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Abstract. The hardware challenges associated with light-field (LF) imag-
ing has made it difficult for consumers to access its benefits like ap-
plications in post-capture focus and aperture control. Learning-based
techniques which solve the ill-posed problem of LF reconstruction from
sparse (1, 2 or 4) views have significantly reduced the need for complex
hardware. LF video reconstruction from sparse views poses a special chal-
lenge as acquiring ground-truth for training these models is hard. Hence,
we propose a self-supervised learning-based algorithm for LF video re-
construction from monocular videos. We use self-supervised geometric,
photometric and temporal consistency constraints inspired from a recent
learning-based technique for LF video reconstruction from stereo video.
Additionally, we propose three key techniques that are relevant to our
monocular video input. We propose an explicit disocclusion handling
technique that encourages the network to use information from adjacent
input temporal frames, for inpainting disoccluded regions in a LF frame.
This is crucial for a self-supervised technique as a single input frame
does not contain any information about the disoccluded regions. We also
propose an adaptive low-rank representation that provides a significant
boost in performance by tailoring the representation to each input scene.
Finally, we propose a novel refinement block that is able to exploit the
available LF image data using supervised learning to further refine the
reconstruction quality. Our qualitative and quantitative analysis demon-
strates the significance of each of the proposed building blocks and also
the superior results compared to previous state-of-the-art monocular LF
reconstruction techniques. We further validate our algorithm by recon-
structing LF videos from monocular videos acquired using a commercial
GoPro camera. An open-source implementation is also made available1.

Keywords: Light-fields, Plenoptic function, Self-supervised learning

1 Introduction

Cameras have become cheap and ubiquitous in the modern world, giving con-
sumers a capability to acquire photos and videos anywhere and anytime. The
last decade saw an accelerated improvement in image sensors and lens qual-
ity, leading to a significant improvement in the picture quality from these tiny
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Fig. 1. We propose three novel techniques: a) disocclusion handling, b) adaptive low-
rank representation for LF and c) a novel refinement block, for LF video reconstruction
from monocular video. Combining these with the self-supervised cost functions inspired
by [35], we can reconstruct high-fidelity LF videos, even with varying baselines. As
shown in (d) this allows us to control the synthetic defocus blur using the output
video.
cameras. Towards the end of the decade, the focus shifted towards more and
more innovative software, pushing the limits to what can be achieved with these
ubiquitous cameras [8]. This push resulted in a variety of features: ranging from
simple effects like background-blur to more dramatic ones like augmented real-
ity. Features like bokeh effects and novel view synthesis became popular as they
provided a sense of ‘3D’ to the otherwise flat pictures. However, these features
have currently been limited to images and there’s no straightforward way of ex-
tending them to videos. In the last few years, videos have certainly become a
more powerful means of communication, knowledge-sharing and even entertain-
ment. LF imaging could provide an intuitive way of bringing these features to
videos. However, there’s no easy way to capture LF videos yet. Computational
photography is poised to solve this, making it easy and accessible to capture LF
on small form-factor devices [20]. We instead focus on existing camera hardware
and aim to reconstruct LF videos from any ordinary monocular camera.

Traditionally, LF imaging required use of bulky or complex hardware setups
such as camera arrays [48] and micro-lens arrays [30]. Hence, the recent focus
has been on reducing the hardware complexity through the use of learning-based
techniques. Typically, these involve the reconstruction of LF from sparse input
views (such as 1, 2 or 4 views) [18,52,38,22]. To solve the challenges in ac-
quiring LF videos through commercial cameras, several techniques for LF video
reconstruction have also been proposed [2,45,35]. SeLFVi [35] is an interesting
recent work that proposes a novel self-supervised technique for LF video re-
construction from stereo videos. Being a self-supervised technique it relied on
an intermediate low-rank representation for LF frames achieving high-quality
reconstructions. However, it requires a stereo video input where both cameras
should have identical focal lengths (identical field-of-view). This can become a
limitation considering that stereo cameras are still not as widespread as monoc-
ular cameras. This is especially true for consumer applications, where mostly
monocular cameras are preferred.

Motivated by the availability of large and diverse sets of high-quality monocu-
lar videos we propose a novel, self-supervised learning technique for LF video re-
construction from monocular input. To start with, we preserve the self-supervised
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photometric, geometric and temporal consistency constraints adopted in SeLFVi
(see Sec. 3.3). Further we introduce three crucial blocks that are necessary for
our case of monocular video input. These are: 1) a novel loss for handling disoc-
clusion, 2) a scene geometry adaptive intermediate low-rank representation and
3) a novel and supervised refinement block to further refine the LF video(see
Fig. 1).

