values in vG. The quantile value q
is set to 0.001 in all the experiments of this presentation.

A.2 Interpolating the angles

We cannot compute the directional image derivative r'n(vG) in all the possible
angular directions; It would be too slow. We follow [3] and actually compute the
derivatives for ' in {0, 30, 60, 90, 120, 150, 180}�. The then compute the corre-
sponding gradient magnitudes infinite norms

kr'n(vG)k1 = max
x

|r'n(vG)(x)|,

and linearly interpolate these values at every 6� angle, i.e., we predict the infinite
norm values for ' in {0, 6, 12, . . . , 174, 180}�, before computing the argmax with
respect to '. We have found that in practice this strategy was fast and accurate
enough to approximate the real lens blurs.

A.3 Bounding the standard deviation predictions

We predict the parameters of the Gaussian approximation of the blur kernel �c

(resp. ⇢c) with
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Fig. 1: From left to right: A synthetic aberrated image v, a sharpened version z
with noticeable lateral chromatic aberration, the di↵erences zR�zG and zB�zG
showing the support of the colored artifacts. The profile of z shows that the
miscorrelation of the three color channels causes the remaining artifacts, detected
in the profiles of the images zR � zG and zB � zG.

as in [3]. We however have remarked that when the magnitude of the gradients
was to small, e.g., in textured areas like a tree seen from afar, this equation was
predicting a very large blur, even with the normalization function. As discussed
in Section C, increasing the patch size may help. To limit this problem Delbracio
et al. proposed a clipping strategy. However, in this work we use the following
conservative strategy

�?
c =

⇢
0.2 if �c > 4 or V (n(vc)) < ⌧,
�c otherwise,

(3)

where V is the variance operator and the threshold ⌧ is set to 0.09. This strategy
leads to a filter similar to a Dirac impulse, preventing deblurring artifacts in case
of ill-blur prediction or “flat” patch, e.g., a patch with only the sky. The same
technique is also applied to ⇢c.

B CNN details

B.1 Motivation for the loss design

As we said in the main paper, we follow Chang et al. [2] and leverage the
property that the green/red and green/blue image residuals are good features to
detect chromatic aberrations in a photograph. Figure 1 shows an example for a
checker grid image. Bumps on the profiles of the residuals indicate the presence
of colored edges, most likely aberrations. When training a CNN, we minimize
these quantities so the bumps are as small as possible.

B.2 Architecture

We detail the architecture of � for predicting the colored residual in Table 1.
We call C a convolutional layer, R a ReLU activation, B a batch normalization
module and “Add d” a block that adds to the current feature map the output



Fast Two-step Blind Optical Aberration Correction 5

Tag 1 2 3 4 5 6 7 8 9 10 11

Layer CBR CBR CBR CBR CBR Add 3 CBR Add 2 CBR Add 1 C
Dim 16⇥ 2 32⇥ 16 64⇥ 32 64⇥ 64 64⇥ 64 - 32⇥ 64 - 16⇥ 32 - 1⇥ 16

Table 1: Detail of the architecture of � in the main paper for edge correction.

of layer d. All the convolutions have 3 ⇥ 3 filters and the dimensions are given
with the format “output/input” channels.

Note that the input channel width is set to 2 since it combines the green and
either the red or the blue channel, and returns a residual for the red or the blue
channel.

B.3 Training data generation

We detail in this section the training data for learning the optimal parameter ⌫
of the CNN. The generation may be divided into four main stages, resulting in
a deblurred but with colored-edges image and its sharp counterpart:

1. Unprocessing a JPEG image with the pipeline of Brooks et al. [1]. We in-
vert tone-mapping with their proposed inverse S-curve function and gamma
compression with the exponent 2.2. This yields a synthetic RGB image with
linear values with respect to the electron counts;

2. Blurring and adding noise to the raw image. The simulated blurs are Gaus-
sian filters with standard deviation values ⇢c and �c (c = R,G,B) in [0.2, 4]
and sub-pixel horizontal and vertical translations in [-4,4]. The blurry and
noisy patch is finally mosaicked with the RGGB Bayer pattern;

3. Denoising and demosaicking the synthetic raw image to mimic the two first
stages of an image editing software. Because of speed for generating the
training data, we use the bilateral filter [11] for denoising and the Hamilton-
Adams algorithm [5] for demosaicking;

4. Deblurring the raw patch with the blind deblurring technique detailed in
Section 4.1: From the denoised and demosaicked patch, we first predict the
orientation ✓ and the color-dependent standard deviation values �c and ⇢c,
and second we remove the blur with the approximate inverse filter defined
by the polynomial p.

