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Abstract. Convolutional Neural Networks have revolutionized vision
applications. There are image domains and representations, however,
that cannot be handled by standard CNNs (e.g., spherical images, super-
pixels). Such data are usually processed using networks and algorithms
specialized for each type. In this work, we show that it may not always be
necessary to use specialized neural networks to operate on such spaces.
Instead, we introduce a new structured graph convolution operator that
can copy 2D convolution weights, transferring the capabilities of already
trained traditional CNNs to our new graph network. This network can
then operate on any data that can be represented as a positional graph.
By converting non-rectilinear data to a graph, we can apply these convo-
lutions on these irregular image domains without requiring training on
large domain-specific datasets. Results of transferring pre-trained image
networks for segmentation, stylization, and depth prediction are demon-
strated for a variety of such data forms.

Keywords: Graph Convolution, Transfer Learning, Irregular Images,
Superpixels, Spherical Images, Texture Maps

1 Introduction

Convolution has been an important operator in image processing practically
since its inception, long before the age of deep learning. It is the backbone of most
modern deep neural networks, and learnable weights in convolution layers lead
to incredible capabilities such as classification, object detection, segmentation,
stylization, and many others.

Convolution is powerful, but the discrete form used for raster images requires
dense rectilinear grids, typically Cartesian grids. For sparse, discontinuous, or
irregular data, discrete raster convolution may not be applicable. Methods such
as rasterization, interpolation, or padding are commonly used to convert the
data into a form suitable for discrete convolution.

Graph convolution is more adaptable to less regularly structured data and
is designed to mimic the process of 2D convolution. Instead of requiring spatial
adjacency, it performs convolution based on an adjacency matrix that describes
the edges that connect nodes to each other in the graph. One key difference,
however, between traditional and graph convolution is that graph convolution is
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Fig. 1. Our method allows pre-trained 2D CNNs to operate on non-rectilinear image
domains such as superpixels, spherical images, masked images, and texture maps.

assumed to be non-orientable, meaning that it cannot treat incoming edges dif-
ferently based on spatial direction or the order they are fed into the convolution.
This is called the permutation-invariance constraint of graph convolution [4].

In image convolution, neighboring pixels are commonly given different weights
to help detect shapes and other patterns. In graph convolution, all neighbors
are aggregated in the same way, removing any location-based structure in the
process. Thus, the weights learned in a 2D convolutional neural network are in-
commensurate with the weights learned in a graph convolution neural network.

Graphs are commonly used to model abstract data that do not have positional
information (social networks, individual media ratings, etc.), but when the graph
data is image-based, we still wish to leverage positions, shapes, and patterns in
the same manner as traditional image convolution.

This paper presents a framework for working with non-rectilinear image-
based data that both traditional convolutional networks and graph networks
are ill-equipped to handle natively, including the types shown in Fig. 1. We do
this using a new type of selection-based graph convolution, which we name Se-
lectionConv, that can retain the same shapes and patterns that a traditional
convolution learns. In so doing, traditional convolution weights can be made
commensurate with SelectionConv weights, allowing the transfer of weights di-
rectly from networks previously trained on standard image datasets. Thus, no
special training or fine-tuning is necessary to run the network on less conven-
tional image types. This is particularly significant because less common image
types usually have far less available training data than typical image datasets.

Through this method, any network that operates on images can operate on
any form of data that can be represented as a positional graph. This allows one
framework to perform multiple tasks, such as depth prediction on superpixels,
segmentation of spherical images, and stylization of texture maps for 3D meshes,
as described in Sec. 5 and demonstrated in Sec. 6. This technique opens up a
realm of possibilities for previously underused data sources.

