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Abstract. We propose a novel joint deblurring and multi-frame in-
terpolation (DeMFI) framework in a two-stage manner, called DeMFI-
Net, which converts blurry videos of lower-frame-rate to sharp videos at
higher-frame-rate based on flow-guided attentive-correlation-based fea-
ture bolstering (FAC-FB) module and recursive boosting (RB), in terms
of multi-frame interpolation (MFI). Its baseline version performs feature-
flow-based warping with FAC-FB module to obtain a sharp-interpolated
frame as well to deblur two center-input frames. Its extended version
further improves the joint performance based on pixel-flow-based warp-
ing with GRU-based RB. Our FAC-FB module effectively gathers the
distributed blurry pixel information over blurry input frames in feature-
domain to improve the joint performances. RB trained with recursive
boosting loss enables DeMFI-Net to adequately select smaller RB iter-
ations for a faster runtime during inference, even after the training is
finished. As a result, our DeMFI-Net achieves state-of-the-art (SOTA)
performances for diverse datasets with significant margins compared to
recent joint methods. All source codes, including pretrained DeMFI-Net,
are publicly available at https://github.com/JihyongOh/DeMFI.
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1 Introduction

Video frame interpolation (VFI) converts a low frame rate (LFR) video to a high
frame rate (HFR) one between given consecutive input frames, thereby providing
a visually better motion-smoothed video which is favorably perceived by human
visual systems (HVS) [24,25]. Therefore, it is widely used for diverse applications,
such as adaptive streaming [50], slow motion generation [18,2,30,28,36,42] and
space-time super resolution [22,49,15,48,51,21,52,53,9].

On the other hand, motion blur is necessarily induced by either camera shake
[1,56] or object motion [32,57] due to the accumulations of the light during
the exposure period [14,16,47] when capturing videos. Therefore, eliminating
the motion blur, called deblurring, is essential to synthesize sharp intermediate
frames while increasing temporal resolution. The discrete degradation model for
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blurriness is generally formulated as follows [20,29,43,19,39,40,13]:

B := {B2i}i=0,1,... = { 1

2τ + 1

iK+τ∑
j=iK−τ

Sj}i=0,1,..., (1)

where Sj , B, K and 2τ + 1 denote latent sharp frame at time j in HFR,
observed blurry frames at LFR, a factor that reduces frame rate of HFR to LFR
and an exposure time period, respectively. However, a few studies have addressed
the joint problem of video frame interpolation with blurred degradation namely
as a joint deblurring and frame interpolation problem. To handle this problem
effectively, five works [19,39,40,58,13] delicately have shown that joint approach
is much better than the cascade of two separate tasks such as deblurring and VFI,
which may lead to sub-optimal solutions. However, the methods [19,39,40,13]
simply perform a center -frame interpolation (CFI) between two blurry center-
input frames. This implies that they can only produce intermediate frames of
time at a power of 2 in a recursive manner, not for arbitrary time. As a result,
prediction errors are accumulatively propagated to the later interpolated frames.

To overcome these limitations for improving the quality in terms of multi-
frame interpolation (MFI) with a temporal up-scaling factor ×M , we propose
a novel framework for joint Deblurring and Multi-Frame Interpolation, called
DeMFI-Net, to accurately generate sharp-interpolated frames at arbitrary time
t based on flow-guided attentive-correlation-based feature bolstering (FAC-FB)
module and recursive boosting (RB). However, using a pretrained optical flow
estimator is not optimal for blurry input frames and is computationally heavy.
So, our DeMFI-Net is designed to learn self-induced feature-flows (fF ) and pixel-
flows (fP ) in warping the blurry inputs for synthesizing a sharp-interpolated
frame at arbitrary time t, without any pretrained optical flow networks.

dDeMFI-Netbs

(Fig. 2)

Recursive 

Boosting↑ 

(Fig. 4)

feature-flow-based 

FWB 0 1
, ,r r r

t
S S S

0 1
, ,N N N

t
S S S

DeMFI-Netrb

pixel-flow-based 

PWB

B-1
B0

B1
B2

x N

Fig. 1: Overview of our DeMFI-Net framework designed in a two-stage manner.

Direct estimation of flows for DeMFI at arbitrary t from the blurry input
frames is a very challenging task. To effectively handle it, our DeMFI-Net is
designed by a two-stage scheme as shown in Fig. 1: (i) the first stage (base-
line version, DeMFI-Netbs) jointly performs DeMFI based on feature-flow-based
warping and blending (FWB) by learning fF to obtain a sharp-interpolated
frame of t ∈ (0, 1) as well to deblur two blurry center-input frames (B0, B1)
of t = 0, 1 from four blurry input frames (B−1, B0, B1, B2), where subscript
means a corresponding time index; and (ii) the second stage (recursive boosting,
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DeMFI-Netrb) further boosts the joint performance based on pixel-flow-based
warping and blending (PWB) by iteratively updating fP with the help of GRU-
based RB. It is trained with recursive boosting loss that enables to choose smaller
iterations for a faster inference during test time, even after the finished training.

