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Abstract. Automatic image colorization is an ill-posed problem with
multi-modal uncertainty, and there remains two main challenges with
previous methods: incorrect semantic colors and under-saturation. In
this paper, we propose an end-to-end transformer-based model to over-
come these challenges. Benefited from the long-range context extraction
of transformer and our holistic architecture, our method could colorize
images with more diverse colors. Besides, we introduce color tokens into
our approach and treat the colorization task as a classification problem,
which increases the saturation of results. We also propose a series of
modules to make image features interact with color tokens, and restrict
the range of possible color candidates, which makes our results visually
pleasing and reasonable. In addition, our method does not require any
additional external priors, which ensures its well generalization capabil-
ity. Extensive experiments and user studies demonstrate that our method
achieves superior performance than previous works.

1 Introduction

Image colorization, a classic computer vision task, aims to convert the grayscale
image into a plausible colorful one, which has broad applications in legacy im-
age/video restoration, artistic creation, and image compression. To meet the
requirement of colorization, fully automatic methods seek and cue appropriate
color hints from complex image semantics (e.g., shape, texture, and context).

In earlier methods, researchers focus on feature engineering, which takes
handcraft approaches [6] or pyramid-shaped encoder [18] to acquire high-level
image features, following a stack of convolutions to colorize images. One of them
is the Colorful Image Colorization (CIC) [32], which poses colorization as a
classification task to make results more colorful. But limited by the content-
independent interaction modeling and local inductive bias of convolutional neural
network (CNN), their results have incorrect semantic colors (Fig. 1 CIC). To
capture long-range dependency, ColTran [17] builds a probabilistic model with
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Fig. 1. Top left : Existing automatic colorization methods are either limited by insuf-
ficient representation ability of the network to infer colors from semantic cues (CIC
[32]) or adopting staged training and aggressive sampling strategy (ColTran [17]), lead-
ing to counterintuitive colorized results. Top right : Advanced transformer-based image
restoration methods (SwinIR [21] and Uformer [29]) produce overly conservative under-
saturated results because of constructing standard regression model. Bottom: Methods
taking external priors rely heavily on the performance of upstream models. Detection
boxes as priors may be ineffective when the object covers the whole image (red boxes,
2nd column in bottom row), which limits the model performance (InstColor [26]); and
pretrained GAN priors may generate inappropriate reference instances (the grey tabby
cat, 4th column in bottom row), which leads to incorrect colorization (GCP [31]).
We propose CT2 to generate colorization results with reasonable semantic colors and
proper saturation level without any additional external priors.

multiple transformer subnets which takes staged training and aggressive sam-
pling strategies. However, as subnets of the ColTran are trained independently,
the prediction error of each subnet will accumulate to a large one, which also
leads to noticeable incorrect semantic colors in the final colorization results
(Fig. 1 ColTran). Advanced transformer-based vision models have shown great
success in image restoration, e.g., SwinIR [21] and Uformer [29], benefited from
their flexible receptive fields, coarse-to-fine feature expression, and end-to-end
training. However, they bear undersaturation because the models they adopt
are standard regression models, which encourage conservative predictions in the
colorization task (Fig. 1 SwinIR and Uformer).

To overcome the aforementioned challenges, some researchers introduce ex-
ternal priors into colorization task, e.g., object detection boxes [26], segmentation
masks [35,36], and pretrained GANs [19,31]. However, these priors need addi-
tional data annotation or interaction with users, which may be ineffective or
inaccurate in “out-of-distribution” scenarios (Fig. 1 InstColor and GCP).
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In this paper, we propose Colorization Transformer via Color Tokens (CT2)
to deal with incorrect semantic colors and undersaturation without any addi-
tional external priors (Fig. 1 Ours). For (i) incorrect semantic colors, we
build our model based on an end-to-end transformer backbone with a newly pro-
posed luminance-selecting module. Thanks to the long-range dependency cap-
ture ability of transformer architecture, our method copes with local nuisances
in data better. In addition, the end-to-end design with the luminance-selecting
module can alleviate error accumulation in staged training and avoid empirically
unreasonable colors. For (ii) undersaturation, we introduce color tokens into
colorization pipeline to model this task as the classification problem. We design
color attention and color query modules to strengthen the interaction between
grayscale image patches and color tokens, and assign vivid and plausible colors
under the guidance of the luminance-selecting module.

