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1 Introduction

For better acknowledgement of details, we provide several supplementary sec-
tions to demonstrate the mechanism and capability of DCCF.

In Section 2 and 4, we provide more experiment results on high-resolution
images along with the efficiency comparison. In Section 5, we further show the
low-resolution results to demonstrate the efficacy of designed filters.

In Section 7.1, we show that a constrained rotation matrix in RGB space can
actually rotate the color angle in HSV space. Along with the disentanglement
in high resolution assembly module in Section 7.2, we also show that DCCF
like Fhue can learn unconstrained rotation matrix which can be projected on its
current HSV plane to directly affect the specific HSV channel.

In Section 8, we demonstrate the numerical procedure of standard and smooth-
ing(ours) HSV supervision strategies.

In Section 9, we show the capability of DCCF to adjust specific image at-
tribute. Each filter of this family can be picked out to qualify its sub-task. In
Section 10 and Section 11, we provide more visualization results of comprehensi-
ble interaction and high-resolution results. In Section 12, we discuss the potential
limitation of our framework.

2 High-Resolution Results with Different Backbones

Note that our DCCF can be plugged into different backbones, we select DIH [11]
and S2AM [4] for experiment. [11] shares similary U-net[8] architecture with
iDIH-HRNet [9] except for the extra pretrained visual feature from HRNet [10].
[4] uses spatial-separated attention module in decoder to aggregate semantic in-
formation. For fair comparison, we keep learning strategy the same as DCCF
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Table 1: Quantative results on the iHarmony4 original-resolution test sets with other
backbones. ’-’ means not able to obtain results due to memory limitation. ’DCCF-*’
means DCCF filters backboned by *.

Method
Entire Dataset HCOCO HAdobe5k HFlickr Hday2night
MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑

DIH [11] - - 36.39 36.56 - - 186.38 30.78 61.89 35.40
DIH [11] + BU 51.28 34.39 39.35 34.92 44.99 34.81 129.48 30.14 51.07 36.77
DIH [11] + GF[7] 43.10 35.35 30.73 36.11 41.57 35.34 109.99 31.13 50.00 37.09
DIH [11] + BGU[1] 34.37 36.47 23.16 37.21 34.11 36.63 90.24 32.18 51.78 36.64
DCCF-DIH 33.39 36.87 21.60 37.81 34.09 36.77 89.86 32.24 49.93 37.23

S2AM [4] - - 33.43 36.93 - - 186.70 30.78 57.48 36.05
S2AM [4] + BU 44.02 35.02 36.36 35.30 33.01 35.95 112.74 30.77 41.84 37.44
S2AM [4] + GF[7] 35.88 36.05 27.83 36.53 29.63 36.58 93.06 31.85 40.94 37.79
S2AM [4] + BGU[1] 27.94 37.18 20.25 37.73 24.71 37.68 73.82 32.99 42.49 37.28
DCCF-S2AM 26.74 37.59 18.41 38.43 24.39 37.65 73.18 33.12 44.25 37.36

when training these backbones, where we use RandomResizedCrop and Ran-
domHorizontalFlip as data augmentation, foreground-normlized MSE [9] as train-
ing loss, XavierGluon (gaussian, magnitute=0.2) as weights initializer. We use
bilinear upsamplng (BU), guided filter (GF [7]) and bilateral grid upsampling
(BGU [1]) as post-processing methods. Experiments in Table 1 show that DCCF
constantly outputs these baselines which demonstrates the robustness and gen-
erality of our framework.

3 Comparison with CDTNet

We finetune our model under weaker resolution settings (1024×1024, 2048×2048)
on HAdobe5k subset to compare with the recent high resolution harmonization
method CDTNet [2]. To make fair comparison, we use the same backbone S2AM-
256 with [2] (i.e CDTNet-256). The result is shown in Table 2. Our DCCF has
better performance on higher resolution setting (2048×2048) than CDTNet-256.
It is also observed that the performance of [2] drops significantly as resolution
increases, while our method maintains stable performance. Note that other high
resolution experiments in our paper are conducted under a much stronger setting:
the original resolution of HAdobe5k can range up to 6048×4032.

Table 2: Quantative comparison with CDTNet [2] on HAdobe5k subset.

Resolution Method MSE↓ PSNR↑ fMSE↓ SSIM↑
1024 CDTNet-256 21.24 38.77 152.13 0.9868
×1024 DCCF 21.12 38.38 171.17 0.9852
2048 CDTNet-256 29.02 37.66 198.85 0.9845
×2048 DCCF 21.35 38.47 174.78 0.9856
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Table 3: Efficiency comparison between DCCF and advanced post-processing meth-
ods on different resolutions from 1024 to 3072. ’T-C’ represents cpu time (ms), ’T-G’
represents gpu time (ms) and ’Mem’ represents memory usage (MB). Note that ’-’
means no offical implementation is found.

