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Abstract. We propose a framework for aligning and fusing multiple im-
ages into a single view using neural image representations (NIRs), also
known as implicit or coordinate-based neural representations. Our frame-
work targets burst images that exhibit camera ego motion and potential
changes in the scene. We describe different strategies for alignment de-
pending on the nature of the scene motion—namely, perspective planar
(i.e., homography), optical flow with minimal scene change, and opti-
cal flow with notable occlusion and disocclusion. With the neural image
representation, our framework effectively combines multiple inputs into
a single canonical view without the need for selecting one of the images
as a reference frame. We demonstrate how to use this multi-frame fusion
framework for various layer separation tasks. The code and results are
available at https://shnnam.github.io/research/nir.

Keywords: Implicit neural representations, coordinate-based neural rep-
resentations, multi-image fusion, layer separation

1 Introduction and Related Work

Fusing multiple misaligned images into a single view is a fundamental problem
in computer vision. The underlying assumption for this task is that the multiple
images represent varying viewpoints of the same scene, perhaps with small mo-
tion in the scene. Many computer vision tasks rely on multi-image fusion, such
as image stitching [16,13,7], high dynamic range (HDR) imaging [11,43,42], and
image super-resolution [6,5,39]. Most existing image fusion approaches work by
first aligning the multiple images based on their assumed motion—for example,
homography for planar or nearly planar scenes or optical flow for nonplanar
scenes, or when objects in the scene move. Traditionally, images are aligned to
a reference image that is manually chosen among the input images. Since image
pixels are represented in a 2D discrete sampled array, such transformations are
approximated by interpolation techniques.

Recently, implicit or coordinate-based neural representations were proposed
to represent images and videos as a function of pixel coordinates parameterized
by multi-layer perceptrons (MLPs) [36,32]. This new type of image represen-
tation, which we call a neural image representation (NIR), is different from

https://shnnam.github.io/research/nir
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Fig. 1: This figure provides an overview of our work which fuses multiple images
to a single canonical view in a continuous image representation. Our method
incorporates motion models such as homography and optical flow into the for-
mulation of implicit or coordinate-based neural representations. We demonstrate
the effectiveness of our method on various applications of multi-image layer sep-
aration. Images from [4,14,8,23] are used here for visualization.

conventional discrete grid-based representations in that image signals are con-
tinuous with respect to spatial or spatio-temporal pixel coordinates. Further,
the resolution of images no longer depends on the size of the discrete grid, but
rather the representational complexity of the MLP. These representations have
been actively studied particularly in view synthesis [25,33,30,15,22,27,28], 3D
geometry [24,26], and image synthesis [34,2,31].

This work targets multi-frame fusion by leveraging the advantages offered by
NIRs. As shown on the left in Fig. 1, we propose to train MLPs to reconstruct a
canonical view based on multiple images. Our approach incorporates image reg-
istration techniques into NIRs using coordinate transformations [27,28]. Unlike
existing multi-image fusion, our method does not need an explicit reference im-
age. Instead, a virtual reference image is implicitly learned as the canonical view
embedded within the neural representation. Since the space of canonical views
is unbounded, all images can be fused regardless of the original image frame as
shown in Fig. 1. In addition, image transformation is achieved in a real-valued
coordinate space without the need for interpolation.

To demonstrate effectiveness of our NIR multi-image fusion, we apply our
method to various applications of multi-image layer separation. As shown in Fig. 1,
the goal of multi-image layer separation is to decompose signals from multiple
images into a single underlying scene image and interference layers to improve
the visibility of the underlying scene. Many approaches for different tasks have
been studied, such as image demoiré [12,40], reflection removal [14,1,19,20], fence
removal [19,20], and deraining [10,44,8,38]. Early works on these problems heav-
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ily rely on domain-specific priors for optimization, while recent approaches are
driven by deep learning and a large amount of annotated data for supervision.