The challenge with just a monocular input is that there’s no information
on how to fill the disoccluded regions/pixels of the predicted LF. We propose a
technique to inpaint the disoccluded regions of the estimated LF frames. The
intuition is that, in a video acquired using a moving camera, occluded regions
in one frame might be visible in the neighboring temporal frames. Our disocclu-
sion handling technique (Sec. 3.4) utilizes this existing information to fill in the
disoccluded regions of the LF frame.

Next, we modify the standard tensor-display (TD) based intermediate low-
rank representation so that it can adapt to any input scene. While TD model
[47] uses fixed displacement between the layers, we propose a modification where
this displacement can be modified for each input image (Sec. 3.2). In [47], each
of the layers are shown to represent a depth-plane in the scene. Hence, by es-
timating the displacement values for each scene, the layers are better able to
represent the given LF. This idea was inspired from a similar choice of adaptive
layered representation in [22] for novel view synthesis. Unlike [22] we adopt a
more sophisticated approach to predict the depth planes through global scene
understanding by using transformers [3]. As shown in our experiments, the adap-
tive low-rank representation provides a significant boost in the quality of the
predicted LF frames.

Finally, we explore the popular idea of self-supervised pre-training, followed
by supervised learning on a small amount of data to boost the performance of
a model [6][5][17]. We design a novel convolutional vision-transformer-based [9]
refinement block that is trained via supervised learning on a small amount of LF
image data. This helps in further refining the output around the depth-edges that
are difficult to reconstruct with just self-supervised learning. The final output
is a weighted combination of the refinement block output and the LF estimated
by self-supervised learning (Sec. 3.5). To the best of our knowledge, this is the
first time that vision transformers are used to supervise LF reconstruction by
efficiently combining the spatio-angular information. In summary, we make the
following contributions:

• High quality reconstruction of LF videos from monocular video with self-
supervised learning.

• Handling disocclusions in rendering LFs using self-supervised consistency
losses utilizing information from successive video frames.

• A modified TD-based low-rank representation that can adapt to the given
input scene dynamically adjusting the distance between the layers.

• A novel supervised vision-transformer based refinement block to exploit the
small amount of LF image data to further improve reconstruction on video.
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2 Related Work
LF synthesis While the concept of LF or integral imaging is quite old [23,1],
capturing these images has been complicated. While commercial LF cameras are
now available in the market [30], they suffer from low spatial resolution. Over
the last several years, a diverse set of camera setups and algorithms have aimed
at making LF imaging simpler and more accessible. There have been setups
that use coded-aperture systems [43,14,34], cameras with coded masks near the
sensor [27,12] and even hybrid sensors [45]. Later, with advances in deep-learning,
systems using ordinary commercial cameras such as one or more DSLRs became
popular. Techniques that reconstruct LF frames from focus-defocus pair [42] or
focal-stack images[4] were proposed. Several techniques were also proposed that
could reconstruct LF from sparse set of views on a regular grid. The number
of views could be 1-view[38,22,2,15], 2-views[52,35], 4-views[18,46,51], and even
9-views[49].

LF synthesis from monocular image As ordinary monocular cameras are
ubiquitous, several techniques aim at LF reconstruction from them. As this is an
ill-posed problem, learning-based techniques have been essential in this domain.
A popular technique has been to first predict disparity flow [38] or appearance
flow[15][54] and then warp the input image accordingly to reconstruct the LF
frame. Recently, Multi-Plane Image (MPI) based representation is being used
for LF prediction [13,53,37,28,22]. Li et al. [22] propose a modified MPI model
that allowed them to significantly reduce the representation complexity. With a
similar intuition, we propose a modified low-rank representation based on layered
LF displays [47] for predicting the LF frames.

LF video reconstruction As commercial LF cameras such as Lytro acquire
videos at only 3 frames per second (fps), LF video acquisition at high angular and
temporal resolution has also been challenging. In [45] a learning-based algorithm
with a hybrid camera system consisting of a general DSLR camera and a light
field camera was proposed. Hajisharif et al. [12] proposed a single sensor-based
algorithm that required a coded mask to be placed in front of the sensor. As these
algorithms require complex and bulky hardware setups, techniques such as [2,35]
are proposed that just require ordinary cameras. Although our self-supervised
algorithm is inspired from [35], the closest work to ours is [2]. Bae et al.[2] utilize
a large set of computer-generated data to supervise a neural network for LF video
reconstruction from monocular video. In contrast, our proposed technique does
not require hard-to-acquire LF video data for supervision.

