
Human-centric Image Cropping with
Partition-aware and Content-preserving Features

Bo Zhang , Li Niu⋆ , Xing Zhao , and Liqing Zhang

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China
{bo-zhang,ustcnewly,1033874657}@sjtu.edu.cn, zhang-lq@cs.sjtu.edu.cn

Abstract. Image cropping aims to find visually appealing crops in an
image, which is an important yet challenging task. In this paper, we con-
sider a specific and practical application: human-centric image cropping,
which focuses on the depiction of a person. To this end, we propose a
human-centric image cropping method with two novel feature designs
for the candidate crop: partition-aware feature and content-preserving
feature. For partition-aware feature, we divide the whole image into nine
partitions based on the human bounding box and treat different par-
titions in a candidate crop differently conditioned on the human infor-
mation. For content-preserving feature, we predict a heatmap indicat-
ing the important content to be included in a good crop, and extract
the geometric relation between the heatmap and a candidate crop. Ex-
tensive experiments demonstrate that our method can perform favor-
ably against state-of-the-art image cropping methods on human-centric
image cropping task. Code is available at https://github.com/bcmi/

Human-Centric-Image-Cropping.

1 Introduction

Image cropping aims to automatically find visually appealing crops in an image,
which is critical in various down-stream applications, e.g ., photo post-processing
[6], view recommendation [21,41,20], image thumbnailing [10,3], and camera view
adjustment suggestion [35]. In this paper, we address a specific and practical
application: human-centric image cropping, which focuses on the depiction of a
person and benefits a variety of applications, including portrait enhancement [47]
and portrait composition assistance [48,49]. For a human-centric image, a good
crop depends on the position of the human in the crop, human information, and
the content of interest, which makes human-centric image cropping challenging.

Several previous works [48,2,47] have already focused on portrait photograph
cropping, which extracted hand-crafted features from the results of saliency de-
tection, human face detection, or human pose estimation. However, extracting
hand-crafted features is laborious and the hand-crafted features are generally not
robust for modeling the huge aesthetic space [9]. Recently, numerous methods
[15,44,37,23,22,40] addressed image cropping task in a data-driven manner, in
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Fig. 1. Illustration of the motivation behind partition-aware feature. The whole image
is divided into nine partitions based on the human bounding box (red). To produce the
best crop (yellow), the aesthetic contribution of similar content in different partitions
depends on its relative position to human subject

which models are directly trained with the human-annotated datasets [5,43,41].
However, for human-centric images, these methods rarely explicitly consider hu-
man information. In contrast, we show that exploiting human information can
significantly help obtain good crops. Based on the general pipeline of data-driven
methods, we propose two innovations for human-centric image cropping.

In this paper, we refer to the images that meet the following conditions as
human-centric images: 1) The image subject is single person, while there can be
other people in the background. 2) The area of the human bounding box does
not exceed 90% of the entire frame. Given a human-centric image, the whole
image can be divided into nine partitions based on the human bounding box
(see Figure 1). Generally, the aesthetic contribution of similar content in different
partitions depends on its relative position to the human subject. For example,
in Figure 1, partitions 4 and 6 in the left subfigure have similar content, but the
best crop preserves more content in partition 6 because the person looks to the
right, making the content in partition 6 visually more important [12]. Similarly,
partition 4 and partition 8 in the right subfigure also have similar content, but the
best crop preserves more content in partition 4, probably because the person is
moving forward and the content behind him becomes less important. Therefore,
when extracting features of candidate crops for aesthetic evaluation, we should
consider the partition location and human information (e.g ., human posture,
face orientation). To this end, we propose a novel partition-aware feature by
incorporating partition and human information, which enables treating different
partitions in a candidate crop differently conditioned on the human information.

