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Fig. 1: Architecture of Feature Flow Residual Dense Backbone (FF-RDB) Mod-
ule based on Residual Dense Block [16]. It is modified from [7,8] and DownShuffle
layer distributes the motion information into channel axis [7,8].

1 Details of Architecture for DeMFI-Net

1.1 DeMFI-Netbs

Feature Flow Residual Dense Backbone (FF-RDB) Module The fea-
ture flow residual dense backbone (FF-RDB) module first takes four consecutive
blurry input frames (B−1, B0, B1, B2). It is similar to a backbone network of
[8,7] and the number of output channels is modified to 133 (= 64×2+2×2+1).
As shown in Fig. 1 (a), it consists of one DownShuffle layer and one UpShuf-
fle layer [9], six convolutional layers, and twelve residual dense blocks [16] that
are each composed of four Conv3’s, one Conv1, and four ReLU functions as in
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Fig. 1 (b). All the hierarchical features obtained by the residual dense blocks
are concatenated for successive network modules. The 133 output channels are
composed of 64 × 2 for two feature maps (F ′

0, F
′
1) followed by tanh activation

functions, 2 × 2 two bidirectional feature-domain flows (f01, f10) and 1 for an
occlusion map logit (ot0).
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Fig. 2: Architecture of U-Net-based Refine Module (RM). NNupsample denotes
nearest neighborhood upsampling.

U-Net-based Refine Module (RM) The U-Net-based [6] Refine Module
(RM) in Fig. 2 takesAgg1 as an input to refine F b

0 , F
b
1 , ft0, ft1 and ot0 in a resid-

ual learning manner as [F r
0 , F

r
1 , f

r
t0, f

r
t1, o

r
t0] = RM(Agg1) + [F b

0 , F
b
1 , ft0, ft1, ot0]

where Agg1 is the aggregation of [F b
0 , Ft, F

b
1 , ft0, ft1, ot0, f01, f10] in the concate-

nated form.

1.2 DeMFI-Netrb

Booster Module Booster Module iteratively updates fP to perform PWB
for Sr

0 , S
r
1 obtained from DeMFI-Netbs. The Booster Module is composed of

Mixer and GRU-based Booster (GB), and it first takes a recurrent hidden state
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(F rec
i−1) and fP

i−1 at i-th recursive boosting as well as an aggregation of several

components in the form of Agg2 = [Sr
0 , S

r
t , S

r
1 , B−1, B0, B1, B2, f01, f10, fF] as

an input to yield two outputs of F rec
i and ∆i−1 that is added on fP

i−1. Note
that f0P = fF and Agg2 is not related to i-th recursive boosting. The updating
process is given as follows:

Mi−1 = Mixer([Agg2, fP
i−1]) (1)

[F rec
i ,∆i−1] = GB([F rec

i−1,Mi−1]) (2)

fP
i = fP

i−1 +∆i−1, (3)

where the initial feature F rec
0 is obtained as a 64-channel feature via channel

reduction for Conv1([F
r
0 , F

r
t , F

r
1 ]) of 192 channels. More details about both Mixer

and the updating process of GB are described in the following subsections.
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Fig. 3: Architecture of Mixer in Booster Module. It is designed to blend two
information of Agg2 and fP

i−1. Eq. 5 means an equation in the main paper.

Mixer The first component in Booster Module is called Mixer. As shown in Fig.
3, Mixer first passesAgg2 and fP

i−1 through each independent set of convolution
layers as Conv7 − ReLU − Conv3 − ReLU, respectively, then yields Mi−1 via
Conv3 − ReLU − Conv3 − ReLU by taking concatenated outputs of the sets.
Mi−1 is consecutively used in GRU-based Booster (GB) as described in the
following subsection.

