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In this document, we provide additional details and qualitative results of the
baseline and NAFNet.

1 Other Details

1.1 Inverted Bottleneck

Following [4] we adopt inverted bottleneck design in the baseline and NAFNet.
In the baseline, the channel width within the first skip connection is always
consistent with the input, its computational cost could be approximated by:

HxWxexe+HxWxexkxk+HxXxW xcexe, (1)

where H, W represent the spatial size of the feature map, ¢ indicates the input
dimension, and k is the kernel size of the depthwise convolution (3 in our exper-
iments). In practice, ¢ > k x k, thus Eqn. (1) & 2 x H x W X ¢ x ¢. The hidden
dimension within the second skip connection is twice the input dimension, its
computational cost is:

HxWxex2c+HxW x2cxec, (2)

notations following Eqn. (1). As a result, the overall computational cost of one
baseline block = 6 x H x W x ¢ X c.

As for NAFNet’s block, the SimpleGate module shrinks the channel width
by half. We double the hidden dimension in the first skip connection, and its
computational cost could be approximated by:

HXxWxex2c+ HXW x2exkxk+HXW xcxe, (3)

notations following Eqn. (1). And the hidden dimension in the second skip con-
nection follows baseline. Its computational cost is:

HxWxecx2c+HxWxcexe. (4)

As a result, the overall computational cost of one NAFNet’s block =~ 6 x H x
W X ¢ x ¢, which is consistent with the baseline’s block. The advantage of this is
that the baseline and NAFNet can share hyperparameters, such as the number
of blocks, learning rate, etc.

It should be noted that the above discussion omits the computation of some
modules, e.g. layer normalization, GELU, channel attention, and etc., as their
computational cost is negligible compared to convolution.

* Equally contribution.
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Fig. 1: Additional qualitatively comparison of raw image denoising results with
PMRIDI6]. Zoom in to see details

1.2 Channel Attention and Simplified Channel Attention

For a feature map with width of ¢, the channel attention module shrinks it by
a factor of r and then project it back into ¢ (by fully-connect layer). The com-
putational cost could be approximated by ¢ X ¢/r + ¢/r x c¢. As to the simplified
channel attention module, its computational cost is ¢ x ¢. For a fair compar-
ison, we choose r = 2 so that their computational costs are consistent in our
experiments.

1.3 Feature Fusion

There are skip connections from the encoder block to the decoder block, and
there are several ways to fuse the features of encoder/decoder. In [2], the en-
coder features are transformed by a convolution and then concatenate with the
decoder features. In [8], features are concatenated first and then transformed by
a convolution. Differently, we simply element-wise add the encoder and decoder
features as the feature fusion approach.

1.4 Downsample/Upsample Layer

For the downsample layer, we use the convolution with a kernel size of 2 and
a stride of 2. This design choice is inspired by [1]. For the upsample layer, we
double the channel width by a pointwise convolution first, and then follows a
pixel shuffle module[5].

2 More Visualization Results

We provide additional visualization results of raw image denoising, image de-
blurring, RGB image denoising tasks, as we shown in Figure 1, 2, and 3. Our



Nonlinear Activation Free Network 3

25.81 dB 57.03 dB
HINet[2] MPRNet-local

3 . Y

26.96 dB 55.67 dB
Restormer|8] MPRNet|[7]

28.11 dB 28.71 dB
Baseline(ours) NAFNet(ours)

Fig. 2: Additional qualitative comparison of image deblurring methods

baselines can restore more fine details compare to other methods. It is recom-
mended to zoom in to compare the details in the red box.
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Fig. 3: Additional qualitative comparison of image denoising methods
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