In this work we used the bilateral filter of for denoising and the Hamilton-Adams
interpolator for fast demosaicking. We used these algorithms since they are fast
but training may be indeed enhanced with CNN-based algorithms, e.g., the blind
denoiser of Wang et al. [12] and the demosaicking module of Gharbi et al. [4].

B.4 Choice of the loss

We have shown in the main paper that the proposed loss in Eq. (8), built over
red/green and blue/green residuals is pivotal to achieve colored edge correction.
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(a) Aberrated. (b) Loss in Eq. (8). (c) Gradient variant.

Fig. 2: Comparison of the color biases introduces by training loss, whether we
evaluate the di↵erence of the pixel values, i.e., k(buc � zG) � (uc � uG)k1, or
the gradient values, i.e., kr(buc � zG) � r(uc � uG)k1, as advised by the prior
of Heide et al. [6]. The loss on pixel value residuals retains the same exposure
and color palette as in the original aberrated image, whereas the one on the
gradients introduces a pinkish bias. Note that both versions actually compensate
the colored edges.

Fig. 3: The ten 6000⇥ 4000 images (24 megapixels) we use for the quantitative
analysis of the edge correction algorithm. Each image features salient edges,
prone to lateral chromatic aberrations. The reader is invited to zoom in on a
computer screen.

However the prior of Heide et al. [6] in Eq. (13) compares the gradients of the
color channel. Training the CNN � with a loss minimizing the gradients of the
residuals instead, and reminiscent of Eq. (13), is sub-optimal since there is no
reference to the pixel, and leads to a wrong average color in the image. Thus, the
residual-based training loss prevents these issues, leverages the property of the
lateral chromatic aberrations detailed in [2], and leads to solutions minimizing
the prior of Heide et al. at the same time. Figure 2 shows an example of this
phenomenon. We have noted that the combination of the loss on the pixel values
in Eq. (8) and on the gradients of the color residuals was leading to marginal
gains compared to that only minimizing the pixel values of the colored residuals,
validating Eq. (8).
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(a) Original (b) Size 100 (c) Size 200 (d) Size 400 (e) Size 800

Fig. 4: Qualitative comparison of the impact of the patch size on the peformance
of the blind deblurring module on a real aberrated image. From left to right: the
aberrated image and restored versions where the patch size is respectively 100,
200, 400 and 800. For patch sizes of 400 or 800, the image is actually deblurred.
Under, the image is either blurry or contains artifacts. Note the presence of
colored edges, e.g., next ot the electrical cable, since we show images solely
deblurred, prior to any evaluation with the CNN �. The reader is invited to
zoom in on a computer screen.

C Whole pipeline details

C.1 Test images

We show in Figure 3 the ten images we use for evaluating the edge correction
algorithms in the experiment section of the main paper. The images where taken
with the Sony ↵6000 camera, the Sony FE 35mm f/1.8 lens at maximal aperture
and the Sigma 18-50mm f/2.8 DC DN lens at maximal aperture and shortest
focal length.

C.2 Patch size

Setting the size of the patches is critical for the success of the blur estimation
technique of Delbracio et al. [3] in the context of spatially-varying blurs. Indeed,
this method is based on the presence of salient edges and may fail if there are too
few edges on the patch support, e.g., for too small patches. We show in Fig. 4
the comparison of an image crop for images deblurred with di↵erent patch sizes,
ranging from 100 to 800 pixels. We restore non-overlapping patches to visualize
what the deblurring exactly restores on each patch. In this figure one can see
that for the patch size set to 100 the image looks almost like the original one.
For the patch size set to 200, noticeable deconvolution artifacts can be seen next
to the leaves. For the patch size set to 400 and 800, the restored results are
plausible.

