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Abstract. Video frame interpolation is a challenging task due to the
ever-changing real-world scene. Previous methods often calculate the bi-
directional optical flows and then predict the intermediate optical flows
under the linear motion assumptions, leading to isotropic intermedi-
ate flow generation. Follow-up research obtained anisotropic adjustment
through estimated higher-order motion information with extra frames.
Based on the motion assumptions, their methods are hard to model
the complicated motion in real scenes. In this paper, we propose an
end-to-end training method A2OF for video frame interpolation with
event-driven Anisotropic Adjustment of Optical Flows. Specifically, we
use events to generate optical flow distribution masks for the intermedi-
ate optical flow, which can model the complicated motion between two
frames. Our proposed method outperforms the previous methods in video
frame interpolation, taking supervised event-based video interpolation to
a higher stage.

Keywords: Video Frame Interpolation ⋅ Bi-directional Optical Flow ⋅
Event-driven Distribution Mask

1 Introduction

Video frame interpolation(VFI) is a challenging task in computer vision, which
is widely used in slow motion video generation, high rate frame conversion and
video frames recovery, etc. The goal of VFI is to synthesize nonexistent interme-
diate frames between two consecutive frames. However, it is hard to synthesize
high-quality intermediate frames due to the lack of corresponding motion infor-
mation.

Optical flow is a common tool in VFI. SuperSloMo [7] linearly represent
the intermediate optical flow from the target frame to original frame with bi-
directional optical flow. They warp, blend and refine the original frames to obtain
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target frames. The key assumption in their method is uniform motion along a
straight line, which runs counter to the laws of nonlinear motion in real world.
Besides, they synthesize the intermediate optical flow with the same coefficient
to the different directions in bi-directional optical flows. In this isotropic way,
they can not obtain the inaccurate intermediate flow optical which has the differ-
ent directions with bi-directional optical flow. Aiming at anisotropic adjustment
of intermediate flow, some works try to extract more information through pre-
trained models, such as depth information [2] and contextual information [16].
More complex motion assumptions are designed in some succeeding works, such
as QVI [30] and EQVI [12]. However, it is still difficult for them to describe
the actual movement under the absence of intermediate motion information.As
shown in Fig. 1(d), the intermediate optical flows obtained based on this inac-
curate assumption fail to describe the correct direction of football.

(a)Overlap of Inputs & GT (b)Events (c)Sparse Flow Field (d)QVI Flow Field (e)Adjusted Flow Field

Fig. 1. The visualization of the generated optical flow. (c) demonstrates the sparse
optical flow in Time Lens [27]. (d) demonstrates the final intermediate optical flow in
QVI [30]. (e) demonstrates the final intermediate optical flows generated through the
proposed model. These optical flows are used to warp the original frames to get initial
intermediate frames. The arrows in these pictures denote the directions of football
motion.

Event streams can record accurate motion information between two con-
secutive frames, which help to solve the absence of information in VFI model.
Time Lens [27] uses event streams to compensate for motion information. Event
streams generated through event camera asynchronously record the motion in-
formation for a period of time with the merits of high temporal resolution and
low latency. Time Lens directly uses event to synthesize intermediate frame and
estimate intermediate optical flow. The pre-warped frames through intermediate
optical flow are aligned and refined by event-driven synthesis frames to obtain
the final target frames. There are some limitations: although modeling motion is
avoided in the process of obtaining intermediate optical flow, the warped result
is limited by the sparse flow field estimated through event streams, as shown
in Fig. 1(c), which lacks the dense features of the RGB images. The predicted
sparse optical flow field is also easily affected by the noise of the event itself,
which affects the final result. Besides, their model is not an end-to-end training
model.
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In this paper, we propose a video frame interpolation method A2OF with
event-driven Anisotropic Adjustment of Optical Flow in an end-to-end training
manner. Specifically, our model is based on bi-directional optical flows model,
such as Super SloMo [7]. Firstly, we adopt and tailor IFNet in [6] in order to
better model the motion from both event streams and frames. After getting the
bi-directional optical flow, instead of linearly weighting them in both horizon-
tal and vertical directions, anisotropic weights are learnt from events to blend
and generate intermediate optical flow in the orthogonal directions. As shown
in Fig. 1(e), the optical flows generated from our proposed models can demon-
strate the correct direction of the football. Besides, we design an event-driven
motion consistency loss based on the change of intensity to further improve the
performance of our proposed model. We carry out a series of experiments to
evaluate our proposed model on both synthetic and real event-frame datasets.
Experimental results show that our model achieves the-state-of-art performance
in all evaluated datasets.