GRU-based Booster (GB) GRU-based Booster (GB) takes both Mi−1 and
F rec
i−1 as an input to finally produce an updated F rec

i which is consecutively

used to make ∆i−1 that is added on fP
i−1. GB adopts gated activation unit

based on the GRU cell [1] by replacing fully connected layers with two separable
convolutions of 1 × 5 (Conv1×5) and 5 × 1 (Conv5×1) as in [12] to efficiently
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increase a receptive field. The detailed process in GB is operated as follows:

z1×5
i = σ(Conv1×5([F

rec
i−1,Mi−1])) (4)

r1×5
i = σ(Conv1×5([F

rec
i−1,Mi−1])) (5)

F̂ rec,1×5
i = tanh(Conv1×5[r

1×5
i ⊙ F rec

i−1,Mi−1])) (6)

F rec,1×5
i = (1− z1×5

i )⊙ F rec
i−1 + z1×5

i ⊙ F̂ rec,1×5
i (7)

z5×1
i = σ(Conv5×1([F

rec,1×5
i ,Mi−1])) (8)

r5×1
i = σ(Conv5×1([F

rec,1×5
i ,Mi−1])) (9)

F̂ rec,5×1
i = tanh(Conv5×1([r

5×1
i ⊙ F rec,1×5

i ,Mi−1])) (10)

F rec
i = (1− z5×1

i )⊙ F rec,1×5
i + z5×1

i ⊙ F̂ rec,5×1
i (11)

∆i−1 = (Conv3 ◦ RL ◦ Conv3)(F
rec
i ). (12)

Please note that Eqs. (11) and (12) produce the final outputs (F rec
i , ∆i−1) of

the Booster Module as shown in Fig. 4 in the main paper, indicated by blue
arrows.

2 Additional Qualitative Comparison Results

Figs. 4, 5, 6, 7, 8 show the abundant visual comparisons of deblurring and MFI
(×8) performances for all the three test datasets. To better show them, we
generally show the cropped patches for each scene. Since the number of blurry
input frames for each method is different, two blurry center-input frames (B0,
B1) are averagely shown in the figures. As shown, the severe blurriness can easily
be shown between two center-input frames (B0, B1), which is very challenging
for VFI.

Our DeMFI-Nets, especially DeMFI-Netrb, better synthesize textures or pat-
terns (1st/2nd scenes of Fig. 4, Fig. 5, 1st scene of Fig. 8), precisely generate
thin poles (3rd scene of Fig. 4) or fast moving objects (2nd/3rd scenes of Fig.
7) and effectively capture letters (Fig. 5, Fig. 6, 1st scene of Fig. 7, 2nd/3rd/4th
scenes of Fig. 8), which tend to be failed by all the previous methods.

Especially, CFI methods such as TNTT and PRF are more hard to interpo-
late sharp frames at the time index 2/8 or 6/8 than 4/8 (center time instance)
within each scene because they can only produce intermediate frames of time
at a power of 2 in a recursive manner. As a result, the prediction errors are
accumulatively propagated to the later interpolated frames. On the other hand,
our DeMFI-Net framework adopts self-induced flow-based warping methodol-
ogy trained in an end-to-end manner, which finally leads to generate temporally
consistent sharp intermediate frames from blurry input frames. Also the results
of deblurring and MFI (×8) of all the SOTA methods are publicly available at
https://github.com/JihyongOh/DeMFI for easier comparison. Please note that
it is laborious but worth to get results for the SOTA methods in terms of MFI
(×8).

https://github.com/JihyongOh/DeMFI
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3 Limitations: Failure Cases

Extreme conditions such as tiny objects, low-light condition and large motion
would make the joint task very challenging. Fig. 9 shows the failure cases such
as tiny objects (1st scene), low-light condition (2nd scene) and large motion (3rd
scene), which would make the joint task very challenging. First, in the case of
splashed tiny objects with blurriness, it is very hard to capture sophisticated
motions from the afterimages of the objects so all the methods fail to delicately
synthesize the frames as GT’s. Second, in the case of low-light condition, it is
hard to distinguish the boundaries of the objects (green arrows) and to detect
tiny objects such as fast falling coffee beans (dotted green line), which deteri-
orates the overall performances of all the methods. Lastly, large and complex
motion with blurriness due to camera shaking also makes all the methods hard
to precisely synthesize final frames as well. In addition, as shown in Fig. 10,
misled attention further affect poor final results. We hope these kinds of failure
cases will motivate researchers for further challenging studies.

4 Visual Comparison with Demo Video

We provide a visual comparison video at https://youtu.be/J93tW1uwRy0 for
TNTT [5], UTI-VFI* (retrained ver.) [15], PRF [8] (a larger-sized version of
[7]) and DeMFI-Netrb (5,3) (ours), which all have adopted joint learning for
deblurring and VFI. The demo video shows several multi-frame interpolated (×8)
results played as 30fps for a slow motion, synthesized from blurry input frames of
30fps. All the results of the methods are adequately resized to be simultaneously
played at a single screen. Please take into account that YouTube240 test dataset
contains extreme motion with blurriness.