CT2 makes the following contributions:

– We develop an end-to-end colorization transformer model with the luminance-
selecting module to generate semantically reasonable colorized images by
narrowing the range of optional color candidates. Since no additional exter-
nal priors are required, our model is applicable to more general scenarios.

– We propose color tokens into colorization task by color embedding module,
with which colorization task could be treated as the classification problem
for increasing saturation.

– We design color attention and color query modules to guide the interaction
of grayscale image patches and optional color candidates, and generate more
visually pleasing and plausible results than previous methods.

The experiments demonstrate that CT2 provides higher quality colorization
results both quantitatively and qualitatively, and its extensive applicability in
colorizing legacy photos.

2 Related Works

Automatic colorization. Early automatic colorization methods struggle at in-
tegrating handcraft features into deep neural network [6]. With the emergence of
CNN, which significantly increases the representation ability of neural network,
some works [10,16,18,32] begin to pay more attention to the network architec-
ture and fully automatic feature extraction engineering to improve colorization
performance. Later, researchers experiment with multiple advanced generative
models to meet the challenges in colorization. MDN [8] takes variational autoen-
coder (VAE) to obtain diverse colorized results. colorGAN and ChromaGAN
[3,28] take generative adversarial model (GAN) to make results vivid. CINN [2]
introduces an invertible neural network to avoid mode collapse benefited from
bidirectional architecture. Other works focus on using external prior knowledge
to optimize the colorization algorithm. InstColor [26] utilizes the detection model
to localize objects, which demonstrates that the clear figure-ground separation
helps performance improve. Some works [35,36] take segmentation masks as the
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pixel-level object semantics to guide colorization. In addition, well-pretrained
GANs [19,31] are also regarded as priors by generating reference instances as
the guidance of colorization.
Vision transformer for low-level problems. Transformer [27] is firstly pro-
posed to model sequence in natural language processing. Due to its long-range
receptive field, it has made a tremendous progress in solving a diversity of com-
puter vision problems, e.g., image classification [9,22], object detection [4,38],
and segmentation [25,37]. The significant performance improvement appeals re-
searchers to introduce transformer models into low-level problems, e.g. image
restoration, and colorization task. IPT [5] jointly trains transformer blocks with
multi-heads and multi-tails on multiple low-level vision tasks, by relying on a
large-scale synthesized dataset. EDT [20] proposes a novel encoder-decoder archi-
tecture to make data and computation efficient. SwinIR [21] incorporates shifted
window mechanism into transformer which decreases the calculated amount.
Inspired by the famous CNN architecture U-Net [23], Uformer[29] proposes a
multi-scale restoration modulator to adjust on multi-scale features. For coloriza-
tion problem, ColTran[17] builds a probabilistic model with transformer and
samples colors from the learned distribution to make results diverse.

3 Method

The framework of CT2 is composed of three core components: (i) an image en-
coder to extract grayscale image features and encode the sequence of patches into
patch embeddings, (ii) a color encoder to acquire the relative position relation-
ship of the defined color tokens in quantized ab space, (iii) a lightweight decoder
consisting of the color transformer to interact color encodings with grayscale
image features, the luminance-selecting module to narrow the range of color
candidates, the upsampler to expand resolution, and the color query module to
assign appropriate colors. See Fig. 2 for an overview. Next, we elaborate on the
detailed designs of these modules and the losses we used for colorization.

3.1 Image Encoder

We use the standard vision transformer (ViT) [9] as our image encoder to extract
long-range features of the input image. Given a single-channel grayscale image
IL ∈ RH×W , we split it into a sequence of patches IL = [IL1

, ..., ILN
] ∈ RN×P 2

,
where H and W are image height and width, (P, P ) is the patch size, and
N = HW/P 2 is the number of patches. Then, with a linear projection layer,
we map the input patches into a sequence of patch embeddings Ie ∈ RN×C ,
where C is the number of channels. To capture positional information, learnable
positional embeddings Ipos ∈ RN×C are added to the patch embeddings to get
the input image tokens, written as Z0 = Ie + Ipos.