Method
1024 × 1024 2048 × 2048 3072 × 3072

T-C (ms) ↓ T-G (ms) ↓ Mem (MB) ↓ T-C (ms) ↓ T-G (ms) ↓ Mem (MB) ↓ T-C (ms) ↓ T-G (ms) ↓ Mem (MB) ↓
iDIH-HRNet[9] 420 231 1641 41040 907 4233 139768 2042 8551
iDIH-HRNet[9] + GF[7] 642 80.2 983 2001 160 1513 10181 391 2483
iDIH-HRNet[9] + BGU[1] 9932 - 2893 20803 - 4042 29836 - 8173
DCCF-iDIH-HRNet 762 104 1259 3289 286 2607 6517 545 4845

4 Efficiency Comparison

To compare efficiency between DCCF and existed post-processing upsampling
methods, we test these methods on different resolutions from 1024×1024 to
3072×3072. The experiment is conducted on a x86-64 machine (72 cores, ubuntu
18.04) with a 12GB Nivida Titan X gpu card. We test cpu time (T-C), gpu time
(T-G) and memory usage (Mem) for evaluation metrics. Each method is warmed
up by 10 times and averaged by another 20 times forward passes. As for detailed
parameters which could influence efficiency metrics, GF [7] uses r = 8 kernel
size, BGU [1] uses default 16× 16× 3× 4 grid size.

Experiments in Table 3 show that GF [7] take most of the leads in effi-
ciency metrics, that is mainly because it only involves several basic box fil-
ters, however it losses too much performance compared to DCCF (MSE/PSNR,
24.65/37.87→35.47/36.00). BGU [1] explicitly estimates bilateral grids which
contain image-to-image transformation coefficients, therefore the performance
is higher compared to GF [7], however the efficiency drops far behind since it
needs extra optimization procedure. To this end, DCCF achieves a good trade-off
between performance and efficiency.

5 Low-Resolution Results

To further show the efficacy of our designed comprehensible filters, we compare
our approach with other state-of-the-art deep models [27,6,5,9] on the iHar-
mony4 low-resolution (256 × 256) test sets. The results are shown in Table 4.
It is interesting that our approach also outperforms the previous best one [23]
slightly on the entire iHarmony4 dataset on low-resolution, which may due to
the appropriate design of filters and extra supervision from auxiliary HSV losses
via our framework.

6 Ablation Study on Operation Order

According to our survey, many designers and artists in Photoshop community
tend to harmonize an image in the order of ’value, saturation, hue’. We regard
this phenomenon as a common convention thus design our framework in such an
order. However we think the operation order of DCCF filter is also meaningful
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Table 4: Quantative results on the iHarmony4 low-resolution test sets.

Method
Entire Dataset HCOCO HAdobe5k HFlickr Hday2night
MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑

DIH [11] 76.77 33.41 51.85 34.69 92.65 32.28 163.38 29.55 82.34 34.62
S2AM [4] 59.67 34.35 41.07 35.47 63.40 33.77 143.45 30.03 76.61 34.50
DoveNet [3] 52.36 34.75 36.72 35.83 52.32 34.34 133.14 30.21 54.05 35.18
IntrinsicIH [5] 38.71 35.90 24.92 37.16 43.02 35.20 105.13 31.34 55.53 35.96
iDIH-HRNet [9] 22.81 38.18 14.35 39.53 23.43 37.18 61.42 33.84 45.09 38.08
DCCF 22.05 38.50 14.87 39.52 19.90 38.27 60.41 33.94 49.32 37.88

thus we make corresponding ablation experiment. We investigate the whole 3!
combinations ’VSH’, ’HVS’, ’SHV’, ’VHS’, ’HSV’, ’SVH’ on low resolution im-
ages in Table 5. Note that the results are slightly different with Table 4 because
Table 5 uses fewer training epochs, but we ensure that all abaltions in Table 5
share the same parameter setting. A tentative conclusion is that the order would
affect final results and different subsets also require different optimal operation
orders. A possible solution is introducing re-enforcement learning (RL) to decide
which is the best operation order when processing a certain given image. This
may inspire our future works.

Table 5: Ablation study of different orders.