Our main contributions can be summarized as:
1. To address the limitation in video frame interpolation model based on bi-

directional optical flow, we design event-driven optical flow distribution masks
generation module to provide anisotropic weights for the different directions of
the optical flows.

2. In order to better compensate the motion information in the event to
the VFI model, we design an event-driven motion consistency loss based on the
change of intensity.

3. We design an end-to-end training video frame interpolation model, which
outperforms the previous methods on both synthetic and real event-frames datasets.

2 Related Works

Video Frame Interpolation. The goal of VFI is to predict the intermediate
frames between the input frames. Some methods [14, 13, 17] mainly focused on
single-frame interpolation, which is commonly ineffective and inflexible. In order
to interpolate several frames at any time between consecutive frames, Super-
SloMo [7] designs a video frame interpolation model based on optical flows. Ac-
cording to the uniform motion assumption, they linearly aggregate bi-directional
optical flows to obtain intermediate optical flow from the target frame to the
original frame in an isotropic way. The final synthesis intermediate frames are
warped and blended from the original frames. Their uniform motion assumption
does not well with nonlinear motion in real scenes. Besides, they can not model
the real motion which has the different directions with bi-directional optical
flow. For anisotropic adjustment of optical flow, some extra information from
the pretrained model is added into VFI model, such as depth information [2] or
contextual information [16]. QVI [30] and EQVI [12] design more complex motion
assumptions, however, which may still deviates from the way that objects move
in the real scenes. The absence of motion information between original frames
is the main cause of inaccurate motion estimation and low-quality frames in-
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terpolation. They may have poor frame interpolation ability when encountering
complicated motion scenes due to inaccurate motion descriptions. We propose
event-driven distribution masks generation module in the bi-directional model
to obtain intermediate optical flows in an anisotropic way for the different direc-
tions of optical flow. With the help of event streams, we can get more accurate
motion descriptions and high-quality interpolation results.

Event Camera. Through the neuromorphic sensor like dynamic vision sen-
sors (DVS), event camera generates the high-dynamic-range event data under
low power consumption [3]. Previous works demonstrate that the event-frame-
based models show promising potential in visual tasks like image deblurring
[18, 8, 11], high-dynamic-range image restoration [29, 4, 31], and VFI [28, 27, 5].
Some methods [18, 28, 27] avoid modeling the process of motion. The former two
methods mix the feature of event and frame through neural networks to directly
predict intermediate frames. The disturbance of threshold in event camera has
a negative influence on the performance of their models. Time Lens [27] directly
predicts intermediate optical flow through event streams, which limits the ac-
curacy of optical flows estimation due to the absence of visual detail in RGB
frames. TimeReplayer [5] proposes an unsupervised learning method to aid the
video frame interpolation process. Our model is designed based on bi-directional
optical flows model. We introduce event streams into our model for the aggre-
gation of bi-directional optical flows in an anisotropic way. The performance of
our VFI model is further improved.

3 Method

3.1 Revisiting Bi-directional Optical Flow VFI Model

Given two consecutive frames I0 and I1 in a video, we can obtain bi-directional
optical flow F0→1 and F1→0. F0→1 and F1→0 are the optical flows from I1 to I0 and
the optical flow from I0 to I1, respectively. Fτ→0 and Fτ→1 are the intermediate
optical flows from the target frame to original frames I0 and I1, respectively.
Both Fτ→0 and Fτ→1 can be represented by bi-directional optical flows F0→1 and
F1→0 as shown in Eq. (1) and Eq. (2):

Fτ→0 = g(τ,F1→0,Metra) or g(τ,F0→1,Metra), (1)

Fτ→1 = g(1 − τ,F1→0,Metra) or g(1 − τ,F0→1,Metra). (2)

We can blend the optical flow obtained from F1→0 and F0→1 to get more
accurate optical flows based on temporal consistency. The final intermediate
optical flows can be represented as:

Fτ→0 = BlendF (g(τ,F1→0,Metra), g(τ,F0→1,Metra); θ0−τ), (3)