In our work, we cast the problem as an unsupervised optimization of NIRs.
Specifically, we fuse the underlying scene from the multiple images using NIRs.
Depending on the type of scene motion, we use different deformation strategies
when computing the neural image representation for each frame. To remove the
interference layer, we propose two-stream NIRs. In particular, the underlying
“clean layer” image without interference is represented by one MLP, while a
separate MLP is used to represent the interference layer(s). We show that stan-
dard regularization terms – for example, total variation – can be used in the
optimization of these NIRs to assist in the layer separation. We demonstrate the
effectiveness of our approach on moiré removal, obstruction removal, and rain
removal.

Closely related to our approach is DoubleDIP [9], which also studied image
layer decomposition on a single or multiple image(s) using coupled deep image
priors [37]. DoubleDIP exploits self-similarity, an inductive bias in convolutional
neural networks (CNNs), to separate different signals. Our approach uses the
parameterization of motion as a general prior to tackle multiple tasks. Unlike
semantic segmentation and matting [9,21], we focus on disentangling low-level
signals rather than semantic layers.
Contribution. We describe a framework to perform multi-frame fusion and
layer separation as learning a neural image representation. We describe variations
on the representation and optimization for different scene and camera conditions.
We also demonstrate how to apply this framework to handle several different
types of layer separation tasks. To the best of our knowledge, our work is the
first to explicitly address multi-image fusion with neural image representations.

2 Method Overview

Neural image representations, also known as implicit or coordinate-based neural
representations, have recently been proposed [32,36] as a way to represent RGB
values of an image as a function of pixel coordinates parameterized by MLPs.
For multiple sequential images, this can be formulated as

Î(x,y,t) = fθI (x, y, t), (1)

where Î(x,y,t) is the value at pixel (x, y) in frame t and fθI is an MLP with
parameters θI . Here each frame is nearly independent due to different values of
t.

In our work, we assume our multiple images are captured quickly as a burst
from a single camera. Consequently, images are of approximately the same scene,
but are expected to have small variations due to the motion of the camera and
small amounts of motion in the scene. Furthermore, we do not expect notable
variations in scene lighting, appearance, or colors due to the camera’s onboard
color manipulation.
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Fig. 2: Illustration of our neural image representations (NIRs). Assuming that
the MLP f learns a canonical view where all burst images are fused, we render
each image by projecting the canonical view to the frame-specific view, which
is achieved by transforming the input coordinates fed into the f . We estimate
the transform using another MLP g. According to different assumptions of the
world, we formulate our framework differently; we formulate the transform of co-
ordinates using (a) homography, (b) optical flow without occlusion/disocclusion,
and (c) optical flow with occlusion/disocclusion.

Within this context of burst images, our work aims to formulate fθI differ-
ently by learning a joint representation of multiple images using their spatio-
temporal correlation. To this end, we revisit well-established image registration
and motion compensation techniques within the new domain of NIRs. Specifi-
cally, our fθI learns a canonical view of the scene shared across images. Each im-
age in the burst sequence is modelled by a deformation of the canonical view—for
instance, using a perspective planar transform (i.e., a homography) or pixel-wise
optical flow. Since the function is continuous and unbounded, it not only is able
store the entire scene regardless of the size of 2D image grid, but also can be
easily deformed by transforming input coordinates into a real-valued space. The
model is formally described as

Î(x,y,t) = fθI (Tg(x, y, t)), (2)

where T applies a coordinate transformation with parameters ϕ. The parameters
of the coordinate transform could be fixed or themselves a function— that is,
g = gθT (x, y, t) where gθT is an MLP that computes the parameters of the
coordinate transform. The parameters of the MLPs, θT and θI , are optimized
by minimizing the following pixel reconstruction loss:

LRecon =
∑
x,y,t

∥Î(x,y,t) − I(x,y,t)∥22, (3)

where I is the original image ground truth.
The explicit parameterization of motion in neural representations enables

the simultaneous learning of image and motion representations. By minimiz-
ing Eq. (3), our neural representations learn the parameters of scene motion



Neural Image Representations for Multi-Image Fusion and Layer Separation 5

Input

Canonical view

(a) Homography-based NIR

Input Reconstruction

xy-flow map w map

Canonical views at t = 0, 2, 3
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Fig. 3: Visualization of learned representations. In (a), the top row shows three
of nine representative images used to learn a homography-based NIR, and the
bottom shows a learned canonical view. In (b), the first row shows one of the
input and reconstruction images, the second row shows a xy-flow map and w map
learned by a occlusion-aware flow-based NIR, and the third row shows canonical
views at t = 0, 2, 3.

in an unsupervised manner. More importantly, unlike conventional image regis-
tration and motion compensation techniques, our approach does not require a
reference image to be selected from the burst input. Instead, our model learns a
virtual reference view of the scene implicitly.