On the other hand, the blurry input frames implicitly contain abundant useful
latent information due to an accumulation of light [14,16,47], as also shown in
Eq. 1. Motivated from this, we propose a novel flow-guided attentive-correlation-
based feature bolstering (FAC-FB) module that can effectively bolster the source
feature F0 (or F1) by extracting the useful information in the feature-domain
from its counterpart feature F1 (or F0) in guidance of self-induced flow f01
(or f10). By doing so, the distributed pixel information over four blurry input
frames can be effectively gathered into the corresponding features of the two
center-input frames which can then be utilized to pefrom DeMFI effectively.

In the performance evaluation, both two types of DeMFI-Nets outperform
previous SOTA methods for three diverse datasets including both various real-
world scenes and larger-sized blurry videos with large margins. Extensive ex-
periments with diverse ablation studies have demonstrated the effectiveness of
our framework. All source codes including pretrained DeMFI-Net are publicly
available at https://github.com/JihyongOh/DeMFI.

2 Related Works

Center-Frame Interpolation (CFI). The VFI methods on CFI only inter-
polate a center -frame between two consecutive sharp input frames. CAIN [6]
employs a channel attention module to extract motion information effectively.
FeFlow [12] adopts deformable convolution [8] in a center frame generator. Ada-
CoF [26] proposes a warping module in a generalized form to handle motions.
However, all the above methods simply do CFI for ×2 increase in frame rates.
This approach tends to limit the performance for MFI because they must be
recursively applied after each center frame is interpolated, which causes error
propagation into later-interpolated frames.
Multi-Frame Interpolation (MFI). To effectively synthesize an intermediate
frame at arbitrary time t, many VFI methods on MFI for sharp videos adopt
a flow-based warping operation. Quadratic video frame interpolation [54,27]
adopts the acceleration-aware approximation for the flows in a quadratic form
to handle nonlinear motion. DAIN [2] proposes flow projection layer to approxi-
mate the flows according to depth information. SoftSplat [31] performs forward
warping in feature space with learning-based softmax weights for the occluded
region. ABME [35] proposes an asymmetric bilateral motion estimation based on
bilateral cost volume [34]. XVFI [42] introduces a recursive multi-scale shared
structure to capture extreme motion. However, all the above methods handle
MFI problems for sharp input frames, which may not work well for blurry videos.
Joint Deblurring and Frame Interpolation. The recent studies on the joint
deblurring and frame interpolation tasks [19,39,40,58,13] have consistently shown
that the joint approaches are much better than the simple cascades of two sep-
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arately pretrained networks of deblurring and VFI. TNTT [19] first extracts
sharp keyframes which are then subsequently used to generate intermediate clear
frames by jointly optimizing a cascaded scheme. BIN [39] and its larger-sized ver-
sion PRF [40] adopts a ConvLSTM-based [41] recurrent pyramid framework to
effectively propagate the temporal information over time. ALANET [13] employs
the combination of both self- and cross-attention modules to adaptively fuse fea-
tures in latent spaces. However, all the above four joint methods simply perform
the CFI for blurry videos so their performances are limited to MFI. UTI-VFI
[58] can interpolate the sharp frames at arbitrary time t in two-stage manner. It
first extracts key-state frames, and then warps them to arbitrary time t. How-
ever, its performance depends on the quality of flows obtained by a pretrained
optical flow network which also increases the complexity (+8.75M parameters).

Distinguished from all the above methods, our proposed framework elabo-
rately learns self-induced fF and fP to effectively warp the given blurry input
frames for synthesizing a sharp-interpolated frame at arbitrary time, without
any pretrained optical flow network. As a result, our method not only outper-
forms the previous SOTA methods in structural-related metrics but also shows
higher temporal consistency of visual quality performance for diverse datasets.

3 Proposed Method : DeMFI-Net

Design Considerations. Our proposed DeMFI-Net aims to jointly interpolate
a sharp intermediate frame at arbitrary time t and deblur the blurry input
frames. Most of the previous SOTAmethods [19,40,39,13] only consider CFI (×2)
so need to perform them recursively at the power of 2 for MFI (×M) between
two consecutive inputs. Therefore, later-interpolated frames must be sequentially
created based on their previously-interpolated frames, so the errors are inherently
propagated into later-interpolated frames with lower visual qualities. To avoid
this, DeMFI-Net is designed to interpolate intermediate frames at multiple time
instances without dependency among them. That is, the multiple intermediate
frames can be parallelly generated. To synthesize an intermediate frame at time t
∈ (0, 1) instantaneously, we adopt a backward warping [17] which is widely used
in VFI research [18,54,2,27,42] to interpolate the frames with estimated flows
from time t to 0 and 1, respectively. However, direct usage of a pretrained optical
flow network is not optimal for blurry frames and even computationally heavy.
So our DeMFI-Net is devised to learn self-induced flows in both feature- and
pixel-domain via an end-to-end learning. Furthermore, to effectively handle the
joint task of deblurring and interpolation, DeMFI-Net is designed in a two-stage
manner: baseline version (DeMFI-Netbs) and recursive boosting version (DeMFI-
Netrb) as shown in Fig. 1. DeMFI-Netbs first performs feature-flow-based warping
and blending (FWB) in feature-domain where the resulting learned features tend
to be more sharply constructed from the blurry inputs. It produces the two
deblurred center-inputs and a sharp-interpolated frame at t. Then the output of
DeMFI-Netbs is further improved in DeMFI-Netrb via the residual learning, by
performing pixel-flow-based warping and blending (PWB).
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Fig. 2: DeMFI-Netbs based on feature-flows.