The L-layer transformer is applied to the input tokens Z0 to generate a
sequence of contextualized embeddings ZL. Each transformer layer consists of a
multi-headed self-attention (MSA) block, an MLP block with two linear layers,
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Fig. 2. (a) Overview of the proposed CT2 network: The input grayscale image is split
into image patches, and encoded into a sequence of tokens. The ab color space is quan-
tized and extracted into multiple valid color tokens. Then all tokens are separately
added with Positional Encodings (PE), and fed into the color transformer, where the
color information is injected into grayscale image tokens under the guidance of the
luminance-selecting module. After processed by the upsampler, the tokens are upsam-
pled into pixel level. Color query module predicts ab pairs for every pixel conditioned
on the luminance-selecting module. We concatenate predicted ab pairs with the in-
put luminance channel to obtain colorization results. (b) The structure of the color
transformer.

two LayerNorm (LN) modules, and residual connections after blocks. Finally
we obtain the output ZL ∈ RN×C , a sequence containing rich long-range image
semantics, which is added with the conditional positional encodings [7] and fed
into the decoder (Sec. 3.3) as image features.

3.2 Color Encoder

The colorization task aims to learn the mapping from the input luminance chan-
nel L to the two associated color channels ab, which is performed in CIE Lab
color space. Following CIC [32], we take samples in the training set to calculate
the empirical probability distribution of ab values in ab color space (Fig. 3 (a)).
The distribution reveals the preference of ab pairs in natural images, e.g., low
saturation ab pairs (a, b values close to 0) are used more frequently while colorful
ab pairs only appear in a few samples. Thus, if the model penalizes all ab pairs
equally during training, the model is not capable to produce colorful results due
to the dominance of low-saturation samples, resulting in undersaturated results.
In addition, constructing a regression model to solve the colorization problem
will produce average results, which tends to colorize images with insufficient sat-
uration depending on empirical distribution (frequent low-saturation samples).
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Fig. 3. Illustration of quantized ab space. (a) Statistics of empirical distribution in
the training set. We show probability distribution in log scale, where darker colors
represent higher probabilities. (b) 484 quantized color patches. The probability of each
patch is the mean value of the 10×10 sliding window. Note that only 313 color patches
are valid. (c) An example shows that the closer patches are in ab color space, the more
similar their colors represent, and vice versa.

Hence, we introduce color tokens into CT2 to formulate the colorization task as
a classification problem to mitigate undersaturation.

We use the sliding window of size 10 and stride 10 to divide the ab color space
into 484 color patches, and calculate the mean probability distribution in each
color patch (Fig. 3 (b)). Considering there are some color patches that never
appear in empirical distribution (the white patches shown in Fig. 3 (b)), we
filter them out and encode the remaining valid 313 color patches by assigning a
randomly initialized learnable vector to each patch in color embedding module.
We define the embedded color patches as color tokens Ic ∈ R313×C . Considering
that the closer the color tokens are in the quantized ab color space, the more
similar the color properties are (e.g., blue is more similar with cyan than green, as
shown in Fig. 3 (c)), we add positional information into color tokens by applying
conditional positional encodings [7]. Specifically, color tokens are reshaped and
zero-padded into spatial 2D quantized ab space following a convolution with 3×3
kernel, which provides relative position information and constrains the similarity
between adjacent vectors in the embedded feature space. Then, we flatten the
output of convolution back into the sequence as color positional encodings, which
are added into the original color tokens. Finally, we obtain the embedded color
tokens Ic ∈ R313×C , as color features to feed into the decoder.

