
Supplementary Material:
Instance Contour Adjustment via Structure-driven CNN

Shuchen Weng1, Yi Wei2, Ming-Ching Chang3, and Boxin Shi*1

1 NERCVT, School of Computer Science, Peking University
2 Samsung Research America AI Center

3 University at Albany, State university of New York
{shuchenweng,shiboxin}@pku.edu.cn

yi.wei1@samsung.com mchang2@albany.edu

In this supplementary material, we show more details about input prepara-
tion, model design and training.

1 Structural Cue Completion

The first stage of our method completes the structural cues for the dilated and
eroded areas using different approaches because of their respective exclusion rule.
Specifically, we propose a diffusion algorithm based on the iterative Gaussian
blur operations which under the guidance of the inclusion mask, can propagate
the structural cues from the instance area to the corresponding dilated area. Due
to the lack of clear correspondences between the eroded area and the external
area, the hypothetical distribution of the external instances needs to be inferred
for the eroded area. Thus, we modify the structure reconstruction model in [5]
to complete the eroded area on the structure image and depth map. To avoid the
interference from the instance area, we temporarily cut out the instance which
will be pasted back after the completion, and complete the entire instance area
as doing the eroded area.

1.1 Preparation of the inclusion mask

The inclusion mask is an important input to our method. An inclusion mask spec-
ifies correspondences between the adjusted area and the others. Corresponding
areas are set the same label, and visualized in the same color in Fig. 1. In this
subsection, we use the “flying pigeon” and “Merlion” in Fig 1 as two examples
to illustrate how to prepare an inclusion mask for a dilation case and an erosion
case, respectively.

In the inclusion mask of the “flying pigeon” example, the instance area and
the dilated areas are both colored in light blue, which indicates that the instance
area and the dilated areas are corresponding to each other, and they have no
correspondences with the non-instance and non-dilated area which is colored in
orange. Therefore, preparing the inclusion mask for a dilation case includes two
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(3) Inclusion mask(1) Input image (2) Adjusted maskOriginal image Overlaid image
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Fig. 1: The relationship between the inclusion mask and the other inputs. (2)
An adjusted mask is a binary mask which indicates the adjusted area. (3) An inclusion
mask specifies correspondences between the adjusted area (enclosed in green/red dotted
contour) and the others. Corresponding areas are set the same label, and visualized in
the same color.

steps: (i) form a union of each instance area and its corresponding dilated areas,
and label the union with a unique label (e.g., light blue in the “flying pigeon”
example); (ii) label the non-instance and non-dilated area with a unique label
(e.g., orange in the “flying pigeon” example).

In the inclusion mask of the “Merlion” example, both the eroded area and the
non-instance and non-eroded area are colored in light blue, which indicates that
the eroded area and the non-instance and non-eroded area are corresponding to
each other, and they have no correspondences with the instance area which is
colored in orange. Therefore, preparing the inclusion mask for an erosion case
also includes two steps: (i) form a union of all eroded areas and the non-instance
and non-eroded areas, and label the union with a unique label (e.g., light blue
in the “flying pigeon” example); (ii) label the instance area with a unique label
(e.g., orange in the “Merlion” example).

1.2 Diffusion algorithm for the dilated area

To complete the structural cues for the dilated area under the guidance of the
inclusion mask, we design a diffusion algorithm based on the iterative Gaussian
blur operations. Fig. 2 shows the pipeline of the diffusion algorithm, which is
an iterative process with three sub-steps in each iteration. The dilated area is
initialized with zeros. The goal of the dilation process is to fill the dilated area
with the contexts belonging to the instance area. In order to shield against
the artifacts brought by the non-instance area, we split the image plane by the
inclusion mask: in Fig. 2, we mark the non-instance area with the brick patterns,
which is fixed to zero constantly throughout the whole process.
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Fig. 2: The iterative pipeline of the diffusion algorithm of which each itera-
tion consists of three steps (marked with 1○ 2○ 3○). The instance area, dilated
area and non-instance area are marked in light blue, green and orange, respectively.
The white and black in the binary diffusion mask represent values 1 and 0, respectively.
The gray in the blurred diffusion mask represents value between 0 and 1. We use the
structure image as an example of structural cues in this figure, and the same algorithm
is also applied to the depth map.