Learning with layered LF representation Previously, layered LF display
representations [47] have been used in conjunction with neural networks. [26]
built an end-to-end pipeline from a coded aperture scene acquisition for display-
ing the scene on a layered LF display. Similar work in [39,21] aims at capturing
a focal stack and then learning to display the scene onto the LF display. Inspired
by [35], we also adopt the layered LF display based intermediate low-rank repre-
sentation F for LF estimation. We extend the standard low-rank model to adapt
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recurrent LF synthesis network V first predicts an intermediate low-rank representation
F for the corresponding LF frame. An adaptive TD layer (3.2) takes the same set I
and F as input and outputs the LF frame L̂t. A set of self-supervised cost-functions
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Fig. 3. We use an m-VIT block [3] to predict the displacement between the different
layers of the TD based low-rank representation. Each of the layers in F approximately
represent a scene depth plane. Instead of keeping the layers static/fixed, a scene-specific
displacement value will move the layer to a depth plane where it can best represent
the scene.
to the individual scene by predicting the optimal distance between the layers for
each input image.

3 Monocular LF video estimation
We propose a self-supervised learning based technique for LF video reconstruc-
tion from a monocular video sequence. For each input frame of the monocular
video, we reconstruct a corresponding LF video frame. As shown in Fig. 2, a
deep neural network takes as input, a sequence of 3 input frames and a disparity
map {It−1, It, It+1, dt} and estimates an intermediate low-rank representation
of the current LF frame L̂t. As shown in Fig. 3 and further elaborated in Sec. 3.2,
we propose a modified intermediate low-rank representation adapted from [47].
After obtaining L̂t from the adaptive TD layer, we introduce the geometric, pho-
tometric and the temporal consistency constraints [35] to train our LF synthesis
network (see Sec. 3.3). Being a self-supervised technique, we do not have any
information about the disoccluded regions in L̂t from just It. Hence, we intro-
duce a disocclusion handling technique that utilizes information from It−1 and
It+1 to fill-in the disoccluded regions of L̂t(see Sec. 3.4). Finally, to further refine
the estimated LF frame, we propose a novel residual refinement block based on
vision-transformers (see Sec. 3.5) which is trained using supervised learning.

3.1 Light field frame prediction

As shown in Fig. 2, we stack three successive input frames and the corresponding
disparity map as I ={It−1, It, It+1,dt} and feed it to the LF prediction network
V . With a monocular input, it’s not possible to obtain a disparity map directly.
Hence, we first estimate a relative depth map zt of It using a pre-trained monoc-
ular depth estimation model [33]. We know that a disparity map is related to
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the depth map up to an affine transformation [10], defined here as dt = azt + b,
where a and b are two scalars. During training, we randomly sample values of
a and b and convert the relative depth map zt to the disparity map dt. The
network V is a long short term memory (LSTM) based model consisting of an
encoder and decoder with skip connections. The network V predicts an interme-
diate low-rank representation F for L̂t based on a modified tensor-display model
[47]. We describe the process of obtaining L̂t from the low-rank representation
F in Sec. 3.2.

3.2 Adaptive tensor-display model

In the previous section, we estimated the representation F from the network
V , based on the low-rank model proposed in [47]. In this standard model, F =
[f−N/2, . . . , f0, . . . , fN/2], where fk = [f1

k , f
2
k , . . . , f

R
k ], fr

k ∈ [0, 1]h×w×3. Here
N represents the number of layers in the low-rank model and R represents its
corresponding rank. Given F , the corresponding 4D LF frame can be computed
as

L(x, y, u, v) = TD(F) =

R∑
r=1

N/2∏
n=−N/2

fr
n(x+ nu, y + nv) (1)

where x, y and u, v respectively denote the spatial and angular coordinates. Fur-
ther analysis into these representations in [47] showed that each layer approxi-
mately represents a particular depth plane in the scene. However, the standard
model places these layers at a uniform distance from each other representing
depth planes placed uniformly in the scene. In a natural image the objects in
the scene could be distributed non-uniformly throughout the depth. This idea
was exploited in [22], where the standard MPI model was adapted to each input
image by assigning non-uniform disparity values for each MPI layer. This dras-
tically reduced the number of MPI layers required to represent the scene up to
a similar accuracy.