3.3 Decoder

The decoder is designed to interact grayscale image features ZL with color fea-
tures Ic, and finally generate colorful images, which is the key component of
CT2. As shown in Fig. 2 (a), the decoder first calculates the color mask Mc with
the luminance-selecting module to construct the mapping from luminance L to
the optional range of color tokens, which is used as the guidance in the following
color transformer and color query module. Then the image features ZL and color
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Fig. 4. The process of calculating color mask Mc with the luminance-selecting module.
The top row illustrates the empirical probability distribution of ab values conditioned
on L, and the bottom row illustrates the valid quantized ab patches corresponding to
the different probability distributions.

features Ic are fed into the color transformer module, where color information
is injected into grayscale image features. After that, the colorized patch-level
features are upsampled to pixel-level in the upsampler module. Finally, the color
query module calculates pixel-level color scores and predicts the reasonable color
for each pixel. Next, we describe the proposed modules in the decoder in detail.
Luminance-selecting module. By observing that ab distribution varies with
luminance L, we split L value into 4 non-overlapping intervals, and show the ab
empirical probability distribution conditioned on different L ranges in the top
row of Fig. 4. Thus we can reduce the optional quantized ab patches according
to the corresponding empirical distribution, and further improve the accuracy of
model prediction to avoid generating incorrect semantic colors. Specifically, we
first classify the L value of the input image into 4 groups, the same as the 4 afore-
mentioned non-overlapping intervals, which are expressed with 4 varying degrees
of gray levels. Then we quantize the ab probability distribution and obtain the
quantized ab patches conditioned on L, as shown in the bottom row of Fig. 4.
Finally, conditioned on the classified L of the input image, we select the corre-
sponding quantized ab patches and construct a one-hot mask Mc ∈ RH×W×313,
denoted as color mask, where we set the indices of optional ab patches among
313 classes as 1 and otherwise 0 for every pixel. Based on empirical distribution
statistics in the training set, color mask rules out the rare strange colorization
predictions and further reduces the ambiguity of colorization.
Color transformer. The color transformer is proposed to inject color informa-
tion into grayscale image features, which is composed of two transformer layers
and a following projection module. The grayscale image tokens after the encoder
and the embedded color tokens are concatenated firstly, and then injected into
the color transformer as a whole input sequence. The transformer layer is mod-
ified from the standard version [9] by replacing the multi-headed self-attention



8 S. Weng et al.

with the color attention which we will explain later. The projection module is
designed for image features and color tokens respectively, where the conventional
3×3 convolution is used to the reshaped image features after the last transformer
layer, and a fully connected layer is applied to color tokens Ic, as shown in Fig.
2 (b). Finally, we concatenate the refined image features and color tokens into a
sequence as the output of the color transformer, denoted as IO ∈ R(N+313)×C .
Color attention. We propose the color attention module to bridge the gap be-
tween color tokens and image features. Specifically, color attention is essentially
a masked multi-headed self-attention, which realizes the color-image interaction
and injects color information into gray-scale image features under the guidance
of the patch mask. To clearly illustrate it, we first describe the design of the
patch mask which limits the scope of color-image interaction, and then illustrate
the process of performing color attention.

Similar to the input image, we split the color mask Mc into a sequence of
patches Mc = [Mc1 , ...,McN ] ∈ RN×P 2×313. For each color mask patch Mci , the
model calculates the corresponding union set of the P 2 pixel values, and then
concatenates all union sets as follows:

IM = Concati∈{1,...,N} ∪j∈{1,...,P 2} Mci,j , (1)

whereMci,j ∈ R313 denotes the binary mask corresponding to the j-th luminance
value in the i-th image feature patch, and IM ∈ RN×313 represents the patch mask
which indicates inappropriate color tokens for patch-level image features. Next,
considering the input sequence is the concatenation of image patch tokens and
color tokens, we compose the patch mask IM, the transpose of patch mask IM

⊤,
and two all-1 matrices, denoted as 1N×N and 1313×313, into the attention mask
I ′M ∈ R(N+313)×(N+313), as follows:

I ′M =

[
1N×N IM
IM

⊤ 1313×313

]
. (2)

To rule out the unreasonable color tokens in color attention, we convert I ′M
into another binary mask M ∈ R(N+313)×(N+313), where we set the value to −∞
corresponding to indicate undesirable color tokens and otherwise 0:

M =

{
0 where I ′M = 1

−∞ where I ′M = 0
, (3)

After that, the binary mask M is utilized in the masked multi-headed self-
attention to obtain the refined features:

ColorAttention(Q,K, V,M) = Softmax

(
M +

QK⊤
√
C

)
V, (4)

where Q,K, V ∈ R(N+313)×C denote query, key, and value respectively, which
are obtained from LayerNorm and MLP blocks processing the concatenation of
image features ZL ∈ RN×C and color tokens Ic ∈ R313×C , note that both of
them are added with positional encodings. C is the embedding dim of Q,K, V .
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Upsampler. The upsampler is only applied on image patch tokens, which are
separated from the output sequence IO of the color transformer. The progressive
upsampler is made up of 4 upsampling blocks, realizing 16 times of upsampling to
achieve user-desired resolution. Each block is a stack of a BatchNorm, two ReLU
functions, a conventional 3× 3 convolution, and a 4× 4 transposed convolution
with a stride of 2 to extract features and extend spatial resolution.
Color query.We design the color query module to estimate the correct semantic
color for each image pixel and generate colorful results. Given the upsampled
image features T I

L ∈ RHW×C and refined color tokens TC
L ∈ R313×C separated

from IO, the color query module calculates the cross product between the ℓ2-
normalized T I

L and TC
L under the guidance of the color mask Mc, where we also

set the value to −∞ for indices of inappropriate color tokens, and otherwise 0,
denoted as M ′

c ∈ RHW×313. We formulate the process as follows:

Îq = softmax(∥T I
L∥2∥TC

L ∥⊤2 +M ′
c), (5)

where Îq ∈ RHW×313 is the probability distribution of the 313 color candidates.
We utilized the predicted probability as the weight to summarize the quantized
ab pairs Qab ∈ R313×2 to finally obtain suitable colorized ab values, written as:

Tab = Îq ·Qab. (6)

The final Lab image ILab is obtained by the concatenation of input grayscale
image and estimated ab values, written as ILab = Concat(IL, Tab).

3.4 Optimization

Losses. We treat the colorization problem as the pixel-wise classification task
to alleviate undersaturation, thus we optimize our model by minimizing the
cross entropy loss Lcl. We quantize the ab space into 313 color candidates, and
obtain the probability distribution Îq ∈ RH×W×313 over optional colors as the
model prediction. To compare the prediction with the ground truth, we convert
the ground truth Iab into the quantized ab space, denoted as Iq ∈ RH×W×313.
Specifically, for every pixel, we find 5-nearest neighbors to Iab among quantized
ab pairs, and calculate their distance from Iab as the weight to proportionally
construct the normalized soft label Iq. The classification loss is formulated as:

Lcl = −
∑
x,y,q

(log(Îq(x, y, q))− log(Iq(x, y, q)))Iq(x, y, q), (7)

where (x, y) is the location in images, q is the index of quantized color candidates.
In addition, following Zhang et al. [34], a smooth-ℓ1 loss with δ = 1 is adopted

to make the training process stable and reduce overly saturated color candidates:

Lδ (Tab, Iab) =
1

2
(Tab − Iab)

21{|Tab−Iab|<δ} + δ(|Tab − Iab| −
1

2
δ)1{|Tab−Iab|≥δ},

(8)
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Input Ground Truth CIC [32] ChromaGAN [28]Deoldify [1] InstColor [26] GCP [31] Ours

Fig. 5. Comparisons with CNN-based methods. Our method is superior to other com-
parison methods on semantic color inference, e.g., the beak of the crane (first row)
and the ladybug shell (second row). Our method also outperforms other comparison
methods on generating colorful results, e.g., flowers (third row) and geckos (last row).

where Iab is the ab channels of ground truth images.
Finally, our loss function Ltotal is a combination of Lcl and Lδ, which can be

jointly optimized as follows:

Ltotal = αLcl + βLδ, (9)

where we set α and β as 1 and 10, respectively.

