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1 More Results on Captured Real Images

We show more visual results of D2HNet and SOTA methods on real images
in Figure 1, which are captured with Xiaomi Mi Note 10 smartphone. The
texture learning ability, denoising quality, and artifact removal performance of
the proposed D2HNet are all better than SOTA methods. The more detailed
analysis is in the captions.

2 More Results on Validation Set

We show more visual results of D2HNet and SOTA methods on the validation set
of the collected D2-Dataset. The results on 1440p data and 2880p data are shown
in Figure 2 and Figure 3, respectively. The D2HNet produces more distinguish-
able details and achieves better deblurring quality. It also achieves consistent
and better performance on different image resolutions.

3 Burst-image Method Experiments

We compare D2HNet with a burst-image denoising method KPN [1]. The train-
ing set of KPN is also generated from the same video source of D2-Dataset and
4 successive short-exposure images are synthesized by a similar process used in
D2-Dataset, then augmented with the same noise parameters as D2HNet. The
results are shown in Figure 4, where D2HNet produces richer textures (e.g., flow-
ers in 72) and has fewer visual artifacts (e.g., black car in 71 and dark road in
73) than KPN. Since KPN defines a fixed size of output convolutional kernels,
it is not flexible to image resolutions larger than training images, i.e., it cannot
address the domain gap issue. In addition, burst capturing with 4 shots takes
more time than 2 shots due to hardware constraints. And more shots introduce
more misalignment issues. Hence our D2HNet framework is more favorable.
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4 More Results Related to Domain Gap

The domain gap in the task means differences between synthetic training images
and real-world photos, e.g., blur area and resolution between them. To further
demonstrate that D2HNet addresses the domain gap issue, we add an experiment
setting that uses D2HNet architecture but does not perform downsampling for
the input images of DeblurNet. The visual comparisons are shown in Figure 5. We
observe that the pixel shifts of most highly blurry tuples are in the range of [40,
100], where some samples are shown in Figure 5 (b). Since D2HNet architecture
without downsampling only sees a maximum pixel shift of approximately 100,
while the pixel shifts of the input pairs shown in Figure 5 (a) are much larger
than 100 (e.g., larger than 150 for the black T-shirt patch), it cannot handle
such cases. Therefore, there are obvious artifacts in the results.

5 Illustration of Data Acquisition

We synthesize a D2-Dataset for training and benchmarking. There are three steps
of the data synthesis pipeline, where the details are shown in Figure 6 (a). For
the data synthesis pipeline for training the burst-image denoising method, the
details are shown in Figure 6 (b). We also show some long- and short-exposure
image pairs in Figure 6 (c).

6 Illustration of Data Processing Schemes

To further visualize the effectiveness of VarmapSelection and CutNoise schemes,
we show 4 examples in Figure 7. The variance maps of VarmapSelection can well
represent the regional blur degree; therefore, it helps select blurry patches at the
training. It makes the D2HNet better generalize to blurry long-exposure inputs.
The CutNoise makes a region of the short-exposure input image the same as
ground truth; therefore, D2HNet learns to directly use the short-exposure input
at this region. It makes D2HNet learn where to deblur and enhance long-exposure
images in addition to how to deblur and enhance long-exposure images [3]. Also,
it helps balance the usage of long- and short-exposure inputs.

7 More details of Noise Model

We use the physics-based noise model [2] to calibrate the Xiaomi Mi Note 10
smartphone for training the D2HNet. The ISO range of this smartphone is [100,
12800]. At the training, we randomly select the long-exposure ISO from [1000,
4000] and the short-exposure ISO from [6400, 12800] uniformly. It ensures that
the noises in the long-exposure input are slighter than in the short-exposure
input. At the validation, we add noises to clean validation images from D2-
Dataset as inputs. The same ISO ranges are used for validation images. At
the testing, since the D2HNet is trained with the calibrated noise model, it
can directly enhance the long- and short-exposure image pair captured by the
smartphone. We show some samples in Figure 8 to illustrate the noise calibration
results.
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Fig. 1. Visual comparisons of the proposed D2HNet with other methods on real photos.
From 71 and 72, there are no visual artifacts of D2HNet, while there are obvious artifacts
for other methods. From 73, there are very obvious remaining noises in the dark sky of
other methods, while the D2HNet output is much cleaner. From 74 to 76, we observe
that D2HNet can well recover textures and remove artifacts simultaneously when there
are a lot of details in the input images (especially in the long-exposure inputs). For
instance, the Chinese characters in 74 of D2HNet are cleaner and clearer than other
methods; the letters and numbers “B 4020X” in 75 of D2HNet are more distinguishable
than other methods; D2HNet better learns the textures from 76 inputs.
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Fig. 2. Visual comparisons of the proposed D2HNet with other methods on D2-Dataset
1440p validation set. Note that, we also show the ground truth since the experiments
are performed on validation set. From 71, 73, and 74, textures of the painting and shoes
in D2HNet are clearer than other methods (please compare the details of different
results based on ground truth, i.e., GT 71, GT 73, and GT 74). From 72, the letters
of D2HNet are more distinguishable than other methods, e.g., the edges and clarity.
From 75 and 76, the edges of D2HNet results are better than other methods.
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Fig. 3. Visual comparisons of the proposed D2HNet with other methods on D2-Dataset
2880p validation set. Note that, we also show the ground truth since the experiments
are performed on validation set. The input examples 71 and 72 are at the same relative
positions to Figure 2, but with different image resolutions. The textures and edges of
D2HNet results are better than other methods. The proposed D2HNet performs well
on both 1440p and 2880p validation images, which demonstrates that D2HNet has the
ability to address the domain gap issue.
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Fig. 4. Visual comparisons of the proposed D2HNet with KPN. The input long-short
pairs and 4-frame images are captured by the same smartphone and in the same scene.