We next show how to extend our multi-frame alignment framework for use
in layer separation tasks. In particular, we target tasks where input images are
modeled as a combination of two layers: (1) the desired underlying scene image
and (2) the undesired corruption in the form as an interference layer. We assume
that the contents of the underlying scene remains similar over the multiple im-
ages, while the interference layer changes. To do this, we propose a two-stream
architecture for NIRs, with one component that captures the static scene and
another that captures the interference. In the following, we describe our method
in detail.

2.1 NIRs for Multi-Image Fusion

Fig. 2 shows the overview of the NIRs for multi-image fusion. We propose
three kinds of parameterization according to the assumption of the scene: (a)
homography-based NIRs, (b) occlusion-free flow-based NIRs, and (c) occlusion-
aware flow-based NIRs.

Homography-based NIRs. In case of planar, rigid scenes that are moving globally
as shown in Fig. 2 (a), we can use a homography as the coordinate transforma-
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tion. As shown in the figure, the function gθT is learned to estimate parameters
of a homography matrix M for each frame. Then the predicted image using the
homography-based NIRs is described as:

Î(x,y,t) = fθI (Mt[x, y, 1]
T ), (4)

where Mt is a 3×3 linear matrix represented as Mt = gθT (t). Since Mt is ap-
plied globally regardless of spatial coordinates, gθT (t) only takes t as input. We
omit the normalization of output coordinates in the homography transform for
simplicity.

Fig. 3 (a) shows a visualization of the NIR estimated from nine burst images
of a distant scene, captured with a horizontally moving camera. As can be seen
in the figure, the homography-based NIR automatically stitches all the images in
a single view only using a reconstruction loss. A single frame t can be recreated
by transforming the canonical view using the output of the gθT (t) homography
matrix.

Occlusion-free flow-based NIRs. In many cases, a scene will not be planar or move
together rigidly. However, in burst imagery because frames are temporally close,
the motions are likely to be small. To handle this, we use a dense optical flow
representation to model the per-pixel displacement of scene, which is represented
by the displacement of x and y coordinates as shown in Fig. 2 (b). We assume
that the motion is small enough to cause minimal occlusions and disocclusions. In
this case ϕ represents an xy-displacement that is computed by gθT (x, y, t) for each
(x, y, t). Formally, T (x, y, t) = (x+∆xt, y+∆yt) where (∆xt, ∆yt) = gθT (x, y, t)
are the displacement of x and y coordinates. An output pixel can be computed
as:

Î(x,y,t) = fθI (x+∆xt, y +∆yt). (5)

In addition to the reconstruction loss in Eq. (3), we use a total variation (TV)
regularization for the flow smoothness, which is described as

LTVFlow =
∑

∥JgθT (x, y, t)∥1, (6)

where JgθT (x, y, t) is a Jacobian matrix that consists of gradients of gθT with
respect to x, y, and t.

Occlusion-aware flow-based NIRs. Since the canonical view of the occlusion-free
flow-based NIRs is in a 2D plane, it is not enough to store extra information when
a scene is occluded or disoccluded. To address such cases, we add an additional
dimension w to the canonical view as shown in Fig. 2 (c). Intuitively, different
versions of a scene at a certain position caused by occlusion are stored at different
values of w, while occlusion-irrelevant pixels are stored at the same value of w
and shared across images. This is achieved by regularizing the Jacobian of gθT
in Eq. (6). With w, the output image is rendered by the following equation:

Î(x,y,t) = fθI (x+∆xt, y +∆yt, wt). (7)
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Fig. 3 (b) shows a visualization of a learned xy-flow map, w map, and canonical
views at different values of w after training five consecutive images in [29]. Since
the car is moving in the scene, the xy-flow map shows spatially varying optical
flow on the car. The w map shows different values in regions of large motion
(e.g., wheels), transient lighting effects (e.g., specularities and reflections), and
regions that undergo occlusion or disocclusion. This can be seen more clearly by
visualizing the canonical view, with different values of w as shown in the bottom
of the figure.

