
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#3643

ECCV
#3643

Learning Graph Neural Networks for Image
Style Transfer

– Supplementary Material –

Yongcheng Jing1, Yining Mao2, Yiding Yang3, Yibing Zhan4, Mingli Song5,2,
Xinchao Wang3, and Dacheng Tao1,4

1 The University of Sydney, Darlington, NSW 2008, Australia
2 Zhejiang University, Hangzhou, ZJ 310027, China

3 National University of Singapore, Singapore
4 JD Explore Academy, China

5 Zhejiang University City College, Hangzhou, ZJ 310015, China
xinchao@nus.edu.sg, dacheng.tao@gmail.com

We provide in this documents supporting materials that cannot fit into the
manuscript due to page limit.

For our empirical validations, we include in this document:
– Two newly-added ablation studies, including the results with the pro-

posed local patch-based manipulation (LPM) module and those without
LPM. We also validate the effectiveness of the proposed GNN-based ap-
proach by developing two possible semi-parametric solutions and demon-
strate here the corresponding comparative results;

– Additional results of the Five ablation studies in the main paper,
including more results of heterogeneous neighborhood aggregation schemes,
different distance metrics, various content and style patch sizes, distinct
patch division schemes, and the designed intra-domain connections;

– Additional results of the novel functionality, including flexible diversi-
fied arbitrary stylization and multi-style amalgamation with a single model.
For our proposed approach, we provide here:

– More architecture details of each module;
– More detailed explanations of the proposed heterogeneous content-style

and content-content message passing.

1 Architecture Details

We show in Tab. S1 the architecture details of the proposed method, corre-
sponding to Fig. 2 in the main paper. In particular, for the image encoder, we
use the first few layers of VGG-19 before relu3 1, as also done in [1], to generate
more feature patches for matching. We do not include the global feature refine-
ment module in Tab. S1, since there are no involved trainable parameters during
our process of global feature refinement for the sake of computational efficiency.
For the deformable module, we would like to clarify that we omit a sampling-
interpolation procedure that is hard to depict in Tab. S1, which addresses the
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fractional coordinate issue, with: 2304 = in channels × sampling window size.
Also, the outputs of the scale predictor in Tab. S1 are the final rescaled feature
patches, with 6400 = in chans ×patch size2.

Table S1. Detailed architectures of the image encoding module, deformable module,
GNN-based local patch-based manipulation module, and feature decoding module in
the proposed semi-parametric style transfer network, respectively, corresponding to
Fig. 2 in the main paper.

Layer In Chans Out Chans Kernel Stride Activation

Image Encoding

Conv 3 3 1×1 1 -
Conv 3 64 3×3 1 ReLU
Conv 64 64 3×3 1 ReLU

MaxPool 64 64 - 2 -
Conv 64 128 3×3 1 ReLU
Conv 128 128 3×3 1 ReLU

MaxPool 128 128 - 2 -
Conv 128 256 3×3 1 ReLU

Deformable Module

Conv 512 256 1×1 1 GELUS
Conv 256 256 3×3 1 -
Conv 256 6400 5×5 1 -

Linear 6400 4 - - -
Linear 2304 6400 - - -

Local Patch-based
Manipulation

Feat2Patch 256 6400 - - -
KNN - - - - -

GATConv 256 256 - - ReLU
GATConv 256 256 - - ReLU

Patch2Feat 6400 256 - - -

Feature Decoding

Conv 256 256 3×3 1 ReLU
Conv 256 256 3×3 1 ReLU
Conv 256 256 3×3 1 ReLU
Conv 256 128 3×3 1 ReLU

Upsample 128 128 1/2 - -
Conv 128 128 3×3 1 ReLU
Conv 128 64 3×3 1 ReLU

Upsample 64 64 1/2 - -
Conv 64 64 3×3 1 ReLU
Conv 64 3 3×3 1 -

2 More Illustrations of Heterogeneous Style-Content and
Content-Content Message Passing

In this section, we give more explanations of the proposed path-based mes-
sage passing scheme that cannot fit into the main manuscript due to the page
limit. We demonstrate the detailed style-to-content message passing and content-
to-content message passing in Fig. S1, corresponding to Sect. 3.3 in the main
manuscript. Specifically, the style-to-content message passing, as shown in Fig. S1,
aims to aggregate style information from the k most similar style patches along
the inter-domain edges (green arrows in Fig. S1). Subsequent to the style-to-
content message passing, the proposed content-to-content aggregation further
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style-to-content
message passing

content-to-content
message passing

content

style

Fig. S1. Illustrations of the dedicated two-stage heterogeneous aggregation process,
including style-to-content message passing stage (i.e., the left red block in the figure)
and content-to-content messing passing stage (i.e., the right red block in the figure).

gathers the features from neighboring content nodes, such that the semantically-
similar content regions will also be rendered with homogeneous style patterns.
The effectiveness of such content-to-content message passing will be further val-
idated in Fig. S6 of Sect. 4.3.