Furthermore, a good crop should preserve the important content of source
image [11], which is dubbed as “content-preserving”. However, to the best of our
knowledge, there is no image cropping dataset that provides the annotation of
important content. Existing methods [25,39,4,11] determine important content
mainly based on their visual saliency by assuming that the most salient object
is the most important content. In human-centric images, important content may
imply key human parts (e.g ., face, hands), interesting objects (e.g ., landmark),
and the objects (e.g ., racket, bicycle) that person interacts with. However, as
shown in Figure 2, saliency may not capture the abovementioned objects very
well. Here we adopt an unsupervised saliency detection method [13]. We have also
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Fig. 2. The comparison between saliency detection [13] and the pseudo ground-truth
heatmap of important content (see Section 3.3). The important content of human-
centric images may contain interesting objects (e.g ., the landmark in the top row) and
the objects that person interacts with (e.g ., the blackboard in the bottom row)

tried several supervised methods [16,50,7], which proves to be less effective. This
is probably because that the unsupervised method has no dependence on train-
ing data and generalizes better on the image cropping datasets. Given an image
with multiple annotated candidate crops [43,41], we conjecture that the candi-
date crops with relatively high scores are more likely to contain important ob-
jects. Thus, we use highly scored crops to produce pseudo ground-truth heatmap
of important content (see Figure 2), which is used to supervise the heatmap
prediction. Additionally, previous content-preserving methods [1,4] typically de-
signed a hand-crafted algorithm based on certain principles (e.g ., maintaining
the most salient region). Differently, we automatically learn content-preserving
feature to capture the geometric relation between the predicted heatmap and
each candidate crop, which represents how well each candidate crop preserves
the important content.

Finally, for each candidate crop, we extract its partition-aware feature and
content-preserving feature to predict an aesthetic score. The main contributions
of this paper can be summarized as follows: 1) We propose a novel partition-
aware feature to improve human-centric image cropping by exploiting human
information, which allows to treat different regions in a candidate crop differ-
ently conditioned on the human information. 2) We design a novel approach to
locate important content and a novel content-preserving feature to characterize
the preservation of important content in a candidate crop. 3) We demonstrate
that our model outperforms the state-of-the-art image cropping methods on the
human-centric images of several benchmark datasets.

2 Related Work

Following [44,23], we divide existing image cropping methods into three cate-
gories according to the criteria for evaluating candidate crops, i.e., attention-
guided, aesthetics-informed, and data-driven.
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Attention-guided Image Cropping: Attention-guided methods [27,25,26,4,11,36,47]
assumed that the best crops should preserve visually important content, which is
usually determined by the saliency detection methods [38,17]. Usually, the view
with the highest average saliency score is selected as the best crop. However,
saliency may not accurately reflect the content of interest for human-centric
images (see Figure 2). Differently, we assume that the content that appears in
multiple highly scored crops is more likely to be important content, leading to
more flexible and practical important content estimation.
Aesthetics-informed Image Cropping: The aesthetics-informed methods evalu-
ated candidates by comparing the overall aesthetic quality of different crops.
To achieve this, earlier methods [45,42,46] usually employed hand-crafted fea-
tures or composition rules. However, the simple hand-crafted features may not
accurately predict the complicated image aesthetics [44].
Data-driven Image Cropping: Most recent methods address the task in a data-
driven manner. Some methods [6,18,29] trained a general aesthetic evaluator on
image aesthetic datasets to facilitate image cropping. With the aid of image
cropping datasets [5,43,41], numerous methods [15,43,37,28,23,41] used pairwise
learning to train an end-to-end model on these datasets, which can generate
crop-level scores for ranking different candidate crops.

Our method is developed based on the general pipeline of the data-driven
methods, but is specially tailored to human-centric image cropping with two
innovations, i.e., partition-aware and content-preserving features.

3 Methodology

3.1 Overview

The flowchart of the proposed method is illustrated in Figure 3, in which we
adopt a similar pipeline as [44,23]. Given an image, we first integrate multi-
scale feature maps from a pretrained backbone (e.g ., VGG16 [34]) to obtain the
basic feature map. After that, we update the basic feature map to the partition-
aware feature map, based on which we extract partition-aware region feature
and content-preserving feature for each candidate crop. Finally, we predict the
crop-level score using the concatenation of partition-aware region feature and
content-preserving feature.

3.2 Partition-aware Feature

To acquire the human bounding box, we leverage Faster R-CNN [31] trained
on Visual Genome [19] to detect human subjects for human-centric images. We
check each image to ensure that the predicted bounding box correctly encloses
the main human subject. We describe how to determine the main subject and dis-
cuss the robustness of our method against human detection in Supplementary. As
illustrated in Figure 1, the whole image can be divided into nine non-overlapping
partitions by the human bounding box. We conjecture that the aesthetic value
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Fig. 3. The flowchart of our method for human-centric image cropping (left) and the
proposed partition-aware feature (right). We use pretrained VGG16 [34] as backbone
to extract basic feature map M, from which we derive partition-aware feature map
F. Besides, we use the region feature obtained by RoIAlign [14] and RoDAlign [43]
schemes, and content-preserving feature to predict scores for each candidate crop

of similar content in different partitions often varies with its relative position to
the human subject, so the feature map should be partition-aware.