2.2 Two-Stream NIRs for Layer Separation

Image formation: Î(x, y, t) = Ô(x, y, t) + Û(x, y, t)

ĥ

𝑥 𝑦 𝑡

(𝑤)
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𝑔 ƒ1
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Ô(x, y, t)
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Fig. 4: Multi-image layer separation.

We now extend NIRs to multi-image
layer separation tasks. Fig. 4 shows
the overview of our two-stream NIRs.
We model the images as the combina-
tion of two signals,{

Ô(x,y,t) = f1
θO

(Tg(x, y, t)),

Û(x,y,t) = f2
θU

(x, y, t)
(8)

where f1
θO

and f2
θU

are two different
MLPs used to represent the scene and corrupting interference, respectively.

Since we usually have the knowledge of scene motion, we use an explicit
parameterization of motion for f1

θO
—for example, a homography or a flow field.

To model the interference layers, we use an unconstrained form of MLP for f2
θU

to store contents that violate the motion in f1
θO

, that is beneficial for interference
patterns difficult to model. The generic form of image formation is described as

Î(x,y,t) = Ô(x,y,t) + Û(x,y,t), (9)

but the specifics can vary depending on the task. Due to the flexibility of f2
θU

,
it can potentially learn the full contents of the images as a “video”, effectively
ignoring f1

θO
. To prevent this, we regularize f2

θU
using

LInterf =
∑

∥Û(x,y,t)∥1. (10)

Directly incorporating a spatial alignment into the NIR optimization may
appear inefficient at first glance, especially compared to methods that first ap-
ply conventional homography and or optical flow estimation and then perform
some type of image fusion. However, in the case of corrupted scenes, it is often
challenging to estimate the motion of the underlying clean image with the con-
ventional methods. For instance, existing methods often rely heavily on multiple
stages of refinement of motion [19] to pre-process images to assist with the align-
ment step. Our method tackles the problem jointly, by incorporating the scene
alignment jointly with a layer separation through the benefits of NIRs.
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3 Applications

We now show the effectiveness of our method on various multi-image layer sep-
aration tasks. Please refer to the supplementary material for more results.

3.1 Moiré Removal

Moiré is a common pattern of interference, often seen when taking a photo
of monitor or screen using a digital camera. Moiré patterns are caused by the
misalignment of the pixel grids in the display and camera sensor. Burst images
usually capture temporally varying moiré patterns as camera motion changes the
alignment of the sensor and screen and hence the interference pattern. Typically
the movement of the scene in burst images follows homography transform as
the screen is planar. We show that our two-stream NIRs are able to effectively
separate the underlying scene and moiré pattern.

Formulation. We parameterize f1
θO

as a homography-based NIR in Eq. (4). The
image formation follows the basic form in Eq. (9), where we use signed values

in the range of [−1, 1) for the output of both Ô(x,y,t) ∈ R3 and Û(x,y,t) ∈ R3.

The signed output for Û(x,y,t) is particularly useful to represent color bands of

moiré patterns. To further prevent scene content from appearing in both Ô(x,y,t)

and Û(x,y,t), we adopt an exclusion loss used in [9,45] to encourage the gradient
structure of two signals to be decorrelated. This is formulated as

LExcl =
∑

∥Φ(Jf1(x, y), Jf2(x, y))∥22, (11)

where Φ(Jf1(x, y), Jf2(x, y)) = tanh(N1Jf1(x, y)) ⊗ tanh(N2Jf2(x, y)), and ⊗
is an element-wise multiplication. N1 and N2 are normalization terms [45]. We
optimize θT , θO, and θU using the following training objective:

LMoire = LRecon + λInterfLInterf + λExclLExcl, (12)

where λInterf and λExcl are hyperparameters. We use an MLP with ReLU acti-
vation for gθT and a SIREN [32] for f1

θO
and f2

θU
.