Then, we aggregate the neighboring contexts belonging to the instance area
as the content for the dilated area. The further an instance region is to a dilated
region, the lower impact it should have on the dilated region. Thus, we employ
a 2D Gaussian kernel of which the weights follow a 2D Gaussian distribution
with the center placed at the square kernel center. For each dilated region, we
aggregate its contexts by performing the 2D convolution centered on it with the
2D Gaussian kernel, and we name such an operation as “Gaussian Blur”, i.e.,
Sub-step 1○ in Fig. 2:

g(W,H) =
1∑K

i

∑K
j Wi,j

K∑
i

K∑
j

(W ⊙H)i,j , (1)

where W ∈ RK×K
>0 represents a K ×K Gaussian kernel, with each entry being

positive. H represents a K×K slice of input, i.e., binary inclusion mask or split
instance area. ⊙ denotes the Hadamard product. g(W,H) represents the Gaus-
sian Blur operation which consists of two sub-operations, i.e., the Hadamard
product between W and H, and the normalization through the division of the
Hadamard product by the grand sum of W. We set K = 15 in our experiment.

The context aggregation for a specific dilated region should be exclusive to
only the instance regions. In (1), the Hadamard product operation complies with
this rule because of the zero values in dilated regions. However, the normalization
operation violates this rule, because the grand sum considers all regions indis-
criminately. Therefore, we need to re-normalize the results of Gaussian Blur by
eliminating influences from other dilated regions.
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Fig. 3: The network architecture of structure reconstruction model for the
eroded area.

Thus, we design a re-normalization module, i.e., Sub-step 2○ in Fig. 2, and
we use the blurred inclusion mask output by Gaussian Blur as the denominator
for the re-normalization. Let HS denote a slice of binary inclusion mask, and
we define an index set as Ω = {i, j|HS

i,j = 1}. The blurred inclusion mask

can thus be computed by inserting HS into (1), removing the expression in the
Hadamard product operation involving HS

i,j = 0, and reducing the expression in

the Hadamard product operation involving HS
i,j = 1:

g(W,HS) =
1∑K

i

∑K
j Wi,j

∑
i,j∈Ω

Wi,j . (2)

Then, the re-normalized aggregation result h′ for a specific dilated region can
be computed by having (1) divide by (2).

h′ =
1∑

i,j∈Ω Wi,j

K∑
i

K∑
j

(W ⊙H)i,j . (3)

As shown in Fig. 2, these aggregation results constitute the diffused instance
area. The blurred inclusion mask can be rounded up to the diffused binary in-
clusion mask, i.e., Sub-step 3○ in Fig. 2. The diffused instance area and diffused
binary inclusion mask are fed to the next iteration as inputs. After several iter-
ations, all contents will be completed for the dilated area which can be merged
to form the completed structural cue. We apply the same algorithm to the two
structural cues, i.e., structure image [8] and depth map.

1.3 Structure reconstruction model for the eroded area

Eroding the instance contour needs to follow the rule that the content of the
eroded area should be exclusive to the original instance. To avoid the interference
from the original instance, we temporarily cut out the whole instance from image,
and hallucinate the content of the whole instance area, the cut-out instance area
will be pasted back to the completed structural cues at the end.

Let Igt denote the ground-truth image, Sgt denote the ground-truth structure
image of Igt, and Dgt denote the ground-truth depth map. Let M denote the
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Table 1: Detailed architecture of structure reconstruction model for the eroded area.
Please refer to Fig 3 for the network design.