3.1 DeMFI-Netbs

Fig. 2 shows the architecture of DeMFI-Netbs that first takes four consecutive
blurry input frames (B−1, B0, B1, B2). Then, feature flow residual dense back-
bone (FF-RDB) module is followed which is similar to a backbone network of
[40,39], described in Supplemental. Its modified 133 (= 64×2+2×2+1) output
channels are composed of 64× 2 for two feature maps (F ′

0, F
′
1) followed by tanh

functions, 2 × 2 for two bidirectional feature-domain flows (f01, f10) and 1 for
an occlusion map logit (ot0) that is analyzed in detail in Supplemental.

t-Alignment. The intermediate flows f0t (or f1t) from time 0 (or 1) to time
t are linearly approximated as f0t = t · f01 (or f1t = (1 − t) · f10) based on
the f01, f10. Then we apply the complementary flow reversal (CFR) [42] for f0t
and f1t to finally approximate ft0 and ft1. Finally, we obtain t-aligned feature
Ft by applying the backward warping (Wb) [17] for features F

′
0, F

′
1 followed by

a blending operation with the occlusion map. This is called feature-flow-based
warping and blending (FWB) (green box in Fig. 2) as follows:

Ft = FWB(F ′
0, F

′
1, ft0, ft1, ot0, t)

=
(1− t) · ōt0 ·Wb(F

′
0, ft0) + t · ōt1 ·Wb(F

′
1, ft1)

(1− t) · ōt0 + t · ōt1
, (2)

where ōt0 = σ(ot0) and ōt1 = 1− ōt0, and σ is a sigmoid activation function.

FAC-FB Module. Since the pixel information is spread over the blurry input
frames due to the accumulation of light [14,16,47] as in Eq. 1, we propose a
novel FAC-FB module that can effectively bolster the source feature F ′

0 (or F ′
1)

by extracting the useful information in the feature-domain from its counterpart
feature F ′

1 (or F ′
0) in guidance of self-induced flow f01 (or f10). The FAC-FB

module in Fig. 3 (a) first encodes the two feature maps (F0, F1) by passing
the outputs (F ′

0, F
′
1) of the FF-RDB module through its five residual blocks

(ResB’s). The cascade (ResB×5) of the five ResB’s is shared for F ′
0 and F ′

1.

After obtaining the F0 and F1, the flow-guided attentive correlation (FAC)
in Fig. 3 (a) computes attentive correlation of F0 with respect to the positions of
its counterpart feature F1 pointed by the self-induced flow f01 as shown in Fig.
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3 (b). The FAC on F0 with respect to F1 guided by f01 is calculated as:

FAC01(F0, F1, f01)(x) = [
∑

cw Conv1(F0(x))⊙
Conv1(F1(x+ f01(x)))] · Conv1(F1(x+ f01(x))), (3)

where F1(x+ f01(x)) is computed by bilinear sampling on a feature location x.
⊙,

∑
cw and Convi denote element-wise multiplication, channel-wise summation

and i× i-sized convolution, respectively. The square bracket in Eq. 3 becomes a
single-channel scaling map which is then stretched along the channel axis to be
element-wise multiplied to Conv1(F1(x+ f01(x))). Finally, the FAC-FB module
produces bolstered features F b

0 for F0 as:

F b
0 = w01 · F0 + (1− w01) · Conv1(FAC01)︸ ︷︷ ︸

≡ E0

(4)

where w01 is a single channel of spatially-variant learnable weights that are
dynamically generated by an embedded FAC01 via Conv1 (denoted as E0) and F0

according to w01 = (σ◦Conv3◦ReLU◦Conv3)([E0, F0]). [·] means a concatenation
along a channel axis. Similarly, FAC10 and F b

1 can be computed for F1 with
respect to F0 by f10. The FAC is computationally efficient because its attentive
correlation is only computed in the focused locations pointed by the flows. All
filter weights in the FAC-FB module are shared for both F ′

0 and F ′
1.

Refine Module. After the FAC-FB Module in Fig. 2, F b
0 , F

b
1 , ft0, ft1 and ot0 are

refined via the U-Net-based [38] Refine Module (RM) as [F r
0 , F

r
1 , f

r
t0, f

r
t1, o

r
t0] =

RM(Agg1)+[F b
0 , F

b
1 , ft0, ft1, ot0] whereAgg1 is the aggregation of [F b

0 , Ft, F
b
1 , ft0,

ft1, ot0, f01, f10] in the concatenated form. Then, we get the refined feature F r
t

at time t by F r
t = FWB(F r

0 , F
r
1 , f

r
t0, f

r
t1, o

r
t0, t) as similar to Eq. 2. Here, we de-

fine a composite symbol at time t by the combination of two feature-flows and
occlusion map logit as fF ≡ [fr

t0, f
r
t1, o

r
t0] to be used in recursive boosting.