Fτ→1 = BlendF (g(1 − τ,F1→0,Metra), g(1 − τ,F0→1,Metra); θτ−1), (4)

where BlendF (⋅) denotes blending operation between initial intermediate optical
flows. θ⋅ denotes the parameters in the blending operations, such as linearly
weight in temporal consistency [7] or parameters in convolution neural networks.
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Fig. 2. (a-b) A toy example for the butterfly moving in 0−1 period in one-dimensional
and two-dimensional space, respectively. For two-dimensional movements, we use the
number of events to generate optical flow masks in different directions. (c) Two en-
lightening examples on the relationship between the motion(the right axis) and event
count(the left axis) in uniform rectilinear motion(the top graph) and uniformly accel-
erated rectilinear motion(the bottom graph). The unit of velocity v0 and v are pixels
per time step, and the unit of acceleration a is pixels per time step squared. The time
step is 3ms.

According to the final intermediate optical flows, original frames I0 and I1
are warped through bilinear interpolation [32] and refined through convolution
neural network to get pre-warped intermediate frames Î0→τ and Î1→τ . The final
intermediate frame Îτ can be represented as the mixture of Î0→τ , Î1→τ and
extra pre-warped information such as visibility maps [7], depth information [2]
and contextual information [16] as shown in Eq. (5):

Îτ = BlendI(Î0→τ , Î1→τ ,Mextra), (5)

where BlendI denotes blending operations between pre-warped intermediate
frames.

A Toy Example. We take the VFI model in SuperSloMo [7] as an example
model as shown in Fig. 2(a) and Fig. 2(b) for motion in one dimension and two
dimensions, respectively. For the convenience of description, we take SuperSloMo
as an example model. As shown in Fig. 2(a), a butterfly rests at location Y0

in 0 − τ period and flies from location Y0 to Y2 in τ − 1 period. I0 records a
butterfly locates in Y0, while I1 records a butterfly locates in Y2. For SuperSloMo
model, which assumes the butterfly moves at a constant speed along a line, the
synthesized frame Iτ shows the butterfly locates in Y1 when τ = 1

2
. However,

the actual coordinates of the butterfly are at Y0. The frame interpolation of
the butterfly in two-dimensional motion is similar to that in one-dimensional
as shown in Fig. 2(b). The butterfly is predicted at location Y(1,1), while the
actual coordinates of the butterfly are at Y(0,2). The reason for this phenomenon
is that they synthesize the intermediate optical flow in an isotropic way. All
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directions of optical flow are linearly aggregated with the same coefficients. Note
that there is no motion in the vertical direction in 0 − τ period in Fig. 2. So
the optical flow in the vertical direction should not be taken into account when
we calculate the intermediate optical flow Fτ→0. However, due to the absence of
intermediate motion information between two frames, it is difficult to predict the
different coefficients in an anisotropic way. Thus, we introduce the event data
that records the real motion information into our model and use the event to
estimate the optical flow mask to better model the motion in the corresponding
period.

3.2 Event-driven Optical Flow Mask

Let’s come back to the one-dimensional condition in Fig.2(a), no motion is ob-
served in 0 − τ , leading to no event streams generated. However, the event is
generated in τ − 1 due to the motion of the butterfly. If we regard every change
as an event, the polarities of the event data E0→τ of such the 3×1 one-dimensional
map could be encoded as [0, 0, 0]T at the timestamp t = τ in 0 − τ period, and

that of Eτ→1 is [−1, 0, 1]T at the timestamp t = 1 in τ − 1 period. The total

event data in 0 − 1 period could be encoded as [−1, 0, 1]T , which is the same
as the event data Eτ→1. In this simple example, we could find that the event
data could encode the ground-truth movement, which could be possibly used to
distribute the bi-directional optical flows. We carry out a simulation experiment
that a pixel of ball moves in uniform rectilinear motion or uniformly accelerated
rectilinear motion and draw the curve of moving position and the curve of event
number along the time. As shown in Fig. 2(c), the trend of the moving position
curve is basically consistent with the velocity-time curve, and the event count
can describe the slowness.