Motivated by this we use a m-VIT network [3], to predict a sequence of values,
D = {D−N/2, . . . DN/2}, that will be used in adapting the TD layer to each input
(Fig. 3). m-VIT predicts one value for each layer in the representation F using
the input I = {It−1, It, It+1, dt}. The values in D are used in the proposed
adaptive TD layer as

L(x, y, u, v) = TD(F ;D) =

R∑
r=1

N/2∏
n=−N/2

fr
n(x+Dnu, y +Dnv) , (2)

where Dn represents the scalar value predicted by m-VIT for layer n. After
computing L̂t from our proposed adaptive TD layer, we impose three main self-
supervised cost functions to train the prediction network V .

3.3 Loss functions

To successfully train the LF prediction network V , we follow [35] and define
three constraints that enforce the structure of the LF video on the predicted
sequence of frames.

Photometric constraint The photometric constraint is defined on the premise
that the center view of L̂t should match the current input frame It. Hence, we
define the loss function reflecting this as Lt

photo = ∥L̂t (0) − It∥1, where L̂t (0)

represents the central angular view of L̂t.
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Fig. 4. We introduce disocclusion handling to constrain the synthesis network to fill
in the disoccluded pixels of the LF with information from the neighboring frames. As
shown, It−1 is forward warped to each view of L̂t, using the optical flow predicted
from RAFT [41]. We also warp It+1 to each SAIs of L̂t, and the loss is computed as in
Eq. (8).

Geometric constraint To compute the cost, we first warp all sub-aperture
images (SAIs) of the L̂t to the SAI 0 that corresponds to It. In essence, we warp
L̂t(u) to the SAI 0 to obtain L̂t(u � 0), expressed as,

L̂t(u � 0) = W
(
L̂t (u) ; (u− 0) dt

)
. (3)

Here, W denotes the bilinear inverse warping operator [16] that takes as input
a displacement map and remaps the images. The geometric consistency error
between the approximated current frame L̂t(u � 0) and It is then defined as,

Lt
geo =

∑
u

∥L̂t (u � 0)− It∥1 . (4)

Temporal consistency constraint In addition to an LSTM network-based
[36] recurrent framework of our network V , we impose a temporal consistency
constraint on the predicted outputs. For this, we first estimate the optical flow
between successive input video frames using a pre-trained RAFT [41] network,
denoted as O. The optical flow is then computed as ot = O(It, It+1). To enforce
temporal consistency, we utilize the warped angular views L̂t (u � 0) and again
warp them to the video frame at t+ 1 using ot. Then, the temporal consistency
error is defined as the error between the known next frame It+1 and these warped
frames and is denoted as,

Lt
temp =

∑
u

∥W
(
L̂t (u � 0; ot)

)
− It+1∥1 . (5)

Minimizing this error during training explicitly enforces temporal consistency
between the successive predicted LF frames.

3.4 Disocclusion handling

In a LF, pixels at depth boundary of objects get occluded and disoccluded be-
tween different SAIs. Due to the lack of ground truth data we face a major
challenge when learning to fill-in the intensity values at the disoccluded pixels.
Our objective is to use pixels in It−1 and It+1 to fill in the disoccluded pixels of
L̂t, as these frames could potentially have the necessary pixel values. Pixels from
neighboring video frames have been used to inpaint the current frame in several
video-inpainting techniques [19,50]. Here, we achieve this by bringing the infor-
mative intensity values to the disoccluded pixels through flow-based warping.
As shown in Fig. 4, we use RAFT to obtain optical flow between the SAIs of L̂t

and the input frames It−1, It+1. By including these warping based operations in
a loss function, we train the network to automatically predict the disoccluded
pixels.
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Fig. 5. A supervised residual refinement block is used to further improve the re-
construction quality of the LFs. The transformer block attends to the spatio-angular
information in the estimated LF and the input frame It to predict the refined output.