(a) Visual comparisons of D2HNet (full) with D2HNet without downsampling (w/o down)

(b) Illustration of some samples with the pixel shift values (expressed by Euclidean distance).

𝑑𝑖𝑠𝑡 ≈ 65 𝑑𝑖𝑠𝑡 ≈ 87
𝑑𝑖𝑠𝑡 ≈ 33

𝑑𝑖𝑠𝑡 ≈ 42
𝑑𝑖𝑠𝑡 ≈ 85

𝑑𝑖𝑠𝑡 ≈ 83

Short input D2HNet
(full)Long input

Short-exposure input image

ISO=12800
exposure time=8.02ms

Long-exposure input image

ISO=1712
exposure time=60.0ms

D2HNet
(w/o down) Short input D2HNet

(full)Long input

Short-exposure input image

ISO=12800
exposure time=9.54ms

Long-exposure input image

ISO=2442
exposure time=50.0ms

D2HNet
(w/o down)

Fig. 5. (a) Visual comparisons of the proposed D2HNet with the same architecture
but without downsampling. We select some patches from the highly blurry areas in the
long-exposure input. There are obvious artifacts of the D2HNet (w/o down) results,
while much fewer artifacts are in D2HNet (full) results. Since D2HNet (w/o down)
does not consider the domain gap issue, it cannot handle real-world inputs with larger
pixel shifts than training images. Therefore, it simply copies the pixels of the long-
exposure input to the output, e.g., there are many blue pixels on the black T-shirt of
D2HNet (w/o down) results; (b) Illustration of pixel shift values of some training long-
and short-exposure image pairs. The image pairs are selected from 9453 highly blurry
tuples, which are obtained by the VarmapSelection scheme.
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(a) Illustration of the data synthesis pipeline. An image tuple is shown as an example.

··· ··· ··· ···

ranging from 35 ms

10 msvacancy[20, 40, 60, 80]ms

The final step of image synthesis pipeline for long- and short-

exposure images for training D2HNet:

Long-exposure image: ; Short-exposure image: ; GT:

The final step of image synthesis pipeline for 4 successive short-exposure images for

training the burst-image denoising method:

4 successive short-exposure images: ; Ground truth:

35 ms

10 msvacancy

35 ms

10 msvacancy

35 ms

10 msvacancy10 ms

··· ··· ··· ··· ···

First step:

sample frames

every 10 seconds

Second step:

video interpolation

by adding 15 new

frames to every two

frames (FPS×16)

··· ···

10 seconds

··· ··· ··· ···

×16 FPS

ranging from 35 ms

10 msvacancy[20, 40, 60, 80] ms

10 seconds

Third step:

image pair synthesis

by computing the

average of frames in

a time range
zoom in

(b) The comparisons of image synthesis pipelines for long-short fusion and burst-image denoising,

which share the first and second steps but not share the final step.

(c) Illustration of some images in the D2-Dataset, where only long-short pairs are shown for simplicity.

zoom in

Fig. 6. Illustration of the image synthesis pipeline of D2-Dataset and some examples.
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Fig. 7. Illustration of the VarmapSelection and CutNoise schemes. The variance maps
can reflect the blurry regions or regions with large motions, e.g., the dark regions in
lvarmap. The VarmapSelection is effective and robust to select blurrier training patches
from the whole dataset. The CutNoise can be expressed as sCutNoise

n “ M d sfirst `

p1 ´ Mq d sn, where d denotes matrix dot product and 1 is an all-1 matrix with the
same dimension of the binary mask M .
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: ISO 100, exposure time 320ms

: ISO 3200, exposure time 10 ms

: our calibrated noises on ISO 100, exposure time 320ms

: ISO 100, exposure time 480 ms

: ISO 4800, exposure time 10 ms

: our calibrated noises on ISO 100, exposure time 480ms

: ISO 100, exposure time 640 ms

: ISO 6400, exposure time 10 ms

: our calibrated noises on ISO 100, exposure time 640 ms

: ISO 100, exposure time 860 ms

: ISO 8600, exposure time 10 ms

: our calibrated noises on ISO 100, exposure time 860 ms

Fig. 8. Illustration of noise calibration results on ISO 3200, 4800, 6400, and 12800.
There are 5 patches selected from the greyworld chart for readers to compare specific
regions: dark region, checkerboard edges, round edges, color blocks. I˚

100 denote photos
captured under ISO 100, which we assume there are almost no noises. I10˚ are photos
with real noises. C˚ are the addition of calibrated noises on clean images with specific
ISO values, i.e., I˚

100. The overall brightness is generally equal for I˚
100, I

10
˚ , and C˚

since ISOˆexposure time is equal. Please compare the patterns of real and calibrated
noises.
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