Herein, we propose event-driven optical flow masks ω⋅ that anisotropically
determines the weights of the bi-directional optical flows. The optical flow F0→1

contributes nothing to the synthesis frame Îτ due to no motion and no event
occurrence in 0 − τ period, while the optical flow F1→0 is more important to
the synthesis frame Iτ due to more motion and event from the butterfly in τ − 1
period. Thus, the distribution of F0→1 should be set as 0 while the distribution of
F1→0 should be set as 1 to generate the accurate intermediate flows. We find the
distribution of bi-directional optical flow can be calculated by the ratio between
the number of event occurrences in target period and that in the total period.
Based on the above analysis, Eq. (1) and Eq. (2) can be rewrited as follows:

Fτ→0 = ω0−τ ⋅ F1→0 or − ω0−τ ⋅ F0→1, (6)

Fτ→1 = ω1−τ ⋅ F0→1 or − ω1−τ ⋅ F1→0, (7)

where ω0−τ and ω1−τ denotes the optical flow mask of bi-directional optical flows
in 0 − τ period and τ − 1. We can obtain these weight through event streams as
shown in Eq. (8):

ω0−τ =
c0−τ
c0−1

and ω1−τ =
c1−τ
c0−1

, (8)
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Fig. 3. The pipeline of our proposed method A2OF. The event is input to Event-
driven Mask Generation network to get optical flow masks ω0−τ and ωτ−1. We modify
the structure of the IFNet [6] so that it can input event and use anisotropic flow mask
as shown in supporting information. Two consecutive frames, corresponding event and
optical flow mask are input to tailored IFNet to get intermediate optical flows and
warp the original frames. The pre-warped frames Îroughτ→0 and Îroughτ→1 are fused to final

intermediate frame Îτunder the supervision of a series of loss.

where c⋅ denotes the number of event occurrences in target period. Note that
large motion does not necessarily lead to large ratio: the optical flow between two
frames represent the total amount of motion, while the ratio Eq. (8) indicates
how the motion distributes over time.

In order to better analyze the motion in two-dimensional space and model
the motion between two frames, we calculate different weights in the orthogonal
directions as shown in Fig. 2(b). Specifically, as shown in Fig. 2(b) and Fig. 2(c),
the original optical flow F1→0 can be divided into Fu

1→0 in the horizontal direction
and F v

1→0 in the vertical direction. F0→1 can be decomposed in the same way as
Fu
0→1 and F v

0→1. The subscripts of these decomposed optical flows indicate the
optical flows are in which period, and the superscripts indicate the optical flows
are in which direction. Note that we can still obtain intermediate optical flows
in the different directions based on Eq. (6-8). Based on the time consistency, we
can further combine initial intermediate optical flows F ⋅τ→0 or F ⋅τ→1 from F ⋅1→0

and F ⋅0→1, where ⋅ in the right corner denotes the direction of optical flow, such
as horizontal or vertical direction. The final intermediate optical flows can be
represented as:

Fu
τ→0 = −(1 − τ) ⋅ ωu

0−τ ⋅ Fu
0→1 + τ ⋅ ωu

1−τ ⋅ Fu
1→0, (9)

Fu
τ→1 = (1 − τ) ⋅ ωu

1−τ ⋅ Fu
0→1 − τ ⋅ ωu

0−τ ⋅ Fu
1→0. (10)

We can also obtain intermediate optical flow in the vertical direction as shown
in Eq. (9-10).

Note that the event contains a certain amount of noise due to system noise
and unfixed thresholds. Calculation to the weight with unprocessed events will
result in inaccurate weight prediction. Thus, we propose a U-Net style convolu-
tion neural network named Event-driven Mask Generation Network to process
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the input event data. The architecture of Event-driven Mask Generation Net-
work can be found in Supporting Information. As shown in Fig. 3, our event-
driven mask generation network processes the input event E0→1 and outputs
two channels feature map which encodes the number of events at each pixel in
0 − τ or τ − 1 period. The final weight ω⋅0→τ and ω⋅1→τ is calculated according
to Eq. (8) with these two-channel feature map in the horizontal and vertical
direction. The spatial size of ω⋅0→τ and ω⋅1→τ is with the same spatial size H ×W
as bi-directional optical flows. These event-driven optical flow masks are used to
obtain the nonlinear intermediate flows F ⋅τ→0 and F ⋅τ→1 as shown in Eq. (9-10).

3.3 Pipeline for Our Event-driven Video Interpolation Model

In this section, we will specifically show the representation of events and the
pipeline of our event-driven video interpolation model.