Block’s name Operation’s name Channel Kernel size Stride Activation

Gated-Conv 8 7 1 ReLU

Downsample Block-1
Gated-Conv 64 4 2 ReLU
Gated-Conv 128 5 1 ReLU

Downsample Block-2
Gated-Conv 128 4 2 ReLU
Gated-Conv 256 5 1 ReLU

Downsample Block-3 Gated-Conv 256 4 2 ReLU

Conv-1 Conv 256 5 1 ReLU

Conv-2 Conv 128 5 1 ReLU

Structure Conv Conv 64 5 1 ReLU

Depth Conv Conv 64 5 1 ReLU

Upsample Block-1
ResBlock × 4 512 3 1 ReLU

2×nearest upsample - - - -
Gated-Conv 512 5 1 ReLU

Upsample Block-2
ResBlock×4 256 3 1 ReLU

2×nearest upsample - - - -
Gated-Conv 256 5 1 ReLU

Structure Upsample Block

ResBlock×4 128 3 1 ReLU
2×nearest upsample - - - -

Gated-Conv 128 5 1 ReLU
Conv 128 3 1 Tahn

Depth Upsample Block

ResBlock×4 128 3 1 ReLU
2×nearest upsample - - - -

Gated-Conv 128 5 1 ReLU
Conv 128 3 1 Tahn

adjusted mask (see Fig. 2 in the paper), i.e., a binary mask which indicates the
eroded area. The structure reconstruction model Gs takes as input the masked
image (Iin = Igt ⊙ (1 − M)), masked structure image (Sin = Sgt ⊙ (1 − M)),
masked depth map (Din = Dgt ⊙ (1−M)) and adjusted mask M. The outputs

of Gs are the completed structure image Ŝ and completed depth map D̂. Gs is
defined as follows:

Ŝ, D̂ = Gs(Iin,Sin,Din,M). (4)

The architecture and hyper-parameters of our structure reconstruction model
are presented in Fig 3 and Table 1. The training losses include the L1 recon-
struction loss Lrec and adversarial loss Ladv.

The reconstruction loss is defined as:

Lrec = ||Ŝ− Sgt||1 + ||D̂−Dgt||1, (5)

and the adversarial loss is defined as:
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Table 2: Detailed architecture of Structure-driven CNN, which corresponds to Fig. 3
of the paper. “SD-Conv” and “SD-Attn” denote the structure-driven convolution and
structure-driven attention proposed in the paper. Above “SD-Attn”, we present the
details of the shared encoder. Below “SD-Attn”, we present details of the decoder. θ
is specialized hyperparameter of SD-Conv denoting the lower limit of contexts to be
sampled.

Operation’s name Channel Kernel size (k) Sample number (θ) Stride (s) Activation

SD-Conv 36 7 25 1 ELU
SD-Conv 72 7 9 2 ELU

Gated-Conv 72 3 - 1 ELU
Gated-Conv 144 3 - 2 ELU

SD-Attn

2× nearest upsample

Conv 72 1 - 1 ELU
Gated-Conv 72 3 - 1 ELU

2× nearest upsample

Conv 36 1 - 1 ELU
SD-Conv 36 7 9 1 ELU

Gated-Conv 3 3 - 1 ELU
Gated-Conv 3 3 - 1 Tanh

Table 3: Detailed architecture of the discriminator for Structure-driven CNN.

Operation’s name Channel Kernel size (k) Stride (s) Activation

Conv 64 5 2 LeakyReLU
Conv 128 5 2 LeakyReLU
Conv 256 5 2 LeakyReLU
Conv 256 5 2 LeakyReLU
Conv 256 5 2 LeakyReLU
Conv 256 5 2 LeakyReLU

Ladv = E[log(1−DS(Ŝ))] + E[logDS(Sgt)]+

E[log(1−DD(D̂))] + E[logDD(Dgt)],
(6)

where DS and DD are the discriminators for structure image and depth map,
both discriminators have the same architecture as those in [5].

2 Structure-driven CNN

In this section, we provide more details about Structure-driven CNN. In Table 2,
we present its architecture details which corresponds to Fig. 3 of the paper. We
adopt a vanilla convolution network as a discriminator to train the Structure-
driven CNN. The detailed architecture of our discriminator is given in Table 3.
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We use a L1 reconstruction loss and adversarial loss to train Structure-driven
CNN. The total training loss is defined as:

L = λ1||Î− Igt||1 + E[log(1−DI(Î))] + E[logDI(Igt)], (7)

where Î is the output of Structure-driven CNN, DI is the discriminator. We set
λ1 = 0.1 in our experiment.