Decoder I (D1). D1 is composed of ResB×5 and it is designed to have a
function: to decode a feature Fj at a time j to a sharp frame Sr

j . D1 is shared
for all the three features (F r

0 , F
r
t , F

r
1 ). The final sharp outputs of baseline ver-

sion DeMFI-Netbs are Sr
0 , S

r
t and Sr

1 decoded by D1, which would be applied
by L1 reconstruction loss (Lr

D1
) (Eq. 9). Although DeMFI-Netbs outperforms

the previous joint SOTA methods, its extension with recursive boosting, called
DeMFI-Netrb, can further improve the performance.
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Fig. 4: DeMFI-Netrb at i-th Recursive Boosting (RB) based on pixel-flows via
residual learning. The operation in the green box can recursively run N = Ntrn

times during training (Eq. 8), and then it can perform N = Ntst (< Ntrn) times
during testing for faster inference while maintaining high performance.

3.2 DeMFI-Netrb

Since we have already obtained sharp output frames Sr
0 , S

r
t , S

r
1 by DeMFI-Netbs,

they can further be sharpened based on the pixel-flows by recursive boosting via
residual learning. It is known that feature-flows (fF) and pixel-flows (fP) would
have similar characteristics [26,12]. Therefore, the fF obtained from the DeMFI-
Netbs are used as initial fP for recursive boosting. For this, we design a GRU
[5]-based recursive boosting for progressively updating fP to perform PWB for
two sharp frames at t = 0, 1 (Sr

0 , S
r
1) accordingly to boost the quality of a sharp

intermediate frame at t via residual learning which has been widely adopted for
effective deblurring [55,10,37,33,4]. Fig. 4 shows i-th recursive boosting (RB) of
DeMFI-Netrb, which is composed of Booster Module and Decoder II (D2).
Booster Module. Booster Module iteratively updates fP to perform PWB
for Sr

0 , S
r
1 obtained from DeMFI-Netbs. The Booster Module is composed of

Mixer and GRU-based Booster (GB), and it first takes a recurrent hidden state
(F rec

i−1) and fP
i−1 at i-th recursive boosting as well as an aggregation of several

components in the form of Agg2 = [Sr
0 , S

r
t , S

r
1 , B−1, B0, B1, B2, f01, f10, fF] as

an input to yield two outputs of F rec
i and ∆i−1 that is added on fP

i−1. Note
that f0P = fF and Agg2 is not related to i-th recursive boosting. The updating
process indicated by blue arrows in Fig. 4 is given as follows:

Mi−1 = Mixer([Agg2, fP
i−1]), (5)

[F rec
i ,∆i−1] = GB([F rec

i−1,Mi−1]), (6)

fP
i = fP

i−1 +∆i−1, (7)

where the initial feature F rec
0 is obtained as a 64-channel feature via channel

reduction for Conv1([F
r
0 , F

r
t , F

r
1 ]) of 192 channels. More details are provided for

the Mixer and the updating process of GB in Supplemental.
Decoder II (D2). D2 in Fig. 4 is composed of ResB×5. It fully exploits abun-
dant information of Agg3

i = [Sr
0 , S

r,i
t , Sr

1 , B−1, B0, B1, B2, f01, f10, fF, fP
i, F rec

i ]
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to generate the refined outputs [Si
0, S

i
t , S

i
1] = D2(Agg3

i )+ [Sr
0 , S

r,i
t , Sr

1 ] via resid-
ual learning, where Sr,i

t = PWB(Sr
0 , S

r
1 , fP

i, t) is operated by only using the
updated fP

i after the i-th RB to enforce the flows to be better boosted.
Loss Functions. The final total loss function Ltotal for Fig. 1 is given as:

Ltotal = Lr
D1

+
∑Ntrn

i=1 Li
D2︸ ︷︷ ︸

recursive boosting loss

, (8)

Lr
D1

= (
∑

j∈(0,t,1)∥Sr
j −GTj∥1)/3, (9)

Li
D2

= (
∑

j∈(0,t,1)∥Si
j −GTj∥1)/3, (10)

where GTj and Ntrn denote the ground-truth sharp frame at time j and total
numbers of RB for training, respectively. We denote DeMFI-Netrb(Ntrn, Ntst) as
DeMFI-Netrb that is trained with Ntrn and is tested by Ntst recursive boosting.
The second term in the right-hand side of Eq. 8 is called as a recursive boosting
loss. It should be noted that DeMFI-Netrb is jointly trained with the architecture
of DeMFI-Netbs in an end-to-end manner using Eq. 8 without any complex
learning schedule, and DeMFI-Netbs is trained with only Eq. 9 from the scratch.