In summary, our contributions are as follows:
– We present a selection-based graph convolution operator that assigns differ-

ent weights to incoming edges without violating permutation invariance.
– We demonstrate how to transfer pre-trained 2D convolution weights to our

new graph operator, thus removing the need to retrain the graph network.
– We apply this new method to various non-rectilinear image applications to

demonstrate its effectiveness.
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2 Related Work

2.1 Graph Convolution Networks

The explosion of deep learning in recent years has led to many developments
in both Convolutional Neural Networks (CNNs) and Graph Neural Networks
(GNNs). Graph Convolution Networks (GCNs) started with the work of Kipf et
al. , which extended the ideas of CNNs to a general graph structure [18]. Improve-
ments on the original method have been proposed including higher-order aggre-
gation structures [6, 27] and incorporating MLPs in the aggregation step [39].
For a more complete overview of this line of work, we direct the interested reader
to recent surveys of both CNNs [21] and GNNs [41].

Interpolated Convolution Networks [25] and Spline Convolution Networks [10]
are designed, like this work, to mimic the process of a traditional CNN on a
point cloud or graph. However, these two approaches do not provide an ex-
plicit method for transferring weights to the new network. Additionally, both
of these approaches require traditional position-based point clouds, whereas we
show that our method is adaptable to many different data types and can be
modified flexibly according to the users’ specifications.

The works by Xu et al. [42] and Zhou et al. [48] both aim to use the structural
and positional information inherent in graphs to improve graph learning. These
are learnable components that can improve the training and performance of
graph networks given sufficient suitable training data. Our approach aims to
explicitly define the graph structure so that additional training is not needed.

2.2 Transfer Learning

The goal of transfer learning is to take the information or weights learned from
one network and utilize them in another network in some way. One common
example of transfer learning is to use a CNN backbone trained for a classifica-
tion network such as VGG-19 [32] for another task such as segmentation. Many
researchers have explored the effectiveness of networks trained for one task when
performing another task [24, 45], and a recent survey of transfer learning tech-
niques can be found in [50]. Our work differs from the goal of previous transfer
learning literature since our focus is not to transfer weights to a different task,
but to a network that operates on a different domain.

It is worth noting that there has been an effort to theoretically unify the
various types of neural networks and their various domains by focusing on their
invariance and equivariance properties [4]. To our knowledge, though, no attempt
has been made to state these operations in terms of each other and thus make
them transferable.

2.3 Spherical Images, Superpixels, and Texture Maps

This paper demonstrates the effectiveness of selection-based graph convolution
on various forms of non-raster data. Here we include work relevant to the tasks
we perform and the types of data used.
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We demonstrate working with spherical images by performing both semantic
segmentation and stylization. Several groups have worked on performing seman-
tic segmentation on spherical images [17, 36, 46]. Notable is the work of Tateno
et al. [36] who developed distortion aware convolutions that operate in spherical
space and also have the ability to transfer weights from a standard 2D CNN.
However, their method is specific to spherical images where ours extends to other
image domains.

Ruder et al. [30] present a method for performing style transfer on 360◦

images by taking the six cube-projected views and stylizing each one in turn while
enforcing consistency between each previously stylized view. We also perform
spherical image stylization in Sec. 6.1, but we do so in a single feed-forward step
without the need of fine-tuning a specialized network.

The aim of superpixels is to group similar pixels in an image into regions,
simplifying the representation of the whole image. In this work, we use SLIC, a
standard baseline algorithm for generating superpixels [1]. Many other classical
approaches exist for generating superpixels [34]. Recent deep learning techniques
have been proposed to improve superpixels [22, 38]. Superpixels have also been
used to improve modern detection and segmentation methods [16, 47]. Yang et
al. [43] use superpixels to take low-resolution results into higher resolutions,
similar to the task we perform in Sec. 6.3, but they do so by pretraining a separate
network that can predict superpixel associations on a grid-based structure.

Most work on meshes has focused on learning from the geometry rather
than from the color information that is provided in the texture map. Some have
explored generating new texture from a smaller example texture through classi-
cal texture synthesis methods [3, 8, 40] and neural approaches [12, 13, 31, 33, 49].
Textures have also been manipulated through lighting-based style transfer [11,
35] rather than through a purely image-based approach like the one we present
in Sec. 6.4. Yin et al. [44] recently proposed a geometry and texture stylization
approach that is optimization based and uses differentiable rendering, a funda-
mentally different approach to operating on texture map data than the one we
explore in this work.