4 Experiments

Dataset. We conduct our experiments on ImageNet [24], which contains 1.3M
images covering 1000 categories. We test on the first 5k images of the public
validation set, which is consistent with the previous methods [2,17]. All the test
images are center cropped and resized into 256× 256 resolution.
Metrics. We report 6 quantitative metrics in Tab. 1, including Peak Signal-
to-Noise Ratio (PSNR) [15], Structural Similarity Index (SSIM) [30], Learned
Perceptual Image Patch Similarity (LPIPS) [33], Fréchet inception distance [14],
and 2 colorfulness score [12] to reflect the vividness following GCP [31].
Implementation details. For transformer encoder and decoder, we keep the
embedding dim of the MLP block 4 times as the hidden size of the attention
block. The input patch size is fixed to 16× 16. The image encoder is initialized
with the pretrained ViT [9] weights, and the color transformer in the decoder
is initialized with random weights from a truncated normal distribution [11].
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Input SwinIR [21] Uformer [29] MAE [13] ColTran [17] OursGround Truth

Fig. 6. Comparisons with transformer-based methods. Different from SwinIR [21],
Uformer [29], and MAE [13], our method generates saturated colorized images, e.g., the
dog (first row) and the landscape scenes (second row). Our method could also generate
correct semantic colors by avoiding error accumulation observed on ColTran [17], e.g.,
the swan (third row) and vegetables (last row).

The details of configurations about layers, hidden size, the number of heads in
attention blocks of our model are shown in the supplemental materials.
Training details. We set the batch size to 16 and minimize our objective losses
using SGD optimizer and polynomial learning rate schedule. We set the learning
rate to 10−3 and momentum parameter to 0.9. All experiments are conducted
on 8 NVIDIA GeForce RTX 3090 graphic cards and trained for 10 epochs.

4.1 Comparisons with Previous Methods

We make comparisons with 5 CNN-based methods, including CIC [32], DeOldify
[1], ChromaGAN[28], InstColor [26], and GCP [31] to show our transformer-
based architecture has powerful feature representation ability by capturing long-
range dependencies. Note that ChromaGAN [28], InstColor [26], and GCP [31]
use additional external priors, while ours without any prior.

We also compare our method with 4 advanced transformer-based methods,
including: (i) two state-of-the-art image restoration approaches, SwinIR [21]
and Uformer [29], by retraining models on the colorization task; (ii) the state-
of-the-art self-supervised learner MAE [13], by finetuning its pretrained weights
to colorization as a downstream task; and (iii) the state-of-the-art colorization
methods ColTran [17] with same experiment settings.
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Table 1. Quantitative comparison results. ↑ (↓) means higher (lower) is better.

Category Method FID↓ PSNR↑ SSIM↑ LPIPS↓ colorful↑ △colorful↓

CNN

CIC [32] 8.72 22.64 0.91 0.22 31.60 4.72
DeOldify [1] 9.45 21.12 0.83 0.24 22.70 13.62

ChromaGAN [28] 7.66 23.35 0.90 0.21 27.88 8.43
InstColor [26] 8.06 23.28 0.91 0.21 24.87 11.44

GCP [31] 5.95 21.68 0.88 0.23 32.98 3.34

Transformer

SwinIR [21] 12.26 21.54 0.78 0.31 16.57 19.75
Uformer [29] 10.09 22.82 0.86 0.22 17.98 18.33

MAE [13] 9.45 23.35 0.87 0.21 20.60 15.72
ColTran [17] 6.44 20.95 0.80 0.29 34.50 2.24

Ours CT2 5.51 23.50 0.92 0.19 38.48 2.17

Table 2. User study results. Ours achieves obviously higher score than other methods.

CIC [32] DeOldify [1] ChromaGAN [28] InstColor [26] GCP [31]

3.02% 3.64% 7.72% 9.16% 15.14%

SwinIR [21] Uformer [29] ColTran [17] MAE [13] Ours

6.84% 5.48% 6.92% 2.80% 39.28%

Quantitative comparisons. We show the quantitative comparisons in Tab. 1,
where our method achieves state-of-the-art performance on all metrics. The best
scores on FID, PSNR, SSIM, and LPIPS demonstrate our method colorizes im-
ages with correct semantic colors. The significant leadings in colorfulness metrics
show that our method overcomes the undersaturation challenge.
Qualitative comparisons. The qualitative comparisons demonstrate the ef-
fectiveness of our method. We show comparisons with CNN-based methods in
Fig. 5. Thanks to the global interaction between features and the strong feature
representation ability of transformer, our method could colorize images visually
pleasing. We show comparisons with transformer-based methods in Fig. 6. Bene-
fited from our proposed modules for colorization task, we could treat colorization
as a classification task, which alleviates undersaturation appeared in other meth-
ods. In addition, the end-to-end transformer design avoids error accumulation,
resulting in more plausible colors compared with ColTran [17] results.

