
Supplementary Material for EvAC3D: From
Event-based Apparent Contours to 3D Models

via Continuous Visual Hulls

Ziyun Wang* , Kenneth Chaney* , and Kostas Daniilidis

University of Pennsylvania, Philadelphia PA 19104, USA

Supplemental video, code, and data are available at
https://www.cis.upenn.edu/~ziyunw/evac3d/

1 Additional Handheld Results

In Figure 1, we show more examples of carving of EvAC3D on ground truth
Apparent Contour Events.

Fig. 1. Reconstruction with Apparent Contour Events of three animals with handheld
trajectory. From Left to right: event image by binning (red and blue indicate polari-
ties), event image overlaid with EvAC3D reconstruction, grayscale image from events,
grayscale images from events overlaid with EvAC3D reconstruction.

2 Carving Algorithms

We include the two algorithms for carving based on Apparent Contour Events.
In Algorithm 1, we show how individual events can be used to carve the volume
as tangent rays. In Algorithm 2, we show how to extract the occupancy values
and obtain a mesh.

https://orcid.org/0000-0002-9803-7949
https://orcid.org/0000-0003-1768-6136
https://orcid.org/0000-0003-0498-0758
https://www.cis.upenn.edu/~ziyunw/evac3d/

2 Wang et al.

Algorithm 1 Event Carving Algorithm

Input V volume initialized to zero
Input E active contour events
Input wRc(t),

wpc(t) camera trajectories

1: procedure CarveEvents(V , E, wRc(t),
wpc(t))

2: for i← 1, |E| do
3: (xi, yi, ti, pi)← Ei

4: V TC(ti) ←
V TW

WTC(ti)

5: Oi ← V RW
wpc(ti) +

V tW
6: Di ← V RW

wpc(ti)
wxc(ti)

7: Vi ← bresenham3D(Oi, Di, bounds(V))
8: V [Vi]+ = 1
9: end for
10: return V
11: end procedure

Algorithm 2 Segmentation of the probability volume

Input V volume with large values representing vacancy

1: procedure SegmentVolume(V)
2: Occupancy ← max(V)− V

3: center ← (ΣViViOccupancy[Vi])

(ΣViOccupancy[Vi])
4: ϵ← Otsu(Occupancy)
5: CC ← LabelConnections(Occupancy < ϵ)
6: ID ← CC[center]
7: Mesh←MarchingCubes(CC == ID)
8: return Mesh
9: end procedure

ECCV-20 submission ID 5100 3

3 MOEC-3D Dataset Details

In this section, we describe the details of MOEC-3D, the first real event dataset
for single object reconstruction.

3.1 Hardware Setup

There are two stages in collecting MOEC-3D:

1. Scanning 3D Ground Truth Models
2. Capturing Events with Estimated Pose

Scanning 3D Ground Truth Models In MOEC-3D, we pay close attention to
the accuracy of the scanned models because the dataset is designed to test the
algorithm’s ability to accurately reconstruct 3D models with fine details. A naive
way to scan the models is using an RGB-D sensor, e.g. RealSense d415, to capture
partial scans of the object from multiple viewpoints and fuse them into a full 3D
model. In addition, the pose of the object in the camera frame would be naturally
obtained when fusing different views. This approach has been previously used
in YCB [1], a well-known dataset for object manipulation. However, the mesh
models in YCB have limited accuracy due to the sensor precision. For instance,
Intel RealSense d415 has an estimated error of 2 percent of the measured depth.
In our data collection, this error rate translates to roughly 1 millimeter of error
in 3D mesh reconstruction in our dataset. Therefore, we choose to scan objects
using a more accurate industrial-grade 3D scanner with global registration to
generate higher accuracy object meshes. For this task, we use an Artec Space
Spider high-precision scanner, a high-precision scanner with a rated accuracy of
0.05 millimeters. We show the visualization of our scans in Figure 5.

There are two types of trajectories in our dataset for objects and animals.
For objects, we use a turntable to rotate the object. The pose of the object
is obtained by mapping the joint angles of the turntable to a pre-computed
pose lookup table. The pose lookup table is computed by putting an AprilTag
on the turntable. We manually select good segmentation masks from multiple
views and run Iterative Closest Points (ICP) to obtain the object pose. However,
we recognize that a turntable motion is an oversimplified model of the camera
motion. Therefore, we collect additional data with animal models and handheld
trajectories. In these sequences, we placed an AprilTag grid on the ground and
use reconstructed grayscale frames from events for pose estimation. A sample
trajectory is shown in Figure 3. Since animals have more complex geometry,
we design a more robust object pose estimation method. Precision alignment of
the animal objects was accomplished through aligning known features on the
AprilTag Grid and the object. A precision square was used to provide a positive
stop at a known corner within the grid. Next, the convex hull of the contact
patches was analyzed to find the longest flat surface for alignment on one axis.
This provides one degree of freedom left which is constrained by aligning the
foot furthest in the remaining movement with the second axis of the square. In
2D this fully constrains the location of the object.