To achieve this goal, we derive partition-aware feature map from the basic
feature map, as illustrated in the left subfigure in Figure 3. Given an H × W
basic feature mapM with C channels, we partition it into nine regions {Mk|9k=1}
with Mk being the k-th partition. Considering that the relative position of each
partition to human subject is conditioned on the human information (e.g ., face
orientation and posture), as exemplified in Figure 1, we extract human feature fh

using RoIAlign [14] to implicitly encode the aforementioned human information
and reduce its dimension to C

2 , which is appended to each location of the basic

feature map. The resultant feature map is represented by M̂ with M̂k being the
k-th partition. To explicitly tackle different partitions differently, we employ nine
individual nonlinear transformations for each partition to update their features
with residual learning by

Fk = Φk(M̂k) +Mk, (1)

where we use a 3×3 convolutional (conv) layer with C output channels followed
by ReLU as the transformation function Φk(·).

After that, we obtain a new feature map F by combining all updated parti-
tions {Fk|9k=1}, which has the same size as the basic feature map M. By inte-
grating human feature and employing partition-specific transformations, similar
contents in different partitions can produce different responses conditioned on the
human information. Thus, we refer to F as partition-aware feature map. Follow-
ing [43,23], given a candidate crop, we employ RoIAlign [14] and RoDAlign [43]
schemes to extract its partition-aware region feature based on F, denoted as fr.
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3.3 Content-preserving Feature

Apart from the position of the human in the crop and human information, the
preservation of important content also plays an important role when evaluating
candidate crops. So we propose to predict a heatmap to indicate the location of
important content and then automatically learn content-preserving features to
augment our method.

Graph-based Region Relation Mining: Considering that important content esti-
mation may benefit from exploiting the mutual relation between different regions,
we construct a graph over the partition-aware feature map F and apply graph
convolution [32,24]. Specifically, we reshape the partition-aware feature maps
into a matrix F̄ ∈ RL×C , where L = H ×W . Each pixel-wise feature vector in
F̄ is a graph node that represents one local region in the image.

To model the relation between pairwise regions, we define the adjacency
matrix A ∈ RL×L according to the cosine similarity of region features following
[33]. Then we perform reasoning over the graph F̄ by graph convolution [32]:

F̄′ = σ(AF̄Θ), (2)

where Θ ∈ RC×C is the the trainable weight matrix of the graph convolution
layer and σ(·) is ReLU activation. Then, we reshape F̄′ back to F′ ∈ RH×W×C .
Compared with the conventional convolution, graph convolution allows the mes-
sage flow across local regions, which is helpful for important content prediction
(see Section 4.6).

Important Content Estimation: To obtain a high-resolution feature map for fine-
grained important content localization, we upsample F′ by four times followed
by 3 × 3 conv and ReLU. Based on the upsampled feature map, we apply a
prediction head (i.e., 1 × 1 conv followed by Sigmoid function) to produce a

heatmap H̃ in the range of [0, 1], in which larger score indicates more important
content.

There is no ground-truth heatmap for important content. Nevertheless, exist-
ing cropping datasets [43,41] are associated with multiple scored crops for each
image, with a larger score indicating higher aesthetic quality. Based on the as-
sumption that highly scored crops are more likely to contain important content,
we propose to generate pseudo ground-truth heatmap from the weighted average
of highly scored crops.

Specifically, given an image with multiple candidate crops, we suppose the
score of the m-th crop to be ym. We take the average score of all crops in the
dataset as the threshold to select highly scored crops, and convert the bounding
box of each selected crop to a binary map, which is resized to the same size as
the predicted heatmap H̃. We obtain the pseudo ground-truth heatmap H via
the weighted average of all binary maps, in which larger weight is assigned to
the crop with higher score. Here, we perform softmax normalization to produce

the weights for each highly scored crop: ωm = exp(ym)∑Nh
m=1 exp(ym)

, in which Nh is the

number of highly scored crops. In the training stage, we employ an L1 loss to
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supervise the heatmap learning:

Lcont = ∥H− H̃∥1. (3)

As demonstrated in Figure 2, the pseudo ground-truth heatmaps can high-
light the attractive objects in the background and the objects that person inter-
acts with, which are often ignored by saliency detection methods.
Content-preserving Feature Extraction: To leverage the prior information of im-
portant content [41], previous content-preserving methods typically relied on cer-
tain heuristic principles (e.g ., minimizing the cropping area while maximizing its
attention value [4]), which require extensive manual designs. Instead, we guide
the network to automatically learn how well each candidate crop preserves the
important content. The idea is learning a content-preserving feature to capture
the geometric relation between the heatmap and each candidate crop. Specifically,
for the m-th candidate crop, we concatenate its corresponding binary map and
the predicted heatmap H̃ channel-wisely. Then, we apply an encoder Eg to the
concatenated maps to extract the content-preserving feature f c.

Finally, for each candidate crop, we concatenate its partition-aware region
feature fr and content-preserving feature f c, which is passed through a fully
connected (fc) layer to get the aesthetic score for this crop.

3.4 Network Optimization

We train the proposed model with a multi-task loss function in an end-to-end
manner. Given an image containing N candidate crops, the ground-truth and
predicted scores of them-th crop are denoted by ym and ỹm, respectively. We first
employ a smooth L1 loss [31] for the score regression considering its robustness
to outliers:

Lreg =
1

N

N∑
m=1

Ls1(ym − ỹm), (4)

where Ls1(·) represents the smooth L1 loss:

Ls1(x) =

{
0.5x2, if |x| < 1,

|x| − 0.5, otherwise.
(5)

Besides regression loss, we also use a ranking loss [23] to learn the relative ranking
order between pairwise crops explicitly, which is beneficial for enhancing the
ability of ranking crops with similar content. With em,n = ym − yn and ẽm,n =
ỹm − ỹn, the ranking loss is computed by

Lrank =

∑
m,n max

(
0, sign(em,n)(em,n − ẽm,n)

)
N(N − 1)/2

. (6)

After including the heatmap prediction loss in Eqn.(3), the total loss is sum-
marized as

L = Lreg + Lrank + λLcont, (7)
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in which the trade-off parameter λ is set as 1 via cross-validation (see Supple-
mentary).

Limited by the small number of annotated human-centric images in ex-
isting image cropping datasets [43,41], only training on human-centric images
would lead to weak generalization ability to the test set. Therefore, we employ
both human-centric and non-human-centric images to train our model. For non-
human-centric images, we use the basic feature map M to replace the partition-
aware feature map F, because there could be no dominant subject used to parti-
tion the image. Besides, we extract content-preserving features from non-human-
centric images in the same way as human-centric images, because preserving
important content is also crucial for non-human-centric images. In this way, our
model is able to train and infer on both human-centric images and non-human-
centric images.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on the recent GAICD dataset [43], which contains 1,236
images (1,036 for training and 200 for testing). Each image has an average of
86 annotated crops. There are 339 and 50 human-centric images in the training
set and test set of GAICD dataset, respectively. As described in Section 3.4, we
employ the whole training set (1,036 images) for training and evaluate on the
human-centric samples of the test set. Following [43], three evaluation metrics
are employed in our experiments, including the average Spearman’s rank-order
correlation coefficient (SRCC) and averaged top-N accuracy (AccN ) for both
N = 5 and N = 10. The SRCC computes the rank correlation between the
ground-truth and predicted scores of crops for each image, which is used to
evaluate the ability of correctly ranking multiple annotated crops. The AccN
measures the ability to return the best crops.

Apart from GAICD dataset, we also collect 176 and 39 human-centric images
from existing FCDB [5] and FLMS [11] datasets, respectively. We evaluate our
method on the collected 215 human-centric images from two datasets, following
the experimental setting in [28,37]: training the model on CPC dataset [41],
and using intersection of union (IoU) and boundary displacement (Disp) for
performance evaluation. Note that we train on the whole CPC dataset, which
contains 10,797 images including 1,154 human-centric images and each image
has 24 annotated crops.