Experiments. Since there are no publicly available datasets for multi-frame
screen-captured moiré images, we synthesize a dataset from clean images. To
do this, we use the Slideshare-1M [3] dataset, which consists of approximately
one million images of lecture slides, to mimic content likely to be captured by
students. Using this dataset, we synthesize 100 test sequences of five burst images
for testing following the synthesis procedure in [17]. For comparison, we com-
pare AFN [40] and C3Net [12], state-of-the-art deep learning methods, which
are trained by our synthetic training set containing 10,000 sequences. We addi-
tionally evaluate Double DIP to compare unsupervised approaches.

Table 1 shows a quantitative comparison of methods on the synthetic test
set. In addition to PSNR and SSIM, we compare a normalized cross-correlation
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Supervised Unsupervised
AFN [40] C3Net [12] Double DIP [9] Ours

Input Single Burst Burst Burst

PSNR 43.63 27.99 18.53 38.68
SSIM 0.9952 0.8071 0.8762 0.9751
NCC 0.9963 0.7724 0.5120 0.9865
SI 0.9962 0.7721 0.4895 0.9856

Table 1: Quantitative evaluation of moiré removal with a synthetic dataset.
AFN [40] uses a single image; other methods use five images as input.

(NCC) and structure index (SI). Even though our method does not outperform
AFN, the performance is significantly better than C3Net and Double DIP. How-
ever, notably our method is unsupervised—that is, it does not use a training set
of images. This is in contrast to AFN and C3Net, which require explicit supervi-
sion or clean and moiré corrupted images. Fig. 5 shows a qualitative evaluation
on real images. As can be seen, our method outperforms all the baselines on real
images. The performance of AFN and C3Net is degraded because they are not
trained on real images. Double DIP fails to decompose the underlying scene and
moiré pattern since it relies on an inductive bias in convolutional neural net-
works, which is not enough to separate complex signals. Our method removes a
moiré pattern by restricting the movement of the scene to homography, which
acts as a strong prior of moiré removal.

3.2 Obstruction Removal

The goal of obstruction removal [20,41] is to eliminate foreground objects or
scenes that hinder the visibility of the background scene. Obstructions can be
in the form of reflection on a window in front of the scene or a physical object,
such as a fence. We apply the two-stream NIRs based on occlusion-free optical
flow to a reflection and fence removal. In this case, the background scenes are
not planar, but the movement of the scene is small enough to ignore occlusion.
Similarly to moiré removal, we decompose the reflection and fence layer using
the fact that they move differently to the background scene.

Formulation. We use the occlusion-free flow-based NIRs in Eq. (5) for f1
θO

. For

reflection removal, we use the image model in Eq. (9), where Ô(x,y,t) ∈ R3 and

Û(x,y,t) ∈ R3 are in the range of [0, 1). We use the following combination of loss
functions as a training objective:

LRefl =LRecon + λTVFlowLTVFlow

+ λInterfLInterf + λExclLExcl,
(13)

where λTVFlow is a hyperparameter. For a fence removal, we use a different image
model described as

Î(x,y,t) = (1− α(x,y,t))Ô(x,y,t) + α(x,y,t)Û(x,y,t), (14)
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Fig. 5: Qualitative comparison of moiré removal on real images. Our method
outperforms all methods including AFN [40]. AFN was better than ours on the
synthetic data in Table 1 which is unrepresentative of real-world images.

where (α(x,y,t), Û(x,y,t)) = f2
θU

(x, y, t), and Ô(x,y,t) ∈ R3 and Û(x,y,t) ∈ R3 are
in the range of [0, 1). α(x,y,t) ∈ R is an alpha map of the fence layer in the range
of [0, 1). The training objective is described as:

LFence = LRecon + λTVFlowLTVFlow + λInterfLInterf . (15)

We used SIREN for all coordinate functions.