The loss is defined on only those pixels that are disoccluded in the SAIs of
the LF frame L̂t. We obtain the disoccluded pixels by forward-warping the input
frame It to all the SAIs of LF with the disparity map dt. For each SAI at angular
location u, we define a binary mask Mt which is 1 if forward warping resulted
in a hole for that particular pixel. To fill the dis-occluded pixels, we forward
warp It−1to the predicted SAIs of L̂t using optical flow as shown in Fig. 4. The
forward warped SAIs are obtained as:

L̃t�t−1(u) = W
(
It−1;O

(
It−1, L̂t(u)

))
, (6)

L̃t�t+1(u) = W
(
It+1;O

(
It+1, L̂t(u)

))
, (7)

where L̃t�t+1(u) and L̃t�t−1(u) represent the forwards warped SAIs from It+1

and It−1 respectively using optical flow. Depending on the camera motion the
disoccluded pixels in L̂tcould be visible either in It−1 or It+1 or both. Taking
this into consideration, we define the cost function as

Lt
occ = min(∥Mt ·

(
L̂t(u)− L̃t�t−1(u)

)
∥1 , ∥Mt ·

(
L̂t(u)− L̃t�t+1(u)

)
∥1) (8)

Lt
occ follows the concept of minimum re-projection loss followed in monocular

depth estimation techniques such as [11].

3.5 Supervised residual refinement block

Recently, self-supervised pre-training on very large unlabeled datasets followed
by supervised learning on a limited labeled dataset has helped in achieving state-
of-the-art results [6,5,17]. Inspired by these works, we propose to use the limited
dataset of LF images to further refine the reconstructed LF frames. As this
shouldn’t affect the temporal consistency of the predicted frames, the proposed
refinement module follows a residual network architecture as shown in Fig. 5.
And this module can be trained as a separate block from the recurrent module
in the synthesis network V .

Vision Transformers(ViT) [9] form the backbone of our proposed refinement
module. As shown in Fig. 5, we divide the predicted LF frame L̂t into non-
overlapping patches, each of size p×p. For simplicity consider all the U2 top-left
patches cropped from each angular view of L̂t. A shallow ResNet-based neural
network extracts features independently from each of the U2 patches. Addition-
ally, we also extract features from the top-left patch of the input image It. The
transformer module then takes as input the U2+1 features/embeddings as input
and outputs U2 + 1 tokens after applying multi-headed self-attention (MHSA)
[9]. An identical procedure is repeated on all the non-overlapping patches of L̂t

to produce U2 + 1 tokens each time.
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As in Fig. 5, we discard the token from the input frame and consider all the P
transformed tokens from a particular angular view, say bottom-right. Here, P is
the number of non-overlapping patches cropped from each angular view. These
P tokens are stacked horizontally and vertically following the order of cropped
patches, so as to form a larger feature map. A shallow decoder network then
takes these stacked tokens as input and predicts a 4 channel output. The first
3 channels form an RGB image (L̃ref

t (u)) and the fourth channel is the mask

Mref ∈ [0, 1]h×w. The final output L̂ref
t is then defined as,

L̂ref
t (u) = Mref ⊙ L̂t(u) + (1−Mref )⊙ L̃ref

t (u) . (9)
Identical decoding step is repeated for each SAI u producing a refined LF frame
L̂ref
t . As we assume access to a LF image dataset, we train the refinement

network by imposing L1 loss between L̂ref
t and the corresponding ground-truth

Lt as: Lref =
∑
u

∥L̂ref
t (u)− Lt(u)∥1 . (10)

3.6 Overall loss

We finally add total-variation(TV)-based smoothness constraint[35] on the pre-
dicted LF frames and Bin-center density loss [3] on disparity values predicted by
m-VIT. The Bin-center density loss encourages the predicted disparity planes to
be close to the disparity map dt which is provided as input to the adaptive TD
layer. Including all the cost functions, the overall loss to minimize for training
V and the adaptive TD layer becomes,

Lt
self = λ1Lt

photo + λ2Lt
geo + λ3Lt

temp + λ4Lt
occ + λ5Lt

bins + λ6Lt
TV , (11)

where the parameters λi control the contribution of each loss term. After the
self-supervised training of the main network is completed, we then freeze these
weights and train the refinement block. The refinement block is trained using a
supervised cost function Lref in Eq. (10).

3.7 Implementation details

As shown in Fig. 2, our proposed pipeline has three separate deep neural net-
works: (a) LF synthesis network, (b) adaptive TD layer (Fig. 3) and (c) refine-
ment network (Fig. 5). The synthesis network V is a LSTM based recurrent
neural network consisting of a Efficient-Net encoder [40] and a convolutional
decoder with skip connections. In the adaptive TD layer, we set the low-rank
representation F to have N = 3 layers and the rank R = 12 following [35].
The displacements D = {D1, D2, D3} are predicted from m-VIT[3] network that
takes as input {It−1,It,It+1,dt}. Finally, the refinement network has a back-
bone of the convolutional vision transformer which is supervised using a limited
amount of LF image data. Further details of the neural networks can be found
in the supplementary material.