4 Wang et al.

Fig. 2. Data collection setup of a handheld trajectory around an animal model.

Fig. 3. A sample handheld trajectory from MOEC-3D.

ECCV-20 submission ID 5100 5

Fig. 4. Select real object scans from the Artec Space Spider scanner.

Fig. 5. Select real animal model scans from the Artec Space Spider scanner.

6 Wang et al.

Fig. 6. Example animal apparent contours obtained from projecting the ground truth
scan into the event camera.

ECCV-20 submission ID 5100 7

3.2 Generating Apparent Contour Events

For the two types of trajectories explained above, we know both the camera
poses and the object poses. We place an virtual camera in Open3D [6] with the
same intrinsics as the real camera. Then the object depth map is rendered using
this camera. We then threshold the detph map to obtain the object masks. The
final step for obtaining the object apparent contour is straightforward: we dilate
the object mask with a 5 × 5 kernel and then subtract the original mask from
the dilated mask. Since we have calibrated the Prophesee camera, the intrinsics
of the camera can be used to achieve accurate projection. In figure 6, we show
an example of the apparent contours that we obtain through the procedure
described above.

ACE Classification Performance A key component of our pipeline is the
Apparent Contour Events classification network. We report the test classification
performance of each class of the MOEC-3D dataset in Table. 1.

Table 1. Per-class classification performance

Class Classification Accuracy

Coffee can 0.967
Jello box big 0.954
Jello box small 0.958
Mustard bottle 0.955

Soda can 0.957
Soup can 0.957
Spam can 0.958
Sugar box 0.955
Tuna can 0.956

Vitamin bottle 0.956

All 0.956

Training Details To predict the labels for each event, we map each event
directly to a binary label. Since a single event does not contain enough informa-
tion about the contour, we condition the mapping function on a fixed number of
events in the past. In practice, we condition our network on the previous 100,000
events. During training, we predict the label of 50,000 events as a single batch.
We attempted to use a PointNet [4] to encode the previous events; however, we
found a PointNet encoder unable to perform well enough for this task. Instead,
we use an modified image encoder to directly process the event volume gener-
ated with the previous events. We use a modified ResNet-18 encoder to encode
the previous events, where the first convolutional layer is replaced with a 2D
convolutional layer whose input channel matches the time channel of the event
volume. Following Occupancy Networks [3], we use several Conditional Batch

8 Wang et al.

Normalization (CBN) layers that apply an affine transformation based on α and
β, which are computed from the conditional code (output from the encoder).
For each CBN layer, we compute the α and β parameters from a fixed size 128-
dimensional vector from the encoder. We use the open source implementation of
Occupancy Networks [3] for the decoder network (DecoderCBatchNorm2).

The decoder network consists of one 1D convolution and 5 CBN blocks fol-
lowed by one more 1D convolutional layer. The x-y coordinates are normalized
between −1 and 1 before passing into the decoder network. We use Rectified
Linear Unit (ReLU) as the activation functions. Adam optimizer is used with a
learning rate of 0.0002 with no learning rate decay. The batch size for training is
32. For fair comparisons, all baseline networks described in the main manuscript
are trained 50 epochs. We experimented with multiple loss functions including
Focal loss [2] and Dice loss [5], but we found Binary Cross Entropy loss had the
best performance in our experiments.

ECCV-20 submission ID 5100 9

References

1. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The ycb
object and model set: Towards common benchmarks for manipulation research. In:
2015 international conference on advanced robotics (ICAR). pp. 510–517. IEEE
(2015) 3

2. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017) 8

3. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4460–
4470 (2019) 7, 8

4. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 652–660 (2017) 7

5. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised dice
overlap as a deep learning loss function for highly unbalanced segmentations. In:
Deep learning in medical image analysis and multimodal learning for clinical decision
support, pp. 240–248. Springer (2017) 8

6. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: A modern library for 3D data processing.
arXiv:1801.09847 (2018) 7

	Supplementary Material for EvAC3D: From Event-based Apparent Contours to 3D Models via Continuous Visual Hulls