Event Representation. An original event e can be represented as a four-
element tuple (xe, ye, pe, te), where xe and ye denote spatial coordinates. pe
denotes the polarity of the event and te denotes the time of occurrence for
the event. We should convert those event streams into 2-D frames to input
the convolution neural network. Our event streams during the target period
are represented as a four-channel frame as shown in [20]. The first and second
channels encode the number of positive and negative polarities of events at each
pixel, respectively. The third and fourth channels encode the timestamps of the
latest triggered positive and negative events, respectively. The represented event
data between two consecutive frames I0 and I1 is set as E0→1.

Event-driven Optical Flows Estimation. The image frames encode the
details of the motion with the low temporal resolution, while the event records
the motion information with high temporal resolution. A natural idea is to use
these two complementary data together to predict the bi-directional optical flow.
Time Lens [27] uses events to directly predict intermediate optical flow which
lacks the details of the motion information from frames.

Thus, we take the frame data I0, I1, event E0→1 and anisotropic optical flow
weights as the input to IFNet [6] to estimate the bi-directional optical flow and
warp the original frames as shown in Fig. 3 and Supporting Information. We
carefully tailor the IFNet and make it suitable for our task. Firstly, our tai-
lored IFNet can process both event and image frames. In this way, the synthetic
intermediate optical flow can correctly model the target motion due to the com-
plementary of the two types of data with our anisotropic optical flow weights
according to Eq. (9-10). Then, we deeper the IFNet to better process these two
types of data. Our tailored IFNet has 4 blocks. Next, the optical flow mask
from Event-driven Mask Generation network is input to each block in our tai-
lored IFNet for blending and synthesizing intermediate optical flow. The output
of IFNet is rough interpolated frames Îroughτ←1 and Îroughτ←0 which will be input to
refinement network.
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Refinement Network. The warped images Îroughτ←0 , Îroughτ←1 could encode the
most nonlinear motion but poorly around the stationary objects due to the
absence of event data in the static regions. To make the intermediate frames
better, a refining process is necessary like the previous work [7, 30, 27]. Except
for the additional input event, the overall structure of our refinement network
is similar to that in [7]. Our refinement network is a U-Net style network with
6 encoders and 5 decoders with a shortcut between encoder and decoder of
the same spatial scale. The details of our refinement network are provided in
supporting information.As shown in Fig. 3, we input the data I0, I1, E0→1,Î

rough
τ←0 ,

Îroughτ←1 and bi-directional optical flow F0→1, F1→0 into a sub-network. Herein,

the output is two fusion maps Vτ←0, Vτ←1 and two refined frames Îfinalτ←0 and
Îfinalτ←1 .Thus, the final intermediate frames Îτ is defined after the Fusion process
of Fusion(⋅):

Îτ = Fusion (Ifinalτ←0 , Ifinalτ←1 , Vτ←0, Vτ←1)

= Vτ←0 ⋅ Ifinalτ←0 + Vτ←1 ⋅ Ifinalτ←1 ,
(11)

where Vτ←0 and Vτ←1 are two visibility maps which encode whether the objects
are occluded. The pixel-addition of two visibility map equals 1, following [7].

Loss Function. Our event-driven video frame interpolation model can be
trained in an end-to-end manner under the combination of event-driven motion
consistency loss LMC, the reconstruction loss Lrec, the perceptual loss Lper, the
warped loss Lwarp and the smoothness loss Lsmooth. Note that the reconstruction
loss Lrec, the perceptual loss Lper,the warped loss Lwarp and the smoothness loss
Lsmooth are similar to [7].

Event-driven motion consistency loss Lmc measures the gap between esti-
mated event count map Êcount

⋅ and real event count map Ecount
⋅ . We take event

count map Êcount
0→τ as an example. Êcount

0→τ is calculated with the difference between
two frames Idiff which is represented as

Idiff = log(
Ifinalτ←0

I0
). (12)

Due to unknown and inflexible thresholds in event camera, it is difficult to di-
rectly get event count map through Eq. (12). So, we binarize the event count to
reflect whether the event appears or not in each pixel. Specifically, in the event
count map, 1 denotes there is at least one event while 0 denotes there is no event.
How to binarize the Idiff to obtain estimated event count map Êcount

0→τ ? Firstly,
we get Ecount

0→τ through the first and second channel in E0→τ :

Ecount
0→τ = sgn(E0→τ [0 ∶ 2]), (13)

where sgn(⋅) denotes the sign function and [0 ∶ 2] denotes the first and second
channel of a tensor. Then, we sum all elements in Ecount

0→τ along each channel to
obtain binarized threshold tpositive and tnegative, respectively. These thresholds
record the number of locations where the event has occurred. Next, we sort Idiff
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in descending order and select the top tpositive value Ntpositive
and the bottom

Ntnegative
value as binarized thresholds for Idiff.