Experiments. Fig. 6 shows qualitative results of our method and existing ap-
proaches. We use real images in [14] for testing. The methods of Li and Brown [14]
and Alayrac et al. [1] are designed for reflection removal, and the method in [20]
is a general approach for obstruction removal. As can be seen, our method is able
to accurately decompose the background scene and reflection compared with the
baseline methods. Fig. 7 shows a qualitative comparison of fence removal on real
images in [20]. Our method achieves comparable quality of results to learning-
based methods that heavily rely on large amounts of data and supervision.

3.3 Rain Removal

To show the effectiveness of the occlusion-aware flow-based NIRs, we address
the problem of multi-image rain removal as the task deals with various kinds of
scenes, from static scenes to dynamic scenes. Since rain streaks move fast and
randomly, the streaks impact the smoothness of the scene motion. We exploit this
prior knowledge of the randomness of rain streaks observed in multiple images
by imposing a smoothness regularization on the scene flow map.
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Fig. 6: Qualitative results of reflection removal on real images in [14].

Input Liu et al. [19] Liu et al. [20] Ours

Input Liu et al. [19] Liu et al. [20] OursInput Liu et al. [19] Liu et al. [20] OursInput Liu et al. [19] Liu et al. [20] OursInput Liu et al. [19] Liu et al. [20] Ours

Fig. 7: Qualitative comparison of fence removal on real images in [20].

Formulation. We use the occlusion-aware flow-based NIRs in Eq. (7) as a for-
mulation of f1

θO
. Since rain streaks are achromatic, we use the following image

formation:

Î(x,y,t) = (1− Û(x,y,t))Ô(x,y,t) + Û(x,y,t)1, (16)

where Ô(x,y,t) ∈ R3 and Û(x,y,t) ∈ R are in the range of [0, 1), and 1 = [1, 1, 1]T .

In this form, Û(x,y,t) acts as an alpha map of rain streaks. Our final training
objective is described as

LRain = LRecon + λTVFlowLTVFlow + λInterfLInterf . (17)

Experiments. Fig. 8 shows a qualitative evaluation on real images in NTU-
Rain [8], with moving cars and pedestrians. We compare state-of-the-art video
deraining methods based on optimization [10] and deep learning [8]. We take
five consecutive images to run our method which clearly removes rain streaks
in the scene and is qualitatively competitive with the baselines on real images.
For quantitative evaluation, we must resort to synthetic data and use RainSyn-
Light25 [18], consisting of 25 synthetic sequences of nine images. Table 2 shows
results of ours and baseline methods: SE [38], FastDeRain [10], SpacCNN [8], and
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Supervised Unsupervised

SpacCNN FCDN SE FastDeRain Ours
[8] [44] [38] [10]

PSNR 32.78 35.80 26.56 29.42 28.61
SSIM 0.9239 0.9622 0.8006 0.8683 0.8604

Table 2: Result of rain removal on RainSynLight25 [18].

Input FastDeRain [10] SpacCNN [8] Ours

Input FastDeRain [10] SpacCNN [8] OursInput FastDeRain [10] SpacCNN [8] OursInput FastDeRain [10] SpacCNN [8] OursInput FastDeRain [10] SpacCNN [8] Ours

Input FastDeRain [10] SpacCNN [8] OursInput FastDeRain [10] SpacCNN [8] OursInput FastDeRain [10] SpacCNN [8] OursInput FastDeRain [10] SpacCNN [8] Ours

Fig. 8: Qualitative comparison of rain removal on real images in NTURain [8].

FCDN [44]. Though our method does not outperform deep learning-based meth-
ods, it achieves a comparable result to optimization-based approaches without
supervision and the domain knowledge of deraining. We expect incorporating
more regularization could further improve the performance.

3.4 Discussion

Ablation study on loss functions. We conducted an ablation study on various
loss functions. In Fig. 9, we show the decomposed background and reflection
layer of different training objectives by removing each loss function. As can be
seen, the background content is reconstructed in the reflection layer when we
do not use LInterf since gθU is unconstrained. Without LTVFlow, on the other
hand, both signals are reconstructed in the background layer. In this case, gθO
has enough freedom to learn the mixture of two layers moving differently. In
addition to LInterf and LTVFlow, the exclusion loss LExcl further improves the
quality by preventing the structure of two layers from being correlated.