For training our proposed synthesis network, we use the GOPRO monoc-
ular video dataset[29]. The GOPRO dataset contains monocular videos of 33
different scenes each containing 525 to 1650 monocular frames of spatial resolu-
tion 720 × 1280. We split the dataset into a set of 25 videos for training and 8
videos for validation. The monocular video frames are resized into frames of size
352 × 528 to maintain the spatial resolution of Lytro Illum light field camera.
While training we obtain a monocular video of 7 frames and randomly crop a
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Algorithm
Hybrid ViewSynth TAMULF Stanford Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Niklaus et al.[31] 23.87 0.873 23.19 0.903 18.12 0.811 23.19 0.892 22.10 0.870
Srinivasan et al.[38] 28.12 0.893 28.56 0.931 22.63 0.857 29.24 0.924 27.14 0.901
Li et al.[22] 31.62 0.950 29.39 0.945 25.63 0.903 30.44 0.956 29.27 0.938
Li+Ranftl[33] 31.69 0.950 29.90 0.953 25.83 0.906 31.21 0.962 29.66 0.943
Proposed(image) 32.48 0.951 30.76 0.955 27.42 0.927 34.53 0.970 31.30 0.951
Proposed 32.66 0.952 30.97 0.956 27.24 0.922 34.98 0.974 31.47 0.951

Table 1. We quantitatively compare our proposed technique with state-of-the-art al-
gorithms on various datasets. Our algorithm consistently provides high-fidelity recon-
structions. Blue and green represent the top-two performing algorithm in each col-
umn.

patch of size 176× 264. The successive frames in the training data are 10 frames
apart in the raw GoPro videos captured at 240 fps. This ensures that there’s
reasonable object motion between successive input frames which is crucial for
the disocclusion handling technique. In one frame, closer objects show larger
disocclusions in the predicted LF as they have higher disparity values. These
objects also proportionally have larger displacements in successive frames, pro-
viding enough information to fill in the disoccluded pixels.

The relative depth map input to the network is obtained from [33] and
then modified for various baseline factors to enable the synthesis network to
generate LF outputs of various baseline. We randomly choose a value for a ∈
{0.8, 1.6, 2.4, 3.2} and b ∈ [0.2, 0.4] to obtain disparity dt = azt + b as explained
in Sec. 3.1. The network is trained in Pytorch[32] using AdamW [24] optimizer
for 25 epochs, with an initial learning rate of 0.0001 and weight decay of 0.001.
The learning rate is decreased to half the initial value when the validation loss
plateaus for more more than 4 epochs. We empirically choose the hyperparam-
eters as λ1 = 1.0, λ2 = 1.0, λ3 = 0.5, λ4 = 0.2, λ5 = 2 and λ6 = 0.1 in Eq. (11).

For training our residual refinement block, we freeze the weights of the syn-
thesis network and train only the refinement block using supervised loss function
in Eq. (10). We fix the value of a as 1.2 and b as 0.3 to estimate dt which is pro-
vided as input to the synthesis network. For the supervised training, we use 1000
LF images from TAMULF [22] dataset. The network is trained using AdamW
optimizer for 15 epochs, with an initial learning rate of 0.001 and weight decay of
0.001. The learning rate is decreased to half the initial value when the validation
loss plateaus for more more than 4 epochs.

4 Experiments

To validate our proposed algorithm, we make several qualitative and quantitative
comparisons with diverse LF datasets. For quantitative comparison, we mainly
consider four different datasets: Hybrid [45], ViewSynth [18], TAMULF [22] and
Stanford [7] containing 30, 25, 84 and 113 light field video sequences, respectively.
From the Hybrid dataset we consider the central 7×7 views as the ground-truth
light field videos, and the center-view of each LF forms the input monocular
video. The rest three datasets are LF image datasets, and we simulate LF videos
with 8 frames from each LF following the procedure described in [35][25]. The
center-view of these 7 × 7 view LF videos form the monocular video sequence
that is given as input to our algorithm. During inference, we first obtain the
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Ground Truth Ours Li et al. Niklaus et al. Srinivasan et al.

t0
t1
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t0
t1
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Fig. 6. We qualitatively compare our reconstruction with ground truth and other
state-of-the-art techniques. We show the top-left view of t0 and EPI images from three
consecutive LF frames (t0, t1, t2). As can be clearly seen from the EPI images, our
technique consistently provides accurate reconstructions.

depth estimate zt from DPT[33] and convert it to a disparity map dt. Three
consecutive temporal frames and disparity map are stacked and input to the
complete model represented in Fig. 2 to obtain the LF frame output.