4.2 User Study

In addition to quantitative and qualitative comparisons, we further conduct user
study experiments to evaluate whether our results are favored by human ob-
servers. We provide a grayscale image and colorized images from 10 different
methods: CIC [32], DeOldify[1], ChromaGAN [28], InstColor [26], GCP [31],
SwinIR [21], Uformer [29], MAE [13], ColTran [17] and ours. Participants are
asked to choose the most visually pleasing result with respect to the ground
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Table 3. Quantitative ablation results. ↑ (↓) means higher (lower) is better.

Category Method FID↓ PSNR↑ SSIM↑ LPIPS↓ colorful↑ △colorful↓

Ablation
W/o LSM 7.51 20.99 0.82 0.26 41.56 5.24

W/o color attention 7.76 20.93 0.82 0.27 39.53 3.22
W/o color query 8.87 21.70 0.90 0.23 39.51 3.19

Ours CT2 5.51 23.50 0.92 0.19 38.48 2.17

Input W/o LSM W/o color attn. W/o color query OursGround Truth

Fig. 7. Ablation study. The results become counterintuitive when our proposed mod-
ules are disabled.

truth. The experiment set is composed of 100 synthetic images that are ran-
domly selected from the testing set. We publish the experiments on Amazon
Mechanical Turk (AMT), and each experiment is completed by 25 participants.
We present the results of user study in Tab. 2, where our method outperforms
other comparison methods, confirming its subjective advantages.

4.3 Ablation Study and Discussion

We disable various modules and create three baselines to study the impact of our
proposed modules. We show the evaluation scores and colorized images of the
ablation study experiments in Tab. 3 and Fig. 7, respectively. The colorfulness
metrics (fifth column) of these ablation baselines are higher than ours, which is
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1939. “Drish House” by 

Frances Benjamin Johnston.

1939. “Cow boy” by 

Arthur Rothstein.

1933. “Manhattan Central Park 

in New York” by Samuel Gottscho.

Fig. 8. Applying our method to legacy black and white photos.

probably because the counterintuitive and mixed colors are misjudged as vivid
colors by this metric, which we will explain next.
W/o LSM. We disable the luminance-selecting module in both color attention
and color query modules to study the effectiveness of narrowing optional color
tokens. After the range of color candidates is expanded to include colors not
in the empirical distribution, the colorized results become counterintuitive, e.g.,
the golf ball and the parrot (first and second row in Fig. 7).
W/o color attention. We replace color attention with standard self-attention
between image feature patches. In this way, the model cannot correctly infer
semantic colors, therefore the results present mixed colors, e.g., the woman and
the tram (third and last row in Fig. 7).
W/o color query. We replace the color query module with an MLP block
as the classifier. As a result, the ability to infer colors from image semantics
reduces, which makes the model prediction blurred, and causes mixed colors,
e.g., the woman and the tram (third and last row in Fig. 7).

4.4 Application

We apply our method to colorize the legacy black and white photos shown in Fig.
8, which demonstrates the generalization capability of our proposed method.

5 Conclusion

We propose Colorization Transformer via Color Tokens (CT2), to deal with
existing incorrect semantic colors and undersaturation challenges without addi-
tional priors. To demonstrate its effectiveness, we make comparisons with the
9 state-of-the-art methods, and the experiment results show that our method
achieves highest scores on 4 image quality metrics and 2 colorfulness metrics.
Limitation. We need to calculate the empirical distribution on the training set
to narrow the color candidates. Therefore, our method may degenerate if the
training data are insufficient or have a clear bias. Fortunately, ImageNet [24]
includes 1.3M training data and covers 1000 categories, which to some extent
prevents this problem from happening in our experiments.
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