On the other hand, the design consideration for Booster Module was partially
inspired from the work [46] which is here carefully modified for more complex
process of DeMFI; (i) Due to the absence of ground-truth for the pixel-flows
from t to 0 and 1, self-induced pixel-flows are instead learned by adopting D2

and the recursive boosting loss; (ii) fP is not necessarily to be learned precisely,
instead to improve the final joint performance of sharpening the Sr

0 , S
r
t , S

r
1 via

PWB and D2 as shown in Fig. 4. So, we do not block any backpropagation to
fP per every RB unlike in [46], to fully focus on boosting the performance.

4 Experiments

Training Dataset. To train our network, we use Adobe240 dataset [43] which
contains 120 videos of 1,280×720 @ 240fps. We follow a blurry formation setting
of [39,40,13] by averaging 11 consecutive frames at a stride of 8 frames over time
to synthesize blurry frames captured by a long exposure, which finally generates
blurry frames of 30fps with K = 8 and τ = 5 in Eq. 1. The resulting blurry
frames are downsized to 640×352 as done in [39,40,13].
Implementation Details. Each training sample is composed of four consecu-
tive blurry input frames (B−1, B0, B1, B2) and three sharp-target frames (GT0,
GTt, GT1) where t is randomly determined in multiple of 1/8 with 0 < t < 1 as
in [42]. The filter weights of the DeMFI-Net are initialized by the Xavier method
[11] and the mini-batch size is set to 2. DeMFI-Net is trained with a total of
420K iterations (7,500 epochs) by using the Adam optimizer [23] with the initial
learning rate set to 10−4 and reduced by a factor of 2 at the 3,750-, 6,250- and
7,250-th epochs. The total numbers of recursive boosting are empirically set to
Ntrn = 5 for training and Ntst = 3 for testing. We construct each training sam-
ple on the fly by randomly cropping a 256 × 256-sized patch from blurry and
clean frames, and it is randomly flipped in both spatial and temporal directions
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for data augmentation. Training takes about five days for DeMFI-Netbs and ten
days for DeMFI-Netrb by using an NVIDIA RTX™ GPU with PyTorch.

4.1 Comparison to Previous SOTA Methods

We mainly compare our DeMFI-Net with five previous joint SOTA methods;
TNTT [19], UTI-VFI [58], BIN [39], PRF [40] (a larger-sized version of BIN)
and ALANET [13], which all have adopted joint learning for deblurring and
VFI. They all have reported better performance than the cascades of separately
trained VFI [18,3,2] and deblurring [45,49] networks. It should be noted that
the four methods of TNTT, BIN, PRF and ALANET simply perform CFI (×2),
not at arbitrary t but at the center time t = 0.5. So, they have to perform MFI
(×8) recursively based on previously interpolated frames, which causes to prop-
agate interpolation errors into later-interpolated frames. For experiments, we
delicately compare them in two aspects of CFI and MFI. For MFI performance,
temporal consistency is measured such that the pixel-wise difference of motions
are calculated in terms of tOF [7,42] (the lower, the better) for all 7 interpolated
frames and deblurred two center frames for each blurry test sequence (scene).
We also retrain the UTI-VFI with the same blurry formation setting [39,40,13]
for the Adobe240 for fair comparison, to be denoted as UTI-VFI*.
Test Dataset. We use three datasets for evaluation: (i) Adobe240 dataset [43],
(ii) YouTube240 dataset and (iii) GoPro240 dataset (CC BY 4.0 license) [29] that
contains large dynamic object motions and camera shakes. For the YouTube240,
we directly selected 60 YouTube videos of 1,280×720 at 240fps by considering
to include extreme scenes captured by diverse devices. Then they were resized
to 640×352 as done in [39,40,13]. The Adobe240 contains 8 videos of 1,280×720
resolution at 240 fps and was also resized to 640×352, which is totally composed
of 1,303 blurry input frames. On the other hand, the GoPro240 has 11 videos with
total 1,500 blurry input frames but we used the original size of 1,280×720 for an
extended evaluation in larger-sized resolution. Please note that all test datasets
are also temporally downsampled to 30 fps with the blurring as [39,40,13].
Quantitative Comparison. Table 1 shows the quantitative performance com-
parisons for the previous SOTA methods including the cascades of deblurring
and VFI methods with the Adobe240, in terms of deblurring and CFI (×2). Most
results of the previous methods in Table 1 are brought from [39,40,13], except
those of UTI-VFI (pretrained, newly tested), UTI-VFI* (retrained, newly tested)
and DeMFI-Nets (ours). Please note that all runtimes (Rt) in Table 1 were mea-
sured for 640×352-sized frames in the setting of [39,40] with one NVIDIA RTX™
GPU. As shown in Table 1, our proposed DeMFI-Netbs and DeMFI-Netrb clearly
outperform all the previous methods with large margins in both deblurring and
CFI performances, and the number of model parameters (#P) for our methods
are the second- and third-smallest with smaller Rt compared to PRF. In partic-
ular, DeMFI-Netrb(5,3) outperforms ALANET by 1dB and 0.0093 in terms of
PSNR and SSIM, respectively for average performances of deblurring and CFI,
and especially by average 1.51dB and 0.0124 for center-interpolated frames at-
tributed to our warping-based framework with self-induced flows. Furthermore,
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Table 1: Quantitative comparisons on Adobe240 [43] for deblurring and center-
frame interpolation (×2).