Êcount
0→τ = [sgn(Idiff −Ntpositive

), sgn(Ntnegative − Idiff)], (14)

where [⋅, ⋅] denotes concat function in tensor. sgn(Idiff − Ntpositive
) represents

where there may be positive events. We want Êcount
0→τ and Ecount

⋅ to be exactly
the same, which means that the motion information recorded by both is almost
the same. The definition of Lmc is

Lmc =
1

N
∣∣G(Êcount

0→τ ) −G(Ecount
0→τ )∣∣1 +

1

N
∣∣G(Êcount

τ→1 ) −G(Ecount
τ→1 )∣∣1, (15)

where G(⋅) denotes Gaussian Blur Function. We smooth the Êcount
⋅ with G(⋅)

to alleviate the effect of noise in the event. The definition of the reconstruction
loss, the perception loss, the warping loss and the smoothness loss here are the
same as SuperSloMo [7] does.

The total loss L of our model is

L = λmc ⋅Lmc + λrec ⋅Lrec + λper ⋅Lper + λwarp ⋅Lwarp + λsmooth ⋅Lsmooth. (16)

Note that all the loss weights in Eq. (16) is set empirically on the validation set.
Specifically, λmc = 1.0, λrec = 1.0, λper = 0.2, λwarp = 0.8 and λsmooth = 0.8.

4 Experiments

4.1 Implementation Details

Our proposed model and all experiments are implemented in Pytorch [21]. We
use adam optimizer with standard settings in [9]. For training, our model is
trained end-to-end on 4 NVIDIA Tesla V100 GPUs for the total 500 epochs.
The batch size of each training step is 28. The initial learning rate is 10−4 and
is multiplied by 0.1 per 200 epochs. We calculate the peak-signal-to-noise ratio
(PSNR), structural similarity(SSIM), and interpolation-error (IE) as the quan-
titative metric to evaluate the performance of our proposed method.

4.2 Datasets

We firstly evaluate our model on three common high-speed synthetic datasets
with synthetic events: Adobe240 [26], GoPro [15] and Middlebury [1]. Besides,
we also evaluate our model on the real frame-event dataset: High-Quality Frames
(HQF) [25], High Speed Event-RGB(HS-ERGB) [27]. All the synthetic training
sets are collected to train our model. Then, we compare with other previous
state-of-the-art methods.
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Fig. 4. Visual comparisons with different methods on the synthetic dataset Adobe240.

Synthetic datasets. Adobe240 consists of 112 different sequences for training
and 8 sequences for testing. GoPro dataset consists of 22 different videos for
training and 11 videos for testing. Captured by GoPro cameras, both of them
own 240 fps and 1280×720 resolutions in all the sequences. We use ESIM [22] to
generate event streams between two consecutive frames. We crop patches with
spatial size 384 × 384 for training.

Real dataset. High-Quality Frames(HQF) is collected through the DAVIS240
event camera [24] which can generate both event streams and corresponding
frames. It consists of 14 different frames sequences with the corresponding event
streams. The resolutions are 240 × 180 in all sequences. We crop patches with
spatial size 128 × 128 for training. HS-ERGB is collected through Gen4M 720p
event camera and FLIP BackFly S RGB camera. This dataset is divided into
far-away sequences and close planar scenes.

