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1 Ablation study on different temporal window T and
different time-scale partition n

Tab. 1 reports results with different T and n on the “DENSE-spike” dataset.
T = 128 and n = 4 are finally adopted.

Table 1. Ablation study on different T and n.
Size of T Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

128 0.606 18.388 0.706 0.395 0.682 0.762 0.813

64 0.595 19.179 0.734 0.419 0.648 0.740 0.798

32 0.697 22.015 0.730 0.393 0.632 0.734 0.793

Number of n Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
4 0.606 18.388 0.706 0.395 0.682 0.762 0.813

2 0.602 19.290 0.714 0.412 0.670 0.753 0.804

8 0.695 23.681 0.748 0.446 0.668 0.748 0.800

2 Comparison to methods using images or events.

In this section, we give more comparative results with the depth estimation
methods using images and events. We compare with an existing depth esti-
mation method, RAM-Net [1], which uses the modalities of image and event
from “DENSE” dataset. We train our Spike-T using spikes from the synthetic
“DENSE-spike” dataset. As reported in Tab. 2, our Spike-T achieves comparable
performance with RAM-Net [1] trained on event and image.

In addition, we compare Spike-T with the two-stage method, which first re-
constructs images from spike streams [6] and then estimates depth based on the
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Table 2. Comparisons with different methods and data input.

Method Modality Abs Rel ↓ RMS log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Spike-T(Ours) Spike 0.606 0.706 0.682 0.762 0.813

I baseline [1] Image 0.752 0.786 0.655 0.745 0.802

E baseline [1] Event 0.849 0.836 0.633 0.734 0.795

RAM Net [1] Event+Image 0.717 0.671 0.705 0.797 0.849

recovered images [1]. On the “DENSE-spike” dataset, our method gets a more
satisfactory depth map than the two-stage one (Abs Rel↓: 0.606 v.s. 0.759).
Moreover, the inference speed for the two-stage strategy can hardly satisfy the
real-time requirement due to the extra computational overhead in the recon-
struction process.

3 High-speed depth recovery using Spike v.s. Image

Fig. 1 illustrates examples of fast-moving and shaky scenes captured by a
synchronized spike camera and a traditional one with a beam splitter. (a) Depth
recovery from real spike streams by Spike-T trained on “DENSE-spike”; (b)
Depth recovery from real images using DPT-Hybrid [4] pre-trained on large-
scale datasets and fine-tuned on KITTI [2]; (c) Images captured by a traditional
camera. Visualization results demonstrate the advantage of spike cameras over
conventional ones under some challenging scenarios.

4 Instructions on More Visualization Results

More visualization results can be found at THIS LINK. We evaluate our
method by training networks on the synthetic dataset ‘DENSE-spike’ and testing
on both the synthetic dataset and the real dataset ‘Outdoor-Spike’. There are
three videos, two of them are full validating sequences on the synthetic dataset,
named as town06.mp4 and town07.mp4, while the other is the full testing se-
quence of real dataset, dubbed as outdoor.mp4. In addition, we present demos
of sequential results for U-Net[5], E2Depth[3] and our Spike-T.

5 Details of Metrics

For a thorough evaluation of the proposed model, we introduce several im-
portant metrics, including absolute relative error (Abs Rel.), square relative
error (Sq Rel.), mean absolute depth error (MAE), root mean square logarith-
mic error (RMSE log) and the accuracy metric (Acc. δ). Detailed formulations
are as follows.

https://drive.google.com/drive/folders/1YPXCf_hhv0paVSlv4tjQ3aAe6JKmdIgv?usp=sharing
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(a) Spike-T (b) DPT-Hybrid (c) Real Image

Fig. 1. Depth recovery from scenes at a relative high speed of 120 km/h
(Row 1), and from a shaky scenario (Row 2).

– Absolute Relative Error (Abs Rel.) computes average errors on the

normalized depth map for every pixel, formulated as 1
N

∑
p

|Dp−D̂p|
|Dp| , which

normalizes the value of depth to the range [0,1].

– Square Relative Error (Sq Rel.), formulated as 1
N

∑
p

|Dp−D̂p|2
|Dp| , which

focuses on large depth errors due to its square numerator.

– Mean Absolute Error (MAE) can be formulated as 1
N

∑
p |Dp − D̂p|.

– Root Mean Square Error (RMSE) is a classic metric for per-pixel pre-
diction error and the logarithm version (RMSE log) can be denoted as√

1
N

∑
p | logDp − log D̂p|2.

– The Accuracy (Acc.) as δ denotes the percentage of all pixels Dp that

satisfy max(
D̂p

Dp
,
Dp

D̂p
) < thr, where thr = 1.25, 1.252, 1.253.

Where N is the number of all valid pixels p, D and D̂ are the ground truth
depth and the predicted depth respectively.)

6 Measurements on the Model

We test our model on one NVIDIA A100-SXM4-80GB GPU and the in-
ference speed is about 22.6 FPS. In addition, The total number of trainable
parameters of the model is 20.55 MB.
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