Method Rt #P
Deblurring CFI (×2) Average

(s) (M) PSNR SSIM PSNR SSIM PSNR SSIM

B0, B1 - - 28.68 0.8584 - - - -
SloMo [18] - 39.6 - - 27.52 0.8593 - -
MEMC [3] - 70.3 - - 30.83 0.9128 - -
DAIN [2] - 24.0 - - 31.03 0.9172 - -

SRN [45]+[18] 0.27 47.7
29.42 0.8753

27.22 0.8454 28.32 0.8604
SRN [45]+[3] 0.22 78.4 28.25 0.8625 28.84 0.8689
SRN [45]+[2] 0.79 32.1 27.83 0.8562 28.63 0.8658

EDVR [49]+[18] 0.42 63.2
32.76 0.9335

27.79 0.8671 30.28 0.9003
EDVR [49]+[3] 0.27 93.9 30.22 0.9058 31.49 0.9197
EDVR [49]+[2] 1.13 47.6 30.28 0.9070 31.52 0.9203

UTI-VFI [58] 0.80 43.3 28.73 0.8656 29.00 0.8690 28.87 0.8673
UTI-VFI* 0.80 43.3 31.02 0.9168 32.67 0.9347 31.84 0.9258
TNTT [19] 0.25 10.8 29.40 0.8734 29.24 0.8754 29.32 0.8744
BIN [39] 0.28 4.68 32.67 0.9236 32.51 0.9280 32.59 0.9258
PRF [40] 0.76 11.4 33.33 0.9319 33.31 0.9372 33.32 0.9346

ALANET [13] - - 33.71 0.9329 32.98 0.9362 33.34 0.9355

DeMFI-Netbs 0.38 5.96 33.83 0.9377 33.93 0.9441 33.88 0.9409
DeMFI-Netrb(1,1) 0.51 7.41 34.06 0.9401 34.35 0.9471 34.21 0.9436
DeMFI-Netrb(5,3) 0.61 7.41 34.19 0.9410 34.49 0.9486 34.34 0.9448

RED: Best performance, BLUE: Second best performance.
Rt: The runtime on 640×352-sized frames (s), UTI-VFI*: retrained version.
#P: The number of parameters (M), ALANET: no source code for testing.

even our DeMFI-Netbs is superior to all previous methods which are dedicatedly
trained for CFI.

Table 2 shows quantitative comparisons of the joint methods for the three
test datasets in terms of deblurring and MFI (×8). As shown in Table 2, all the
three versions of DeMFI-Net significantly outperform the previous joint meth-
ods, which shows a good generalization of our DeMFI-Net framework. Fig. 5
shows PSNR profiles for MFI results (×8). As shown, the CFI methods such as
TNTT and PRF tend to synthesize worse intermediate frames than the meth-
ods of interpolation at arbitrary time like UTI-VFI and our DeMFI-Net. This is
because the error propagation is accumulated recursively due to the inaccurate
interpolations by the CFI methods, which also has been inspected in VFI for
sharp input frames [42]. On the other hand, we also recursively do CFI (×2)
three times to measure sequential inference performances of DeMFI-Netrb(5,3),
indicated by ‘DeMFI-seq ’ of pink color in Fig. 5, which also clearly shows that
the errors are accumulatively propagated into the later interpolated frames.

Although UTI-VFI can interpolate the frames at arbitrary t by adopting
the PWB combined with QVI [54], its performances inevitably depend on fP
quality obtained by PWC-Net [44], where adoption of a pretrained net brings a
disadvantage in terms of both Rt and #P (+8.75M). It is worthwhile to note that
our method also shows the best performances in terms of temporal consistency
with tOF by help of self-induced flows in interpolating frames at arbitrary t.

Qualitative Comparison. Fig. 6 shows the visual comparisons of deblurring
and VFI performances on YouTube240 and GoPro240 datasets, respectively. As
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Table 2: Quantitative comparisons of joint methods on Adobe240 [43],
YouTube240 and GoPro240 [29] datasets for deblurring and multi-frame inter-
polation (×8). Rt and FLOPS are measured on 640×352-sized frames.

Joint Method
Adobe240 [43] YouTube240

deblurring MFI (×8) Average deblurring MFI (×8) Average
PSNR/SSIM PSNR/SSIM PSNR/SSIM/tOF PSNR/SSIM PSNR/SSIM PSNR/SSIM/tOF

UTI-VFI [58] 28.73/0.8657 28.66/0.8648 28.67/0.8649/0.578 28.61/0.8891 28.64/0.8900 28.64/0.8899/0.585
UTI-VFI* 31.02/0.9168 32.30/0.9292 32.13/0.9278/0.445 30.40/0.9055 31.76/0.9183 31.59/0.9167/0.517
TNTT [19] 29.40/0.8734 29.45/0.8765 29.45/0.8761/0.559 29.59/0.8891 29.77/0.8901 29.75/0.8899/0.549
PRF [40] 33.33/0.9319 28.99/0.8774 29.53/0.8842/0.882 32.37/0.9199 29.11/0.8919 29.52/0.8954/0.771