The result for the patch size of 200 may be explained by the fact that, to work
well the blur estimation method needs edges with important contrast. However,
in textured regions with only moderate gradients, the a�ne rule may predict
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Fig. 5: Comparison of purple fringe removal from a real raw image. From left to
right: The blurry image, the version restored with DxO PhotoLab 5 (non-blind),
and the images only deblurred and deblurred+corrected by our model (blind).

a larger standard deviation value than the real one, resulting in a too large
deconvolution filter and thus artifacts in the final image. A Weakness of this
a�ne rule is thus such regions, and a simple way to prevent these artifacts is
selecting larger patches to favor the presence of more contrasted edges. In this
presentation, we set the patch size to 400, which is valid for most images we
have tested our approach on.

C.3 Saturation

The combination of optical chromatic aberrations and saturation is called by
photographers “purple fringes”, an artifact challenging to remove. Yet, our tech-
nique successfully compensates these fringes as shown in Fig. 5. However, despite
good performance on real images our approach cannot remove all the purple
fringes, and leaves a thin dark line next to saturated areas. As previously noted,
the performance of our method is closely related to that of the blur estimation
stage, which makes the assumption that there is at least one strong edge in the
patch, and thus may fail in textured regions.

D Additional images

D.1 Raw images

To qualitatively validate our approach, we have taken several photographs with a
Sony ↵6000 camera, and combined with the Sony FE 35mm f/1, 8 and the Sigma
18-50mm f/2.8 DC DN lenses. We compare our approach to the commercial
software DxO PhotoLab 5, whose catalog contains the profile of the Sony lens,
but not that of the Sigma one recently released in October 2021. PhotoLab
thus runs in a non-blind setting for the 35mm lens, and should achieve the best
result over our technique, whereas it runs in a blind setting for the Sigma lens.
The images dubbed “culture”, “map” and “tree” are shown in Figure 6, and
magnified crops are shown in Figures 7, 8 and 9. The tree example in Figure 9
illustrates in particular the robustness of our method to “purple fringes”, i.e., the
combination of optical aberrations and saturation.
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(a) Culture (Sony lens). (b) Map (Sigma lens). (c) Tree (Sony lens).

Fig. 6: The additional images for qualitative evaluation. The images are denoised
and demosaicked with DxO PhotoLab 5.

D.2 JPEG images

We also compare the restoration of JPEG images, with the methods of [8], [9]
and [10] when the images are available. Our method achieves overall the best
results. The images dubbed “facade” and “bridge” are shown in Figure 10, and
magnified crops are shown in Figures 11 and 12.
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(a) Blurry. (b) DxO. (c) Ours.

Fig. 7: Crops for the “map” image taken with the Sony FE 35mm f/1.8 lens.
From left to right: the original blurry image, the optical aberration correction of
DxO PhotoLab (non-blind setting), and ours.
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(a) Blurry. (b) DxO. (c) Ours.

Fig. 8: Crops for the “map” image taken with the Sigma 18-50mm f/2.8 DC
DN lens. From left to right: the original blurry image, the optical aberration
correction of DxO PhotoLab (blind setting), and ours.
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(a) Blurry. (b) DxO. (c) Ours.

Fig. 9: Crops for the “tree” image taken with the Sony FE 35mm f/1.8 lens.
From left to right: the original blurry image, the optical aberration correction of
DxO PhotoLab (non-blind setting), and ours.
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(a) Facade (b) Bridge

Fig. 10: The additional JPEG images from [9] for qualitative evaluation.

(a) Blurry. (b) [8]. (c) [9]. (d) [10]. (e) Ours.

Fig. 11: Crops for the “Facade” image from [9]. From left to right: the original
blurry image, the non-blind result of Schuler et al. [8], the blind result of Schuler
et al. [9], the blind result of Sun et al. [10], and ours.
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(a) Blurry. (b) [7]. (c) [9]. (d) DxO ( [9]). (e) Ours.

Fig. 12: Crops for the “Bridge” image from [9]. From left to right: the original
blurry image, the non-blind result of Kee et al. [8], the blind result of Schuler et
al. [9], the blind result of DxO (runned by Schuler et al. [9]), and ours.
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