4.3 Comparisons with Previous Methods

Synthetic datasets. We compare our proposed video frame interpolation (VFI)
model with previous VFI models. Previous methods can be classified into three
categories: frame-based approach, event-based approach and frame-event-based
approach. For frame-based approach, we compare our model with SuperSloMo
[7], DAIN [2], SepConv [17], QVI [30]. For the event-based approach, we com-
pare our model with event-based video reconstruction method E2VID [23]. For
event-frame-based approach, we compare our model with Time Lens [27]. We
make a fair comparison on three synthetic datasets Adobe240 [26], GoPro [15]
and Middlebury [1]. The comparison results are as shown in Tab. 1. For training
on Adobe240 and GoPro, we select 1 frame from every 8 frames in the original
sequence, use the selected frames to form the input sequences, and use the re-
maining frames as the label for interpolated frames. Middlebury is only used for
the test due to the sequence length. Besides, the event streams are generated
through ESIM [22] between selected frames is also available to our model. For
the input frames sequences from selected frames and events, the skipped frames
are reconstructed through our proposed method and compared with the ground
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Table 1. Quantitative comparison with previous methods on the synthetic datasets
Adobe240, GoPro and Middlebury. Note that we directly evaluate the released model
in each method without re-training or fine-tuning.

Adobe240 All frames in 7 skips Middle frame in 7 skips

Method Input PSNR SSIM IE PSNR SSIM IE

E2VID [23] Event 10.40 0.570 75.21 10.32 0.573 76.01
SepConv RGB 32.31 0.930 7.59 31.07 0.912 8.78
DAIN RGB 32.08 0.928 7.51 30.31 0.908 8.94
SuperSloMo RGB 31.05 0.921 8.19 29.49 0.900 9.68
QVI RGB 32.87 0.939 6.93 31.89 0.925 7.57
Time Lens RGB+E 35.47 0.954 5.92 34.83 0.949 6.53
Ours(A2OF) RGB+E 36.59 0.960 5.58 36.21 0.957 5.96

GoPro All frames in 7 skips Middle frame in 7 skips

Method Input PSNR SSIM IE PSNR SSIM IE

E2VID Event 9.74 0.549 79.49 9.88 0.569 80.08
SepConv RGB 29.81 0.913 8.87 28.12 0.887 10.78
DAIN RGB 30.92 0.901 8.60 28.82 0.863 10.71
SuperSloMo RGB 29.54 0.880 9.36 27.63 0.840 11.47
QVI RGB 31.39 0.931 7.09 29.84 0.911 8.57
Time Lens RGB+E 34.81 0.959 5.19 34.45 0.951 5.42
Ours(A2OF) RGB+E 36.61 0.971 4.23 35.95 0.967 4.62

Middlebury (other) All frames in 3 skips Middle frame in 3 skips

Method Input PSNR SSIM IE PSNR SSIM IE

E2VID Event 11.26 0.427 69.73 11.12 0.407 70.35
SepConv RGB 25.51 0.824 6.74 25.12 0.811 7.06
DAIN RGB 26.67 0.838 6.17 25.96 0.793 6.54
SuperSloMo RGB 26.14 0.825 6.33 25.53 0.805 6.85
QVI RGB 26.31 0.827 6.58 25.72 0.798 6.73
Time Lens RGB+E 32.13 0.908 4.07 31.57 0.893 4.62
Ours(A2OF) RGB+E 32.59 0.916 3.92 31.81 0.903 4.13

truth skipped frames. The average performance of the whole 7 skipped frames
and the center one are both calculated for fair comparison. Meanwhile, only 3
frames are skipped and used to calculate reconstruction metrics due to the se-
quence length limitation in Middlebury. The results are summarized in Tab. 1.
Note that we directly evaluate the released model in each comparison method
without re-training or fine-tuning.

From Tab. 1, our proposed method outperforms all the previous methods
and achieves the-state-of-art performance on Adobe240, GoPro and Middlebury.
The frame-event based approaches outperform the frame-only or event-only ap-
proaches. As shown in Fig. 4, due to better use of events with event-driven
optical flow mask and event-driven motion consistency loss, our model achieves
the best visual quality. Specifically, for the second row in Fig. 4, all objects are
static while only the intensity changes. It’s a common issue in warping based in-
terpolation method, which is also mentioned by Time Lens. The results indicate
improvement by event-driven motion consistency loss in our method.
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Table 2. Quantitative comparison with previous methods on the real frame-event
datasets HQF. Note that we directly evaluate the released model in each comparison
method without re-training or fine-tuning.