The training loss is minimized using back-propagation with ADAM optimizer
and learning rate 0.0001 and betas (0.5, 0.999).

3 Modifications to Baselines

In order to make a fair comparison with our model, we modify the baselines to
take the same five-fold inputs as our method. We introduce the modifications to
all baselines one after another below.
PEN-Net [10]. The original PEN-NET [10] only takes the masked image and
the adjusted mask as input. We increase the input channel of its first input layer,
so that the five-fold inputs, namely, the masked image, the adjusted mask, the
inclusion mask, the masked structure image and the masked depth map could
be concatenated as one unified input tensor to feed into the network. In our
implementation, the inclusion mask is expanded as a 19 channel one-hot tensor
(same for the other baselines).
FreeForm [9] has two stages. The first-stage network takes the masked image
and the adjusted mask to generate a coarse image, while the second-stage net-
work refines the coarse result output by the first stage. Thus we only modify the
input layer of the first-stage network to take the concatenated five-fold inputs
tensor but keep the second stage unchanged.
CRFill [11] is also a two-stage network. So we only modify the input of the first-
stage network by increasing the input channel of its first layer. The concatenated
five-fold inputs tensor instead of only the masked image and the adjusted mask
are fed into the network.
Rethink [3] has a encoder-decoder architecture. The encoder takes as input
the adjusted mask, the masked image and the masked structure image. In our
modification, we concatenate the other two modalities, namely the inclusion
mask and the depth map to its original input tensor. We didn’t change the
decoder and the feature equalization module.
ExtInt [7] decomposes the image inpainting pipeline into two steps by first com-
pleting a monochromic image and then progressively colorizing the completed
monochrome by learning internally on the masked color image. The first step
result can be obtained by any traditional image inpainting model, we adopt the
FreeForm [9] as the first-stage network as it achieved the best performance ac-
cording to the reported results in [7]. To generate the completed monochromic
(gray scale) image, we modify the FreeForm [9] to take the five-fold inputs tensor
and train the network with the gray scale image as target. The first-stage output
is then forwarded to the second-stage model of ExtInt [7] to colorize the adjusted
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region. Since the second step is a colorization process, the structural cues could
not provide useful information, we keep the second-stage network unchanged.
StFlow [5] is a two-stage model. The first-stage network completes the structure
image, while the second-stage network uses the completed structure image to
assist image texture generation. We only modify the second-stage network of
StFlow [5] by increasing the input channel of the network’s first layer. Such that
the second-stage network takes as input the adjusted mask, the masked image,
the masked depth map, the completed structure image and the inclusion mask.
SPG-Net [6] completes the semantic mask at its first stage and then completes
the image contents with the supervision of the completed semantic mask. To
allow SPG-Net [6] take the five-fold inputs, we only modify its first stage by
increasing its input channel of the first layer. The second stage model remains
the same. We also test another version of SPG-Net [6] by feeding the ground-
truth semantic mask into its second stage model (the first stage is being short
cut). We marked this version with SPG-Net† [6] in § 5 of the paper.
DivStruct [4] is a two-stage inpainting method, where the first stage generates
a coarse result, and the second stage uses the generated coarse result to help es-
timate better attention weights especially for capturing the distant correlations.
The original inputs to the first stage are two-fold, i.e., the masked image and the
adjusted mask. The original inputs to the second stage are three-fold, i.e., the
masked image, the adjusted mask and the coarse result generated by the first
stage. We only modify the input layer of the first stage to take the concatenated
five-fold inputs tensor but keep the second stage unchanged.
Since SGE-Net [2] adopts a pre-trained ResNet [1] as feature extractor for con-
textual feature learning, the concatenated five-fold inputs could not be applied
to its original model due to dimension incompatibility. Therefore, we only report
the result of its original model.

In our experiments, we train two versions of the baselines, i.e., the original
model and the modified one (marked with *). And report both results in § 5 of
the paper.
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