Operation Order
Entire Dataset HCOCO HAdobe5k HFlickr Hday2night
MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑

V→S→H (default) 22.52 38.57 14.20 39.73 22.54 38.12 61.80 33.92 45.54 37.51
H→V→S 22.90 38.53 14.45 39.66 23.66 38.12 60.32 33.93 49.78 37.67
S→H→V 22.88 38.43 14.90 39.48 21.81 38.17 63.94 33.74 41.64 37.94
V→H→S 22.11 38.63 14.02 39.71 21.98 38.35 59.54 33.98 51.77 37.58
H→S→V 22.45 38.57 14.67 39.57 21.29 38.45 61.97 33.87 45.78 37.69
S→V→H 22.94 38.53 14.25 39.69 23.08 38.06 61.77 33.90 59.10 37.33

7 Hue Filter and Disentanglement

7.1 Hue Filter

Let x : (xr, xg, xb) indicates the RGB values for one pixel in image, z : (zh, zs, zl)
is the corresponding point in HSV space. Let ∆ is a learnable 3x4 affine transfor-
mation matrix in RGB space that contains a rotation matrix R and translation
vector t, and r is a radian moving on the hue ring in HSV space.

According to the theory in [6], to rotate the hue by r, we perform a 3D
rotation of RGB colors about the diagonal vector [1.0 1.0 1.0] as as illustrated
in Fig. 1. The resulting matrix will rotate the hue of the input RGB colors. A
rotation of 2π/3 will exactly map Red into Green, Green into Blue and Blue into
Red. The matrix processing in [6] makes an approximation that the diagonal axis
in RGB space is equivalent to the hue axis in HSV space. This transformation
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(a) 3D Rotation (b) Diagonal (c) Hue

Fig. 1: Illustration of rotation matrix. Viewing 3D RGB cube model (a) from the di-
agonal perspective, we can get the hexagon in (b), which is an approximation of real
color circle in hue space (c). Therefore rotation r is equivalent in above three models.

has one problem, however, the luminance of the input colors is not preserved.
This can be fixed by shearing the value plane to make it horizontal.

We suppose that one could find a suitable rotation matrix R in RGB color
space that is equivalent to [6]. Therefore, it is possible to learn an affine color
transformation function fhue(x;∆) in RGB color space, which contains a rota-
tion function R that could be the parameters for the corresponding hue rotation
function fhue(h; r) in HSV space. Exactly, fhue(h; r) is the desired linear trans-
formation for hue filter Fhue. It is obvious that the linear transformation∆ could
map one RGB point x1 to any other RGB point x2, and the corresponding HSV
point z1 moves to z2. To avoid the modification along L and S axis, we perform
HSV disentangle by projecting the path (z1 → z2) on H plane to get z2∥h.

7.2 Effect of HSV Disentanglement

(a) Input (b) Fhue on RGB (c) Disentangle

Fig. 2: Illustration of disentanglement. High resolution assembly module extracts the
H channel of output and concatenates it with the input’s V and S. This operation
prevents Fhue from changing V and S.

We show the importance of high resolution assembly module disentanglement
in Fig. 2. Taking Fhue as example, naively applying it in RGB space actually
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changes V and S simultaneously. DE (Disentangle) avoids this situation by ex-
tracting the H channel of output and concatenating it with the input’s V and S.
This ensures the action of Fhue won’t corrupt the result of Fval and Fsat.

Note that this disentanglement strategy is equivalent to the projection action
in Section 7.1. We only need the path (z1 → z2) on the H plane: (z1∥h → z2∥h).
Similarly, applying Fval + DE and Fsat + DE will generate projection path on
V plane and S plane, which are (z1∥l → z2∥l), (z1∥s → z2∥s). The orthogonality
of HSV space will ensure that these paths won’t cross each other.

8 Auxiliary HSV Loss

8.1 Standard HSV Decomposition

The numerical conversion of HSV and RGB value is performed as:

V = Cmax (1)

S =
Cmax − Cmin

Cmax
(2)

H =


π/6× ( G−B

Cmax−Cmin
mod6), Cmax = R

π/6× ( B−R
Cmax−Cmin

+ 2), Cmax = G

π/6× ( R−G
Cmax−Cmin

+ 4), Cmax = B

(3)

This expression tends to result in noise points because it is based on numerical
values rather than physical characteristics.

8.2 Smoothing V

The generation of Vsmooth is straightforward. We apply gaussian blur on the
original V decomposition to get Vsmooth, where we set variance scale std = 1.5
and kernel size K = 5 in implementation.