HQF 3 skips 1 skip

Method Input PSNR SSIM PSNR SSIM

E2VID Event 6.70 0.315 6.70 0.315
RRIN RGB 26.11 0.778 29.76 0.874
BMBC RGB 26.32 0.781 29.96 0.875
DAIN RGB 26.10 0.782 29.82 0.875
SuperSloMo RGB 25.54 0.761 28.76 0.861
Time Lens RGB+E 30.57 0.900 32.49 0.927
Ours(A2OF) RGB+E 31.85 0.932 33.94 0.945

HS-ERGB (far) 7 skips 5 skip

Method Input PSNR SSIM PSNR SSIM

E2VID Event 7.01 0.372 7.05 0.374
RRIN RGB 23.73 0.703 25.26 0.738
BMBC RGB 24.14 0.710 25.62 0.742
DAIN RGB 27.13 0.748 27.92 0.780
SuperSloMo RGB 24.16 0.692 25.66 0.727
Time Lens RGB+E 32.31 0.869 33.13 0.877
Ours(A2OF) RGB+E 33.15 0.883 33.64 0.891

HS-ERGB (close) 7 skips 5 skip

Method Input PSNR SSIM PSNR SSIM

E2VID Event 7.68 0.427 7.73 0.432
RRIN RGB 27.46 0.800 28.69 0.813
BMBC RGB 27.99 0.808 29.22 0.820
DAIN RGB 28.50 0.801 29.03 0.807
SuperSloMo RGB 27.27 0.775 28.35 0.788
Time Lens RGB+E 31.68 0.835 32.19 0.839
Ours(A2OF) RGB+E 32.55 0.852 33.21 0.865

Real frame-event dataset. We also evaluate and compare our method with
the state-of-the-art methods on the real dataset of HQF: E2VID [23], RRIN [10],
BMBC [19], DAIN [2], SuperSloMo [7] and Time Lens [27]. The results are
summarized in Tab. 2. We have two experiment settings for training on HQF:
Firstly, we select 1 frame from every 4 frames in the original sequences which is
viewed as ’3-skip’ as shown in Tab. 2. Second, we select 1 frame from every 2
frames in the original sequences which is viewed as ’1-skip’ as shown in Tab. 2.
For HS-ERGB, we select 1 frame from every 8 frames or select 1 frame from
evey 6 frames. Note that our model is finetuned with real frames-event datasets
based on the model trained on synthetic datasets.

Similar results as the experiments on synthetic datasets could be indicted
by quantitative comparison as shown in Tab. 2. As shown in Fig. 5, only our
method could reconstruct the legs of the moving horse in the second row. Due to
the absence of visual details from frames in E2VID, synthesized frames through
the only event has a large the gap with real intermediate frames. DAIN and QVI
fail to synthesize high-quality interpolated frames in the regions with complex
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Fig. 5. Visual comparisons with different methods on HQF with real events.

Table 3. Ablation studies. EDOF denotes our proposed event-driven optical flow mask.
MCL denotes our proposed event-driven Motion Consistency Loss.

EDOF MCL PSNR SSIM IE

× ✓ 33.82 0.952 7.13
✓ × 35.27 0.963 5.75
✓ ✓ 36.61 0.971 4.23

motions such as the letters in the first row and the legs in the second row. Their
methods cannot model the complicated motion in the real scenes very well.

4.4 Ablation Studies

To study the contribution of each module in our proposed model, we perform the
ablation study on the GoPro dataset as shown in Tab. 3. Firstly, to evaluate the
influence of Event-driven Optical Flow mask, we replace the mask with linear
weights in SuperSloMo [7]. Experimental results show that our proposed event-
driven optical flow mask has a positive effect in VFI model with the improvement
of PSNR, SSIM and IE. As for our proposed event-driven motion consistency
loss, we train a model without the supervision of this loss. This loss can be used
to constrain the motion information coming from the change of intensity and
event streams to be similar. Results show that this loss can further improve the
performance of our proposed model.

5 Conclusion

In this paper, we propose a video frame interpolation method with event-driven
anisotropic flow adjustment in an end-to-end training strategy. Besides, we de-
sign an event-driven motion consistency loss based on the change of intensity
to constrain the gap between the estimated motion information and that from
event streams. Instead of proposing complex motion assumptions like previous
work, leading to isotropic intermediate flow generation or anisotropic adjust-
ment through learned higher-order motion information, we use events to gener-
ate event-driven optical masks for the different directions, assigning the weight
of bi-directional optical in intermediate optical flow in an anisotropic way.The
proposed event-driven motion consistency loss further improves our method. The
experiment results show that our model performs better than previous methods
and achieves the state-of-the-art performance.
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