4.2 Implementation Details

Following existing methods [15,37,23], we use VGG16 [34] pretrained on Ima-
geNet [8] as the backbone. We apply 1× 1 conv to unify the channel dimensions
of the last three output feature maps as 256 and add up three feature maps to
produce the multi-scale feature map. We reduce the channel dimension of multi-
scale feature map to 32 using a 1× 1 conv, i.e., C = 32. Eg is implemented by
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Table 1. Ablation studies of the proposed method. fh: human feature. “res”: update
partition-aware feature with residual learning. K: number of partitions. “conv”: replace
GCN with standard convolution. H̃: predicted important content heatmap. “saliency”:
replace heatmap with saliency map [13]. f c: content-preserving feature

Partition Content SRCC ↑ Acc5 ↑ Acc10 ↑
1 0.744 52.0 70.5

2 ✓ 0.774 54.8 74.3

3 w/o fh 0.769 54.2 73.8
4 w/o res 0.764 53.9 73.5
5 K = 1 0.746 52.1 70.8
6 K = 2 0.756 53.2 72.4

7 ✓ 0.781 56.8 75.6
8 conv 0.762 54.0 73.0

9 w/o H̃ 0.741 50.9 69.5
10 saliency 0.752 52.5 71.8
11 only f c 0.643 35.2 49.1

12 ✓ ✓ 0.795 59.7 77.0

two 3 × 3 convs and pooling operations followed by a fc layer. The dimensions
of partition-aware region feature fr and content-preserving feature f c are both
256. Similar to [23,43], the short side of input images is resized to 256 and the
aspect ratios remain unchanged. We implement our method using PyTorch [30]
and set the random seed to 0. More implementation details can be found in
Supplementary.

4.3 Ablation study

In this section, we start from the general pipeline of existing methods [44,23] and
evaluate the effectiveness of two types of features. The results are summarized
in Table 1. In the baseline (row 1), we only use the region feature extracted from
the basic feature map M to predict scores for each crop.
Partition-aware Feature: Based on row 1, we replace the region feature with our
proposed partition-aware region feature fr in row 2, which verifies the effective-
ness of partition-aware feature. Next, we conduct ablation studies based on row
2. First, we remove the human feature fh and observe performance drop, which
corroborates the importance of conditional human information. In Eqn.(1), we
adopt Φk(·) to learn the residual. Based on row 2, we remove the residual strat-

egy by using Fk = Φk(M̂k). The comparison between row 4 and row 2 demon-
strates the benefit of residual learning. Recall that each image is divided into
nine partitions by the human bounding box. Based on row 2, we explore using
one partition (K = 1) and two partitions (K = 2). When K = 1, we apply the
same transformation Φ(·) to the whole image. When K = 2, we divide the image
into human bounding box and the outside region. By comparing K = 1, 2, 9,
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Table 2. Comparison with the state-of-the-art methods on human-centric images in
GAICD [43] dataset. GAIC(ext) [44] is the extension of GAIC[43]. The results marked
with * are obtained using the released models from original papers

Method Backbone Training Data SRCC ↑ Acc5 ↑ Acc10 ↑
VFN* [6] AlextNet Flickr 0.332 10.1 21.1
VFN [6] VGG16 GAICD 0.648 41.3 60.2
VEN* [41] VGG16 CPC 0.641 22.4 36.2
VEN [41] VGG16 GAICD 0.683 50.1 65.1
ASM-Net [37] VGG16 GAICD 0.680 44.8 64.5
LVRN* [28] VGG16 CPC 0.664 30.7 49.0
LVRN [28] VGG16 GAICD 0.716 44.8 66.0
GAIC(ext)* [44] MobileNetV2 GAICD 0.773 54.0 73.0
GAIC(ext) [44] VGG16 GAICD 0.741 53.3 69.6
CGS [23] VGG16 GAICD 0.773 54.7 72.0