8.3 Smoothing S

Different from Eq. 2, we follow the operation in photoshop to get a smooth map.
First, we perform a selective color adjustment by setting all the colored tunes to
-100%: red, yellow, green, cyan, blue, and magenta(RGB, CMY). Then for the
blacks, whites and neutrals(BWN), we enhance them to 100%. Noted that the
param used here ranges from -100% to 100%, actually it is exactly the same σ
we used in our saturation filter. The detailed procedure is shown in Fig. 3. The
numerical expression can be expressed as:

St = Fsat(St−1;σt) ∗ROI(ct), t = 1, 2, ...9 (4)

Ssmooth = I9, S0 = I1 = Fval(I) (5)

Where ct=[R,G,B(Blue),C,M,Y,B(Black),W,N], σt = −1 for t ∈ [1,2,3,4,5,6],
and σt = 1 for t ∈ [7,8,9]. Note that ROI(ct) is the regions within this color.

The result is a color map that shows you saturation levels across the scene.
Darker shades of gray are less saturated, and lighter shades are more saturated.
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(a) Input (b) Red ↓ (c) Green ↓ (d) Blue ↓ (e) Cyan ↓

(f) Megenta ↓ (g) Yellow ↓ (h) Black ↑ (i) White ↑ (j) Neutral ↑

Fig. 3: Procedure of smoothing saturation map. It is arranged from left to right, top to
bottom. Note that (j) is also the final result of our smoothing S.

8.4 Smoothing H

As for Hsmooth, we first convert RGB image into HSV space and set the V
channel to 0.8, S channel to 0.5, then convert it back to RGB space.

9 Intermediate Result Visualizations

We show that our intermediate result of DICF matches their design purpose in
Fig. 6. Ic is the input image. I1, I2, I3, I4 are outputs after Fval, Fsat, Fhue, Fattn.
Hc, Sc, Vc are input’s HSV maps. H3, S2, V1 are their harmonized counterparts.
Igt, Vgt, Sgt, Hgt are ground truths.

As illustrated in the upper part of Fig. 6, each intermediate result of I1 =
Fval(Ic), I2 = Fsat(I1), I3 = Fhue(I2) not only changes its corresponding image
attributes: value, saturation and hue, but also maintains reasonable visual qual-
ity. This is untrivial since we didn’t apply direct RGB loss on I1,I2,I3, instead
we only apply auxiliary HSV loss on its specific channels. This means that users
can choose any of I1, I2, I3, I4 as their desired output if they only want to change
part of these attributes, while previous works only provides a final result which
is I4 in our framework. This brings more flexility and robustness for users when
approaching DCCF.

We further illustrate the comprehensibility in the bottom part of Fig. 6, the
modified channel is closer to ground truth after the operation of DCCF. This
also proves the effect of HSV loss in our framework.

10 Comprehensible Interaction

To interact with Fval, in standard image processing softwares, users need to
provide a curve to adjust value. In our framework, users can set [ϕ0, ...ϕm] to
approximate a curve. As shown in Fig. 4(a), the first row is the visualization of
several curves provided by user. The second row is the result of directly apply-
ing these curves on RGB images which degrades image quality since each pixel
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(a) Illustration of interactive value adjustment.

(b) Illustration of interactive saturation adjustment.

Fig. 4: Interactive adjustment. Upper: users’ global adjustment. Bottom: interactive
adjustment with DCCF.

has the same tuning curve. The third row is the result of applying a weighted
fusion(α = 0.5) of user’s global curve and DCCF’s filter map Fval.

To interact with Fsat, users can change image saturation by σ ∈ [−1, 1]. As
shown in Fig. 4(b), we set a series of σ ∈ [−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8]
to generate the first row, which is a global adjustment and each pixel has the
same σ and could suffer from over-saturation. The second row is the weighted
fusion(α = 0.5) of user’s σ and DCCF’s filter map Fsat.

11 More High-Resolution Visualizations

We provide more visualizations of final results compared with previous methods
in Fig. 7. Since DCCF is an end-to-end framework, it has strong transformation
capability while maintaining high-resolution details.
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12 Limitations

(a) BGU [1] (b) DCCF (c) GT

Fig. 5: Potential limitation. The second row is amplified details. It is observed that
even DCCF learns better color adjustment, the detail starts to blur on high frequency
regions like leaf.

Since the high resolution result is guided by low resolution stream in our
framework, the claim of insensitivity to resolution is valid only if the processed
image has enough information shared across all signal frequency. In the case of
extremely high frequency contents, it may fail to reharmonize images properly,
see Fig 5.
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(a) M (b) Ic (c) I1 (d) I2 (e) I3 (f) I4 (g) Igt

(h) Vc (i) V1 (j) Vgt (k) Sc (l) S1 (m) Sgt (n) Hc (o) H1 (p) Hgt

Fig. 6: Intermediate results.
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(a) Mask (b) Input (c) BU (d) GF[7] (e) BGU[1] (f) Ours (g) GT

Fig. 7: Visualization of high-resolution results.
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