Ablation study on w. Fig. 10 shows an ablation study on w in the occlusion-
aware flow-based NIRs using RainSynLight25 [18]. As shown in the red boxes
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Input W/o LInterf W/o LTVFlow

W/o LExcl Full objective

Fig. 9: Ablation study of loss functions
on reflection removal. The top and bot-
tom images show the background and
reflection layer, respectively.

Input Ground Truth

W/o w W/ w
PSNR: 20.42 PSNR: 24.15

Fig. 10: Ablation study on w. We show
PSNRs of two outputs using the syn-
thetic dataset RainSynLight25 [18].

on the output, the method without w produces artifacts around occlusion and
disocclusion, which indicates that it is difficult to represent all contents includ-
ing occlusion in a 2D canonical view. Our method stores occluded appearance
information in the extra dimension w, and enables accurate reconstruction.

Can a complex model take place of a simpler model? Note that in principle our
NIRs using a complex motion model (e.g. occlusion-aware flow) can be gener-
alized to the scenes with a simpler motion. For layer separation, however, it is
beneficial to use a simpler model that fits well with the motion of a scene as it
provides a strong constraint to separate layers effectively. In Fig. 11, we com-
pare the homography-based model and the occlusion-aware flow-based model on
a demoiréing task. The PSNR and SSIM of the flow-based model on the syn-
thetic test set are 36.72 and 0.9512, respectively. The flow-based model removes
the moiré pattern to some extent, but a part of the pattern still remains. This
is because constraining the representation of motion in the homography-based
model is more effective than adding regularization losses in the flow-based model.

The number of input images. Fig. 12 shows results of rain removal using the
different number of input images. Better results are obtained with more images,
as the additional images provide more information in separating two layers.

Limitations. Since our method relies on a pixel distance loss to learn the motion,
it may fail when the motion of burst images is too large. Our method also fails
to separate layers when the underlying scene and interference move in a similar
manner. Although our method is not the top performer in all cases, it achieves
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Input Homography Optical flow

Fig. 11: Analysis on different motion
models. We apply homography-based
(center) and occlusion-aware flow-
based (right) models to demoiréing.

Input 2 images 5 images

Fig. 12: Analysis on the number of in-
put images. We test 2 and 5 input im-
ages on a rain removal task.

competitive results without the need for supervision, which is the case for many
of the state-of-the-art methods.

In addition, our method requires a proper assumption of motion to tackle
layer separation tasks. This is because our method relies on the motion of un-
derlying scene as a prior to separate layers. It may be more desirable to seek a
generic model that works for any example without the assumption of motion by
incorporating other priors such as an inductive bias learned from a large dataset.

Finally, our method currently takes about 30 minutes at most for optimiz-
ing layer separation tasks, which is a limiting factor in a real-world setting.
However, there is already promising research demonstrating how to improve the
optimization performance of NIRs [35].

4 Conclusion

We presented a framework that uses neural image representations to fuse infor-
mation from multiple images. The framework simultaneously registers the im-
ages and fuses them into a single continuous image representation. We outlined
multiple variations based on the underlying scene motion: homography-based,
occlusion-free optical flow, and occlusion-aware optical flow. Unlike conventional
image alignment and fusion, our approach does not need to select one of the input
images as a reference frame. We showed our framework can be used to address
layer separation problems using two NIRs, one for the desired scene layer and
the other for the interference layer.

Neural image representations are an exciting new approach to image pro-
cessing. This work is a first attempt to extend NIRs to multi-frame inputs with
applications to various low-level computer vision tasks. Despite making only
minimal assumptions and without leveraging any supervisory training data, the
NIR-based approaches described here are competitive with state-of-the-art, un-
supervised methods on individual tasks. Further, because it is practically im-
possible to acquire supervisory data in real-world conditions, our approach often
qualitatively outperforms supervised methods on real-world imagery.
Acknowledgement. This work was funded in part by the Canada First Re-
search Excellence Fund (CFREF) for the Vision: Science to Applications (VISTA)
program and the NSERC Discovery Grant program.
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