3 Selection-Based Convolution

Our method requires designing a graph convolution operator that treats incom-
ing edges differently from one another during the aggregation step. Traditionally
in graph convolution, all connecting edges are specified in a single adjacency ma-
trix, and this matrix is used to described which nodes can influence each other
after some set of transformation operations. For example, the original Graph
Convolution Layer defined in [18] can be described as

X(k+1) = ÃX(k)W (1)

where X(k) is the current node activations, Ã is a normalized adjacency matrix,
and W is the learned weights. Note that the weight matrix is applied equally to
all nodes, making the result invariant to the order that nodes are enumerated in
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X(k) as long as Ã changes correspondingly. This is an example of the permutation
invariance constraint to which all graph convolution operations must adhere.

In comparison, while standard 2D convolution is shift invariant, it is not
permutation invariant, relying heavily on orientation when assigning the weight
of each connecting pixel. For example, the pixel directly above the current one
might be given different weight than the pixel to the bottom right, and so on.
Graph convolutions are able to assign edge weights, but they are generally static
or on a node-by-node basis using a mechanism such as attention [37]. Thus, the
weights learned during a 2D convolution are incommensurate with the weights
learned during a graph convolution.

In order to leverage the benefits of pretrained 2D convolutional networks
while having the structural flexibility of graphs, we introduce a new graph con-
volution layer that can preserve location information. We do so by preprocessing
the graph into multiple adjacency matrices, selecting edges to be assigned to dif-
ferent matrices based on the spatial relationship between their two nodes. This is
similar to the way we can think of different adjacency relationships between pix-
els and their directional neighbors. There is also a unique weight matrix for each
corresponding adjacency matrix so only those edges are affected. The results for
the set of adjacency and weight matrices are summed together to make the final
activation. This selection-based convolution is what we call SelectionConv.

For each graph, a given edge eij needs to be assigned to its specific adjacency
matrix. We do so using a selection function s(vi, vj) for vertices vi and vj with
spatial positions xi and xj respectively, which indicates which adjacency matrix
includes the edge eij between these vertices. For m possible selections this gives
m adjacency matrices respectively defined as

Smij
=

{
1 if s(vi, vj) = m

0 otherwise
(2)

Each selection has a corresponding weight matrix. Thus our convolution becomes

X(k+1) =
∑
m

S̃mX(k)Wm (3)

where S̃m is the normalized version of Sm to account for nodes having multiple
edges with the same selection m. With this structure, nodes can be treated
differently based on location and other features relative to the current node
without breaking the permutation invariance constraint. An example of this
process is illustrated in Fig. 2 .

We use PyTorch Geometric [9] to implement this process and use slices from
3D tensors rather than separate weight and adjacency matrices for efficiency,
but the result is mathematically equivalent.

4 Selection-based Convolution for Images

Though the process described in Sec. 3 is general enough to work with any
number of selections based on any number of node attributes, we now move to
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S                                              S1 2

Fig. 2. A graph with a selection function that weights upwards edges differently from
downwards edges. Such a selection function would give two adjacency matrices, S1 and
S2, that would be applied to two different weight matrices, W1 and W2.

the specific case of working in the image domain. To start, we will establish a
baseline for our method by looking at a regular image and showing that we get
results identical to a 2D convolution with our selection-based convolution.

4.1 Setting Up Image Graphs

An image with pixels in a Cartesian grid can be thought of as a set of nodes at
equally spaced distances. Many neural networks use 3× 3 convolutions as their
primary image feature extractor, which look at the pixel and its 8-connected
neighbors. Thus, when we construct our graph, we will add an edge from each
pixel to its 8-connected neighbors and one to itself. This means we need m = 9
possible selections.