DeMFI-Netbs 33.83/0.9377 33.79/0.9410 33.79/0.9406/0.473 32.90/0.9251 32.79/0.9262 32.80/0.9260/0.469
DeMFI-Netrb(1,1) 34.06/0.9401 34.15/0.9440 34.14/0.9435/0.460 33.17/0.9266 33.22/0.9291 33.21/0.9288/0.459
DeMFI-Netrb(5,3) 34.19/0.9410 34.29/0.9454 34.28/0.9449/0.457 33.31/0.9282 33.33/0.9300 33.33/0.9298/0.461

Joint Method Rt(s) #P(M) FLOPS
GoPro240 [29]

deblurring MFI (×8) Average
PSNR/SSIM PSNR/SSIM PSNR/SSIM/tOF

UTI-VFI [58] 0.80 43.3 3.23T 25.66/0.8085 25.63/0.8148 25.64/0.8140/0.716
UTI-VFI* 0.80 43.3 3.23T 28.51/0.8656 29.73/0.8873 29.58/0.8846/0.558
TNTT [19] 0.25 10.8 609.62G 26.48/0.8085 26.68/0.8148 26.65/0.8140/0.754
PRF [40] 0.76 11.4 3.2T 30.27/0.8866 25.68/0.8053 26.25/0.8154/1.453

DeMFI-Netbs 0.38 5.96 748.57G 30.54/0.8935 30.78/0.9019 30.75/0.9008/0.538
DeMFI-Netrb(1,1) 0.51 7.41 1.07T 30.63/0.8961 31.10/0.9073 31.04/0.9059/0.512
DeMFI-Netrb(5,3) 0.61 7.41 1.71T 30.82/0.8991 31.25/0.9102 31.20/0.9088/0.500

shown, the blurriness is easily visible between B0 and B1, which is challenging
for VFI. Our DeMFI-Nets show better generalized performances for the extreme
scenes (Fig. 6 (a)) and larger-sized videos (Fig. 6 (b)), also in terms of temporal
consistency. Due to page limits, more visual comparisons with larger sizes are
provided in Supplemental for all three test datasets. Also the results of deblurring
and MFI (×8) of all the SOTA methods are publicly available at https://

github.com/JihyongOh/DeMFI. Please note that it is laborious but worth to
get results for the SOTA methods in terms of MFI (×8).

Table 3: Ablation experiments on RB and
FAC in terms of total average of deblurring
and MFI (×8); ‘w/o FAC’ means F b

0 = F0.

Method
Rt #P Adobe240 YouTube240

(s) (M) PSNR SSIM PSNR SSIM

(a) w/o RB, w/o FAC 0.32 5.87 33.30 0.9361 32.54 0.9230
(b) w/o RB, f = 0 0.38 5.96 33.64 0.9393 32.74 0.9237
(c) w/o RB (DeMFI-Netbs) 0.38 5.96 33.79 0.9406 32.80 0.9260

(d) w/o FAC 0.45 7.32 33.73 0.9391 32.93 0.9260
(e) f = 0 0.51 7.41 34.08 0.9428 33.15 0.9279
(f) DeMFI-Netrb(1,1) 0.51 7.41 34.14 0.9435 33.21 0.9288

Table 4: Ablation study on Ntrn

and Ntst of DeMFI-Netrb.

Ntrn

Ntst PSNR/SSIM

1 (Rt = 0.51) 3 (Rt = 0.61) 5 (Rt = 0.68)

1
34.14/0.9435 28.47/0.8695 25.99/0.8136

33.21/0.9288 29.01/0.8845 26.56/0.8406

3
34.21/0.9439 34.21/0.9440 34.16/0.9437

33.27/0.9290 33.27/0.9291 33.23/0.9289

5
34.27/0.9446 34.28/0.9449 34.27/0.9448

33.32/0.9296 33.33/0.9298 33.33/0.9297

1st/2nd row: Adobe240/YouTube240 in each block.
RED: Best performance of each row, #P=7.41M.

https://github.com/JihyongOh/DeMFI
https://github.com/JihyongOh/DeMFI
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Fig. 5: PSNR profiles for multi-frame interpolation results (×8) for the blurry
input frames on diverse three datasets; Adobe240, YouTube240 and GoPro240.
The number of horizontal axis is the intermediate time index between two blurry
center-input frames (0, 8). Our DeMFI-Netrb(5,3), indicated by ‘DeMFI-Net ’
of red color, consistently shows best performances along all time instances.
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Fig. 6: Visual comparisons for MFI results of our DeMFI-Nets and joint SOTA
methods on (a) YouTube240 and (b) GoPro240. Best viewed in zoom. Demo
video is available at https://youtu.be/J93tW1uwRy0.

https://youtu.be/J93tW1uwRy0


DeMFI: Deep Joint Deblurring and Multi-Frame Interpolation 13

4.2 Ablation Studies

To analyze the effectiveness of each component in our framework, we perform
ablation experiments. Table 3 shows the results of ablation experiments for FAC
in Fig. 3 and RB in Fig. 4 with Ntrn = 1 and Ntst = 1 for a simplicity.