3 Newly-Added Ablation Studies

In this section, we perform extensive ablation studies to further validate the
effectiveness of the proposed semi-parametric style transfer framework. In par-
ticular, we add two new ablation studies absent in the main manuscript due
to the page limit, including the stylization results with the local patch-based
manipulation (LPM) module and those without the LPM module, and also the

Content+Style w/o LPM w/ LPM Content+Style w/o LPM w/ LPM

Fig. S2. Comparative results without the local patch-based manipulation (LPM) mod-
ule and those with the LPM module.
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results of the two possible solutions of semi-parametric stylization, including the
combination of AdaIN and style swap, and also the combination of AdaIN and
style decorator.

3.1 Stylization w/ and w/o Local Patch-based Manipulation
Module

Fig. S2 shows the stylization results with the proposed local patch-based manip-
ulation (LPM) module, and those without the LPM module. The stylized results
without the proposed LPM module, as shown in the 2nd and the 5th columns of
Fig. S2, retain the global appearance of the style images, but are prone to unde-
sired local artifacts. In contrast, the results with the dedicated LPM are effective
in producing fine-grained patterns and sharper details, as can be observed in the
3rd and the 6th columns Fig. S2. For example, the 3rd row, 6th column of Fig. S2
successfully transfers the corresponding style strokes to the petals, whereas the
5th column in Fig. S2 only keeps the original petal colors. Similar observations
can also be obtained from the 1st row of Fig. S2, where the bird feathers are
rendered with the corresponding best-matched style patterns.

3.2 Ours vs AdaIN+Style-Swap vs AdaIN+Style-Decorator

To further demonstrate the superiority of the proposed local patch-based ma-
nipulation module, we develop two possible solutions for semi-parametric neural

Style Content AdaIN+[4] AdaIN+[1] Ours

Fig. S3. Comparative results of the proposed GNN-based method with two possible
semi-parametric solutions of AdaIN+Style-Swap and AdaIN+Style-Decorator.
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style transfer. Specifically, we combine the style swap module in [1] with the
global feature refinement module (i.e., AdaIN), and also combine the style dec-
orator module in [4] with AdaIN. As such, both local manipulation and global
refinement are performed, leading to the two possible semi-parametric stylization
methods. The results of the developed two possible solutions and our method
(i.e., AdaIN+GNN) are provided in Fig. S3, indicating that the proposed GNN-
based approach is indeed superior than others.

4 Additional Results of Ablation Studies

In particular, we provide additional results of the five ablation studies that are
introduced in the main manuscript, including the stylization results of various
content/style patch sizes and heterogeneous aggregation mechanisms. We also
give more results to validate the effectiveness of the proposed content-to-content
message passing, the proposed deformable scheme, and the adopted similarity
measurement metric of normalized cross-correlation. The results in this section
correspond to Sect. 4.3 of the main paper.

4.1 Heterogeneous Aggregation Schemes: GAT vs. GCN vs.
EdgeConv vs. GraphSage vs. GIN

We provide in Fig. S4 the results of using various GNN mechanisms in the pro-
posed local patch-based manipulation module, including graph attention network

Style Content GAT GCN GIN EdgeConv GraphSage

Fig. S4. Comparative results of using various aggregation mechanisms for heteroge-
neous message passing, including graph attention network (GAT) [5], graph convo-
lutional network (GCN) [3], graph isomorphism network (GIN) [8], dynamic graph
convolution (EdgeConv) [6], and GraphSage [2].
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(GAT) [5], graph convolutional network (GCN) [3], dynamic graph convolution
(EdgeConv) [6], GraphSage [2], and graph isomorphism network (GIN) [8]. In
what follows, we start by briefly introducing these different GNN schemes and
then explain the corresponding comparison results.

The simplest GNN mechanism is GCN, which iteratively optimizes node
features via an isotropic averaging operation over the neighborhood node fea-
tures: h`+1

i = ReLU
(

U ` Meanj∈Ni
h`

j

)
, where h`+1

i represents the updated
node features at layer ` + 1. U is the learnable transformation matrix. j de-
notes the neighbors Ni of the node i. GAT improves the vanilla by introduc-
ing the use of self-attention, as already introduced in Sect. 3.3 of the main
manuscript. Also, GraphSage improves the simple GCN model by explicitly in-
corporating each node’s own features from the previous layer, formulated as:
ĥ`+1

i = ReLU
(

U ` Concat
(
h`

i , Meanj∈Ni h`
j

) )
, where Concat denotes the con-

catenation operation. Moreover, the GIN architecture is based on the Weisfeiler-
Lehman Isomorphism Test [7] to study the expressive power of GNNs, whereas
EdgeConv generates the edge features that describe the relationships between a
point and its neighbors for the subsequent information aggregation. More details
can be found in [3, 5, 6, 2, 8].