4.1 Light field video reconstruction

We quantitatively and qualitatively compare the results of our proposed algo-
rithm with previously proposed monocular LF estimation techniques. For quanti-
tative comparison, we use two metrics: peak signal-to-noise ratio (PSNR) (higher
is better) and structural similarity index measure (SSIM) (higher is better). As
shown in Tab. 1, we compare the performance of our proposed algorithm with
Niklaus et al. [31], Srinivasan et al. [38] and Li et al. [22].

Li et al. [22] takes a single frame and a relative depth estimate from [44] as
input. To obtain the complete LF video, we have to reconstruct each frame of
the video individually. In Tab. 1, Li et al. + Ranftl et al. represents a modified
[22], where we input a depth estimate from DPT[33] instead of the original
DeepLens[44] model. This is done to ensure a fair comparison with our technique
as we also use DPT, which is a state-of-the-art monocular depth estimation
technique based on vision transformers. However, [22] is not trained for inputs
from DPT [33]. Hence, we finetune [22] on the TAMULF dataset with depth maps
from DPT [33]. Srinivasan et al. [38] is another single image LF estimation model.
While the original network is trained on a dataset of flower images (proposed in
the same work), we finetune it on a larger and diverse TAMULF dataset from
[22]. Finally, we also compare our algorithm with Niklaus et al. [31] that takes
a single frame as input. We used the default implementation provided by the
authors for comparison, which is already trained on a diverse dataset. As all
these techniques are image-based and don’t have any temporal information, we
also compare with a downgraded version of our algorithm ‘Proposed(image)’. In
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Algorithm
Hybrid ViewSynth TAMULF Stanford Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Base 30.76 0.945 29.07 0.947 25.74 0.918 31.70 0.963 29.32 0.943
Base+occ 31.78 0.949 29.71 0.948 26.51 0.919 32.99 0.965 30.25 0.945
Base+occ+adpt 32.26 0.950 30.69 0.954 26.96 0.919 34.45 0.973 31.09 0.949
Proposed 32.66 0.952 30.97 0.956 27.24 0.922 34.98 0.974 31.47 0.951

Table 2. We consider a baseline model ‘Base’ that is trained only with the self-
supervised constraints as proposed in SeLFVi[35]. We then successively enhance the
‘Base’ model with disocclusion handling, adaptive TD layer and the refinement block
and compare the performance boost in each case.

this model, we repeat the current frame as three successive input frames of our
proposed algorithm.

Tab. 1 details the quantitative comparisons of various algorithms against
all 4 datasets: Hybrid, ViewSynth, TAMULF and Stanford. Our proposed re-
construction outperforms previous state-of-the-art techniques. We also notice
that even our image-based model ‘Proposed(image)’ outperforms the previous
image-based LF prediction techniques. We can also see clear distinction when
we compare the images qualitatively in Fig. 6, especially when the EPI for the
LF views are taken into account. We also validate our algorithm on monocular
videos acquired from a commercial GoPro camera. While we show some results
from GoPro dataset in Fig. 7, please refer to the supplementary material for
more qualitative results.

Temporal consistency We evaluate and quantitatively compare the temporal
consistency of the videos predicted from our proposed algorithm. For this, we
first predict optical flow via [41] between all SAIs of successive ground-truth LF
frames. We then compute the mean squared error between the current estimated
LF and the previous LF warped to the current frame. We provide quantitative
comparison in the supplementary material.

4.2 Ablation Study

Our proposed technique contains three key building blocks that enable us to
work with monocular videos. Here, we evaluate the contribution of each of the
three building blocks to the reconstruction quality. As shown in Tab. 2 we eval-
uate the effect of each block by successively adding the proposed blocks to the
baseline model and quantitatively comparing the reconstructed LF videos. The
baseline model can also be thought of as an extension of SeLFVi[35] to the case
of monocular videos. Here, we utilize only the geometric, photometric and tem-
poral consistency constraints proposed in SeLFVi. The LF synthesis network
architecture V remains identical in all the models.
Disocclusion handling (Base vs Base+occ): Enforcing the disocclusion
handling constraint helps the synthesis network to learn to fill in the disoc-
cluded pixels in the estimated LF frames as shown in Fig. 7. Quantitatively, we
also observe a boost of 0.9dB PSNR in comparison to the baseline model.
Adaptive TD layer (Base+occ vs Base+occ+adpt): Our modified adap-
tive TD layer can accurately represent the depth planes in the LF as can be seen
from the EPI images in Fig. 8. Quantitatively, we get a significant performance
boost of about 0.7dB PSNR.
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Input image Top-left SAIBottom-right SAI Input image Top-left SAIBottom-right SAIInput image Top-left SAIBottom-right SAI