Ours(basic) VGG16 GAICD 0.744 52.0 70.5
Ours VGG16 GAICD 0.795 59.7 77.0

we observe that K = 9 (row 2) achieves the best performance, because nine
partitions can help capture more fine-grained partition-aware information. Be-
sides, we evaluate some direct ways to leverage human bounding box for image
cropping, yet producing poor results (see Supplementary).
Content-preserving Feature: Based on row 1, we add our content-preserving fea-
ture and report the results in row 7, in which we concatenate content-preserving
feature with the region feature extracted from basic feature map. The results
show the effectiveness of content-preserving feature. Next, we conduct ablation
studies (row 8-11) based on row 7. We first replace GCN with conventional con-
volution layers (row 8) and observe the performance drop, which proves that
it is useful to exploit the mutual relation between different regions. Then, we
remove the predicted heatmap H̃ (row 9), resulting in significant performance
drop, which highlights the importance of important content information. Addi-
tionally, we replace the proposed pseudo ground-truth heatmap with the saliency
map detected by [13] in row 10 and obtain inferior performance. As discussed
in Section 3.3, this can be attributed to that saliency may not accurately reflect
the content of interest for human-centric images. We also try using the content-
preserving feature alone. Specifically, we only use content-preserving feature f c to
predict the aesthetic score (row 11). The performance is even worse than row 1,
because the content-preserving feature is lacking in detailed content information
and thus insufficient for aesthetic prediction.

4.4 Comparison with the State-of-the-arts

Quantitative comparison: We compare the performance of our model with the
state-of-the-art methods on 50 human-centric images of GAICD [43] dataset in
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Table 3. Comparison with the state-of-the-art methods on human-centric images in
FCDB [5] and FLMS [11] datasets. GAIC(ext) [44] is the extension of GAIC[43]. The
results marked with * are obtained using the released models from original papers

Method Backbone Training Data IoU↑ Disp↓
VFN* [6] AlextNet Flickr 0.5114 0.1257
VFN [6] VGG16 CPC 0.6509 0.0876
VEN* [41] VGG16 CPC 0.6194 0.0930
VEN [41] VGG16 CPC 0.6670 0.0837
ASM-Net [37] VGG16 CPC 0.7084 0.0755
LVRN* [28] VGG16 CPC 0.7373 0.0674
GAIC(ext)* [44] MobileNetV2 GAICD 0.7126 0.0724
GAIC(ext) [44] VGG16 CPC 0.7260 0.0708
CGS [23] VGG16 CPC 0.7331 0.0689
CACNet [15] VGG16 FCDB 0.7364 0.0676

Ours(basic) VGG16 CPC 0.7263 0.0695
Ours VGG16 CPC 0.7469 0.0648

Table 2. For the baselines with released models, we evaluate their models on the
test set and report the results (marked with *). However, their backbone and
training data may be different from our setting.

For fair comparison, we use the pretrained VGG16 [34] as the backbone for
all baselines and train them on GAICD dataset, based on their released code or
our own implementation. For our method, we additionally report the results of a
basic version (“Ours(basic)”) without using partition-aware feature or content-
preserving feature (row 1 in Table 1). It can be seen that Ours(basic) yields
similar results with GAIC(ext) because they adopt the same region feature ex-
tractor (RoI+RoD). Among the baselines, GAIC(ext)* [44] and CGS [23] are two
competitive ones, owning to the more advanced architecture and the exploita-
tion of mutual relations between different crops. Finally, our model outperforms
all the state-of-the-art methods, which demonstrates that our method is more
well-tailored for the human-centric image cropping task.

Apart from GAICD dataset [43], we also collect 176 and 39 human-centric
images from existing FCDB [5] and FLMS [11] datasets, respectively, and com-
pare our method with the state-of-the-art methods on these two datasets in
Table 3. Following [41,37], we train the model on CPC dataset [41], and use
IoU and Disp as evaluation metrics. Additionally, we adopt the strategy in [28]
to generate candidate crops and return the top-1 result as best crop without
extra post-processing for all methods except CACNet [15], which is trained to
regress the best crop directly. As shown in Table 3, our proposed model produces
better results, but the performance gain is less significant than that on GAICD
dataset. As claimed in [43], one possible reason is that the IoU based metrics
used in FCDB and FLMS datasets are not very reliable for evaluating cropping



12 B. Zhang et al.

Fig. 4. Qualitative comparison of different methods on human-centric images. We show
the best crops predicted by different methods, which demonstrate that our method can
generate better results close to the ground-truth best crops (yellow)

Fig. 5. Examples of partition-aware feature enhancing the discrimination power of
basic feature. Given the ground-truth best crop of an image (yellow) and another crop
with similar content (red), we show their scores predicted by using basic feature (out
of bracket) and partition-aware feature (in bracket), respectively

performance. Furthermore, we also evaluate our method on both human-centric
and non-human-centric images, and present results in Supplementary.
Qualitative comparison: We further conduct qualitative comparison to demon-
strate the ability of our model in Figure 4. For each input image, we show the
source image and the returned best crops by different methods, which demon-
strates that our method can perform more reliable content preservation and
removal. For example, in the first row of Figure 4, our method preserves more
content on the left of human, probably because the person walks right to left,
and reduces the top area that may hurt the image composition quality. In the
second row, given the opposite face orientations to the first row, our model
performs obviously different content preservation on the left/right sides of the
human, yielding visually appealing crop. More qualitative results are shown in
Supplementary.