As can be observed in Fig. S4, the GAT mechanism generally yield supe-
rior locally-style-aligned stylized results, thanks to its attention-based scheme.
For example, in the 1st row of Fig. S4, GAT yields fine-grained style elements
for the petals, in contrast to other GNNs that merely transfer the global style
appearance from the target style. Another observation from Fig. S4 is that the
GraphSage architecture is more effective at preserving the semantics of the con-
tent images, possibly due to its property of combining the node’s own features
from the previous layer. Also, the results of EdgeConv are less appealing, demon-
strating that the edge features are inferior to the node features for the specific
task of style transfer. Similar observations can be obtained from the results of
GIN, where the style patterns are sometimes not sufficiently transferred to the
stylized image, as shown in the 6th row of Fig. S4.

4.2 Distinct Patch Division Schemes

We show in Fig. S5 additional comparative results of equal-size patch division
method, and those with the proposed deformable patch splitting scheme. Our
deformable scheme allows for cross-scale style-content matching, thereby lead-
ing to spatially-adaptive multi-stroke stylization with the enhanced semantic
saliency. Also, the proposed deformable module reduces the undesired artifacts
in the stylization results, as shown in Fig. S5.

4.3 NST Graph w/ and w/o Intra-domain Edges

To validate the effectiveness of the proposed content-to-content message passing
scheme, we perform extensive ablation studies in Fig. S6 by using or removing
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Content+Style Equal-Size Deformable Content+Style Equal-Size Deformable

Fig. S5. Additional results of the equal-size patch division method and the proposed
deformable module with a learnable scale predictor.

Content+Style w/o Intra w/ Intra Content+Style w/o Intra w/ Intra

Fig. S6. Stylization results of removing the content-to-content intra-domain edges and
those with the intra-domain edges.

the intra-domain edges in the constructed stylization graph. Our design of intra-
domain edges, as shown in the 3rd and the 6th columns of Fig. S6, leads to
more consistent style patterns in semantically-similar content regions, which is
especially obvious when we observe the human faces in the 1st row of Fig. S6.

4.4 Euclidean Distance vs. Normalized Cross-correlation

In Fig. S7, we compare the results of using the Euclidean distance and the
normalized cross-correlation (NCC) as the similarity measurement, respectively,
in the construction of the stylization graph. The adopted metric of NCC in
our framework, as observed from the 3rd and the 6th columns of Fig. S7, leads
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Content+Style Euclidean NCC (Ours) Content+Style Euclidean NCC (Ours)

Fig. S7. Results obtained using Euclidean distance and normalized cross-correlation
(NCC) for similarity measurement during the construction of heterogeneous content-
to-style and content-to-content edges.

to superior performance than the Euclidean distance (Fig. S7, the 2nd and 5th

columns) in terms of both the global stroke arrangements and local details. We
take the 3rd row of Fig. S7 as an example. It is evident that the stylization
results with the Euclidean distance have more artifacts than those with NCC in

Style Content Patch Size = 3 Patch Size = 5 Patch Size = 7 Patch Size = 9

Fig. S8. Results obtained using various patch sizes for constructing content and style
vertices in local patch-based manipulation module.
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Content Pattern #1 Pattern #2 Pattern #3 Content Pattern #1 Pattern #2 Pattern #3

Fig. S9. Additional results of diversified patch-based arbitrary style transfer with solely
a single model, corresponding to Fig. 6 in the main manuscript. We zoom in on the
same regions (i.e., the red frames) to observe the details.

the background of the sewing machine, demonstrating that NCC is better-suited
for patch-based matching in our GNN-based framework.

4.5 Various Patch Sizes

We demonstrate in Fig. S8 the results of diversified feature patch sizes. Larger
patch sizes, as shown in Fig. S8, generally lead to larger strokes in the stylized
results. For example, the stylized images in the 3rd row, the 6th column of Fig. S8
has much larger strokes than those in the 3rd row, the 3rd column, which is
especially obvious from the regions of the sky.

5 Additional Results of User Controls

5.1 Diversified Stylization Control

We provide in this section more results of the proposed diversified stylization
control, corresponding to Fig. 9 in the main manuscript. Additional diversified
results are given in Fig. S9, where we zoom in on the same regions in the red
frames for the illustrations of local details. For example, in the last row of Fig. S9,
it is noticeable that our diversified stylization control can yield various style
patterns with different colors and strokes with only a single trained model. Such
diversified user control is simply achieved by using different numbers of style-to-
content connections during style-to-content message passing, leading to a limited
auxiliary computational burden.
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10 Y. Jing et al.

5.2 Multi-style Amalgamation

The proposed GNN-based style transfer approach also triggers the functional-
ity of flexible multi-style transfer that combines the style patterns in multiple
distinct artistic styles. We show in Fig. S10 the results that amalgamate four dif-
ferent style images as an example, but we would like to clarify that our method
readily supports arbitrary style numbers for compositions. From the algorithm
level, this multi-style image stylization is specifically realized by exploiting the
style feature patches from multiple style images to construct the style vertices,
which are then used to establish the multistyle-to-content heterogeneous connec-
tions for the subsequent multistyle message passing.

Fig. S10. Multi-style transfer within a single image, by performing style interpolation
among various artistic styles.
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