TNTT generally synthesize blurry visual results and PRF tends to show tem-
poral inconsistency for MFI (×8). These two joint methods simply do CFI, not
for arbitrary time t. Therefore, their methods must be recursively applied after
each center frame is interpolated for MFI, which causes error propagation into
later-interpolated frames. Although UTI-VFI* shows better visual results than
above two CFI joint methods, it tends to produce some artifacts especially on
large motion with blurriness and tiny objects such as splash of water. This ten-
dency is attributed to the error accumulation from the dependency on fP quality
inevitably obtained by pretrained PWC-Net [11], where adoption of a pretrained
net also brings a disadvantage in terms of both Rt and #P (+8.75M). On the
other hand, our DeMFI-Net framework is based on the self-induced feature-
and pixel-domain flows without any help of pretrained optical flow networks, to
finally better interpolate the sharp frames.

5 Number of Inputs

On the other hand, we trained DeMFI-Netrb(5,3) with only two input frames,
called DeMFI-Net2f , during model development. This model yielded an aver-
age PSNR/SSIM/tOF of 33.23/0.9376/0.498 for Adobe240, 32.20/0.9228/0.485

https://youtu.be/J93tW1uwRy0
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for YouTube240 and 30.21/0.8957/0.546 for GoPro240, which were much infe-
rior than original DeMFI-Netrb(5,3) trained with 4 input frames as shown in
Table 2 of main paper. Simply taking more blurry input frames strongly helps
the network to capture useful latent information such as a temporal tendency
and a motion information due to accumulation of light [2,3,13], which finally
increases the joint performance. It is also worth to note that DeMFI-Net2f still
outperforms all the previous methods in Table 2 of main paper.

6 Bolstered Features into FWB

We newly trained DeMFI-Netbs under a setting of feeding bolstered features into
FWB, which results in 33.83/0.9410/0.471 for Adobe240, 32.83/0.9263/0.467 for
YouTube240 and 30.76/0.9009/0.537 for GoPro240. These results are better than
those of the original DeMFI-Netbs so it can be concluded that the placing the
bolstered features earlier is also important to improve joint performances.

7 Arbitrary Time ×M

Fig. 11 shows qualitative interpolated results for M = 3, which supports the
statement for arbitrary interpolation of our DeMFI-Net. There is also a 30fps
demo video for M = 5, 13, 19 at https://github.com/JihyongOh/DeMFI.

8 Occlusion Maps

Occlusion maps have continuous values due to sigmoid, so features/images at
both time indices (0, 1) jointly contribute to those at t by adopting Eq. (2) (in
main paper) which is widely used in VFI methods [4,10,14]. Training tends to
diverge without a constraint of ot1 = 1−ot0 [4]. Fig. 12 shows several components
in PWB corresponding to Fig. 8 in main paper, when person moves fast to the
right. It should also be noted that both (1-t) and t are respectively multiplied
on each term in PWB to reflect influences according to temporal distances. On
the other hand, the subscript t of ot0 can be dropped for a first FWB because
it does not related to t for the first FWB, but should be kept for second FWB
and PWB.

https://github.com/JihyongOh/DeMFI
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Fig. 4: Visual comparisons for MFI results on Adobe240. Best viewed in zoom.
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Fig. 5: Visual comparisons for MFI results on Adobe240. Best viewed in zoom.
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Fig. 7: Visual comparisons for MFI results on YouTube240. Best viewed in zoom.
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Fig. 8: Visual comparisons for MFI results on GoPro240. Best viewed in zoom.
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Fig. 10: Two failure cases in extreme conditions, corresponding to Fig. 9 for S4/8.
As shown, misled attention further affect poor final results.
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Fig. 11: Qualitative interpolated results for M = 3. Best viewed in zoom.

f 
r
t0  (∈fF) f 

2
t0 (∈fI)

F 
b

 f E

• • +• (1-t)  t •Wb(S
r
0, fp

1
t0) Wb(S

r
1, fp

1
t1)op

1
t0 op

1
t1
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