4.5 Analysis of the Partition-aware Feature

To take a close look at the impact of partition-aware feature on candidate crop
evaluation, we use the region features extracted from basic feature map and
partition-aware feature map to predict scores for crops, respectively, correspond-
ing to row 1 and row 2 in Table 1. As shown in Figure 5, to ensure that crop
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Fig. 6. Visualization of the heatmap that indicates aesthetically important content.
We show the source image, its pseudo ground-truth heatmap, the heatmaps estimated
by conventional convolution(“Conv”) / graph convolution (“GCN”). We also draw the
ground-truth (resp., predicted) best crops in yellow (resp., blue) boxes

pairs have different aesthetic value yet similar content, for each image, we gen-
erate crop pair by moving its ground-truth best crop horizontally or vertically,
in which the new crop still contains the human subject. We can see that using
partition-aware feature consistently leads to larger and more reasonable score
changes than basic feature despite the various face orientations or postures of
the human in Figure 5, which is beneficial for correctly ranking crops with similar
content.

4.6 Analysis of the Heatmap

The ablation study in Section 4.3 demonstrates the superiority of graph-based
relation mining (“GCN”) over the conventional convolution (“Conv”) when pre-
dicting the heatmap of important content (see row 7,8 in Table 1). To reveal
their difference qualitatively, we show the source image, its pseudo ground-truth
heatmap, the heatmap predicted by “conv”/“graph” convolution in Figure 6.
With GCN learning the mutual relation between different regions, the model can
make a more reasonable estimation of important content, especially the border
area. For example, in the source image in the first row, we show an unpleasant
outer area in the red dashed box, which should be removed for composing a
good crop. The unimportant content (low values in the heatmap) predicted by
“GCN” completely covers the unpleasant area, while “Conv” only covers part
of the unpleasant area. In the second row, unlike “Conv” that only deems the
area around person as important, “GCN” predicts relatively high values for the
area behind person, indicating that preserving such area in a crop may be ben-
eficial. In summary, “GCN” can facilitate important content localization and
contributes to more informative content-preserving feature.

5 User Study

Given the subjectiveness of aesthetic assessment task, we conduct user study to
compare different methods, in which we employ total 265 human-centric images,
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Fig. 7. Some failure cases in the test set of GAICD dataset [43]. For each image, the
ground-truth and predicted best crops are drawn in yellow and red boxes, respectively

176 from FCDB [5], 50 from GAICD [43], and 39 from FLMS [11]. For each image,
we generate 7 best crops by using seven different methods: VFN [6], VEN [41],
ASM-Net [37], LVRN [28], GAIC(ext) [44], CGS [23], and our proposed method.
20 experts are invited to select the best result for each image. Then we calculate
the percentage that the results generated by different methods are selected as
the best ones. The percentages of the abovementioned six baselines are 1.7%,
5.6%, 9.0%, 14.6%, 15.7%, and 22.5%, respectively, while our method achieves
the highest percentage 30.9% and clearly outperforms the other methods.

6 Limitations

Our method can generally produce reliable crops for human-centric images, but
it still has some failure cases. Some failure cases in the test set of GAICD dataset
[43] are shown in Figure 7, where the best crops produced by our method are
far away from the ground-truth one and rank relatively low in the ground-truth
annotations. For these examples, our method tends to preserve similar areas on
the left/right side of the human subject in the best crop, probably because the
complicated backgrounds and confusing human information (e.g ., inconsistent
orientations between face and body) compromise the effectiveness of partition-
aware feature and content-preserving feature.

7 Conclusion

In this paper, we have proposed a human-centric image cropping method with
novel partition-aware and content-preserving features. The partition-aware fea-
ture allows to treat different regions in a candidate crop differently conditioned
on the human information. The content-preserving feature represents how well
each candidate crop preserves the important content. Extensive experiments
have demonstrated that the proposed method can achieve the best performance
on human-centric image cropping task.
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