FAC. By comparing the method (f) to (d) and (c) to (a) in Table 3, it is noticed
that FAC can effectively improve the overall joint performances in the both cases
without and with RB by taking little more runtime (+0.06s) and small num-
ber of additional parameters (+0.09M). Fig. 7 qualitatively shows the effect of
FAC for DeMFI-Netrb(1,1) (f). Brighter positions with green boxes in the right-
most column indicate important regions E1 after passing Eq. 3 and Conv1. The
green boxes show blurrier patches that are more attentive in the counterpart
feature based on f10 to reinforce the source feature F1 complementally. On the
other hand, the less focused regions such as backgrounds with less blurs are rel-
atively have smaller E after FAC. In summary, FAC bolsters the source feature
by complementing the important regions with blurs in the counterpart feature
pointed by flow-guidance. We also show the effectiveness of FAC without flow
guidance when trained with f = 0. As shown in Table 3, we obtained the perfor-
mance higher than without FAC but lower than with FAC by flow-guidance, as
expected. Therefore, we conclude that FAC works very effectively under the self-
induced flow guidance to bolster the center features to improve the performance
of the joint task.

B0&B1  f10 E1

Fig. 7: Effect of FAC. The green boxes
show blurrier patches that are more
attentive in the counterpart feature
based on flow-guidance to effectively
bolster the source feature.

B0&B1

S
1

t

f 
r
t0  (∈fF) f 

1
t0 (∈fP)

 o
r
t0  (∈fF) o

1
t0 (∈fP)

Fig. 8: Self-induced flows for both fea-
tures fF and images fP (t = 7/8) of
DeMFI-Netrb (1,1) show a similar ten-
dency. They do not have to be accu-
rate, but help improve final joint per-
formances.

Recursive Boosting. By comparing the method (d) to (a), (e) to (b) and (f)
to (c) in Table 3, it can be known that the RB consistently yields improved
final joint results. Fig. 8 shows that fF and fP have a similar tendency in flow
characteristics. Furthermore, the fP updated from fF seems sharper to perform
PWB in pixel domain, which may help our two-stage approach effectively handles
the joint task based on warping operation. It is noted that our weakest variant
(a) (w/o both RB and FAC) even outperformed the second-best joint method
(UTI-VFI*) as shown in Table 2, 3 on the both Adobe240 and YouTube240.
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# of Recursive Boosting N . To inspect the relationship between Ntrn and
Ntst for RB, we train three variants of DeMFI-Netrb each for Ntrn = 1, 3, 5 as
shown in Table 4. Since the weight parameters in RB are shared for each recursive
boosting, all the variants have same #P=7.41M and each column in Table 4 has
same runtime Rt. The performances are generally boosted by increasing Ntrn,
where each recursion is attributed to the recursive boosting loss that enforces the
recursively updated flows fP

i to better focus on synthesis Sr,i
t via the PWB. It

should be noted that the overall performances are better whenNtst ≤ Ntrn, while
they are dropped otherwise. So, we can adequately choose smaller Ntst (≤ Ntrn)
for a faster runtime by considering computational constraints while maintaining
high performances, even though the training with Ntrn is once over. That is,
under the same runtime constraint of each Rt as in the column of Table 4 when
testing, we can also select the model trained with larger Ntrn to obtain better
results. On the other hand, we found out that further increasing Ntrn does not
bring additional benefits due to saturated performance of DeMFI-Netrb.
Extensibility of FAC-FB module and RB. Both FAC-FC module in Fig.
3 and RB in Fig. 4 can be easily inserted in a flow-based network to boost its
performance for a specific task. To show the extensibility for our two proposed
modules, we trained two variants of the SOTA VFI method for sharp videos,
XVFI-Net [42], using default training conditions in their official code by inserting
(i) FAC-FB module in front of BIOF-T [42], and (ii) RB behind BIOF-T. We
obtained 0.08 dB PSNR gain for the FAC-FB module and 0.07 dB gain for RB
(Ntrn = 2, Ntst = 2) on X-TEST test dataset [42] with Stst = 3 [42]. This shows
that FAC-FB module and RB can be inserted in flow-based network architectures
to boost performance, showing extensibility and generalization ability of the
proposed modules.

5 Conclusion

We propose a novel joint deblurring and multi-frame interpolation framework in
a two-stage manner, called DeMFI-Net, based on our novel flow-guided attentive-
correlation-based feature bolstering (FAC-FB) module and recursive boosting
(RB), by learning the self-induced feature- and pixel-domain flows without any
help of pretrained optical flow networks. FAC-FB module forcefully enriches the
source feature by extracting attentive correlation from the counterpart feature at
the position where self-induced feature-flow points at, to finally improve results
for the joint task. RB trained with recursive boosting loss enables DeMFI-Net
to adequately select smaller RB iterations for a faster runtime during inference
while keeping performances, even after the training is finished. Our DeMFI-Net
achieves state-of-the-art joint performances for diverse datasets with significant
margins compared to the previous joint SOTA methods.
Acknowledgement. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2017-0-00419, Intelligent High Realistic Visual
Processing for Smart Broadcasting Media).
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