Fig. 7. The model trained without disocclusion handling leads to a halo-like artifact
around depth-edges in the SAIs of the frames. With the proposed disocclusion handling
technique, the network learns to accurately fill-in the disoccluded pixels.

Ground Truth Adaptive TD model Standard TD model

t0
t1
t2

t0
t1
t2

Ground Truth Adaptive TD model Standard TD model

Fig. 8. As seen in the EPI images, the standard TD model is unable to represent
the depth for the scene accurately compared to the proposed adaptive TD model. By
separately determining the depth planes for each scene, adaptive TD model gives a
more accurate reconstruction.
Supervised refinement block (Base+occ+adpt vs Proposed): Finally, we
evaluate the effect of the novel refinement block that is trained with supervised
loss on ground-truth LF frames. We observe an expected improvement in the
reconstruction quality, showing a boost in PSNR of nearly 0.4dB. We also make
qualitative comparison in Fig. 9, where we see that the refinement block provides
more accurate SAIs around depth edges that are difficult to reconstruct with just
self-supervised learning.

4.3 Variable baseline LF prediction

Supervised techniques using LF data from a single camera produce LF images
with a fixed baseline. However, our proposed network reconstructs LF frames
based on the input disparity map. By scaling the disparity map by a constant
factor, we can scale the disparity values input to the network, leading to LF
prediction with variable baselines. In Fig. 10 we demonstrate this with 4 different
scale factor for disparity maps, 1×, 1.5×, 2×, 2.5×. Note that our algorithm
allows us to generate SAIs with higher baseline than that of the ground truth
frames from Lytro.

5 Discussion
Our proposed algorithm is largely a self-supervised technique except for the
refinement block that is supervised using ground-truth LF image data. The
refinement block uses a transformer module for angular attention. To the best
of our knowledge this is also the first attempt to employ vision transformers to
LF data. Note that our proposed algorithm outperforms previous state-of-the-
art techniques even without the supervised refinement module. Another point
to note is that, during inference, we do not have any information about the true
baseline of the LF. We only have access to a relative depth map obtained from
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W/O Refinement:
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Fig. 9. The error map between the reconstructed and ground-truth shows that su-
pervised refinement improves reconstruction at depth-edges. The refinement module
corrects the baseline discrepancy The refinement block utilizes the spatial information
in other SAIs through angular attention and optimizes the positioning of depth-edges
correcting the baseline discrepancy between synthesized and ground truth LF.

Fr
am

e

1.5x
2x
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Fig. 10. With our proposed self-supervised technique, LF frames with variable base-
lines can be predicted by just scaling the input disparity map. We demonstrate this on
4 different scales {1, 1.5, 2, 2.5}×. Notice the increasing slope in the EPI images from
1× to 2.5×.
a single input image. Hence, it becomes difficult to accurately compare with
the ground-truth. To solve this, we choose a scale and shift factor ({a, b}) such
that the mean error between the computed disparity maps (from relative depth
maps) and the true disparity maps (for a given dataset such as TAMULF) is
minimum. Outside of comparison with ground truth, the true disparity map is
not necessary and we can generate LF of multiple baselines as needed (Fig. 10).

6 Conclusion

We propose an algorithm for LF video reconstruction from just a monocular
video input. Our baseline model utilizes the intermediate layered representation
for LF and the self-supervised geometric, photometric and temporal constraints
[35]. Additional modifications were proposed in this work that enabled the final
model to reconstruct high-fidelity LF videos from monocular input. We propose
a disoclussion handling technique that is required to fill-in disoccluded regions in
the estimated LF. We also propose a adaptive TD representation that can adapt
to each input scene based on the layer displacements predicted by the network.
Finally, we introduce a novel supervised, transformer-based refinement block
that can further refine the predicted LF. Along with superior reconstruction
results, our model also enables prediction of LF frames with varying baselines.
Overall, our proposed algorithm facilitates a monocular camera for applications
like refocusing and novel view synthesis.
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