For pixels in a Cartesian grid arrangement, value assignment for the respec-
tive selection functions is straightforward. For the general spatial case, we project
the vector defined by the position of the two nodes onto the set D of unit vectors
in each of the respective neighbor directions. Specifically,

D :=

〈
−
√
2/2,−

√
2/2

〉
⟨0,−1⟩

〈√
2/2,−

√
2/2

〉
⟨−1, 0⟩ ⟨1, 0⟩〈

−
√
2/2,

√
2/2

〉
⟨0, 1⟩

〈√
2/2,

√
2/2

〉 (4)

Whichever directional unit vector results in the largest projection (resulting dot
product) corresponds to the assigned selection. Additionally, if the positions are
the same (or within some small radius), the central selection is made. Thus, our
selection function becomes

s(vi, vj) =

0 if ∥xj − xi∥ < ϵ

argmax
k

Dk · (xj − xi) otherwise
(5)

For simplicity, when assigning a selection number or index to each direction, we
follow the mathematical convention of angles by making the direction to the right
be the first selection and moving in the counterclockwise direction for assigning
each subsequent direction. This is visualized on the left and right sides of Fig. 3.

4.2 Weight Transfer from 2D Convolutions

Once the appropriate selections have been made, transferring the weights is
simply copying the appropriate slice of the convolution kernel weights to its
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Fig. 3. Elements of a 3× 3 convolution kernel are enumerated with zero for the center
weight and neighboring weights from one to eight in counter-clockwise direction. The
different weights from the kernel are transferred to associated weight matrices. Those
weight matrices are then applied to the selected edges on the graph. Note that the
points in the graph do not need to be equally spaced as in regular images. There can
also be more than one node per selection.

assigned selection. For example, if selection 5 represents an edge going to the
left, the left kernel convolution weights would be copied to W5. This process is
illustrated in Fig. 3. When applied to raster data, this process leads to results
that are identical to those using an image-based convolutional network.

4.3 Handling Larger Kernels

If a network uses a kernel that is larger than 3×3, more weights need to be copied
over, but the same graph structure can still be used. Rather than using a larger
graph that is memory inefficient, we use the edges of the simpler 3 × 3 graph.
Through successive multiplications of the adjacency matrices, multiple edge hops
(traversals) can be performed until specific kernel locations are reached. For
example, if a 5× 5 kernel is used, the weight associated with the bottom middle
pixel would be assigned to the action of taking the bottom selection’s bottom
selection.

4.4 Pooling Operators and Upsampling

Many CNNs use pooling layers throughout the network to combine nearby fea-
tures. While GCNs have similar pooling features, it is important that our Se-
lectionConv network’s pooling layers mimic the downsampling nature of those
used in traditional CNNs.

If the network contains fully connected layers, we impose a spatial grid onto
the set of nodes when pooling. This grid matches the spatial size that the original
image data reduces to after pooling. If the network is fully convolutional, pooling
does not require a regular grid (especially if one cannot be imposed, such as on
a texture map), and any pixel-clustering algorithm can be used. In both cases,
any node within a cell or cluster is made into a single node during the pooling
step. The average of the positions of nodes in that cell becomes the position of
the pooled node. This is similar to the meta-node approach used in [29].

Pooled nodes also need to reestablish edge connections and selections. To do
so, we implement a post-pooling function that makes new edges between the
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aggregated cluster nodes by using the previous layer’s graph edges. If any edge
exists between two nodes in different clusters, the aggregated nodes of those
clusters will have a corresponding edge between them. That edge is assigned
the average of the previous selection values of all the edges between the original
nodes in the two clusters (while properly accounting for the selection value wrap-
around between 1 and 8).

If the network requires upsampling steps, we save each version of the graph
before it is downsampled. When upsampling, we revert back to a previous version
of the graph and copy appropriate values to each node using the defined clusters.
Bilinear upsampling can also be approximated by using the average value of the
connections to new nodes or through other point cloud interpolation methods.

4.5 Strides, Dilation, Padding

Traditional 2D convolution layers often have additional parameters such as the
stride of the kernel, the dilation of the kernel, and the padding to be used on the
border of the image. Selection-based convolution as described so far is equivalent
to a stride of 1, a dilation of 1, and zero padding, but we have the ability to
mimic these additional features in our SelectionConv network when needed.

Strides larger than 1 in a regular convolution layer are equivalent to a stride
equal to 1 followed by downsampling by the stride amount (with no antialiasing).
We use this same idea to implement large strides in the SelectionConv network.
The convolution is performed as usual (equivalent to a stride of 1), then the
graph is pooled using the method described in Sec. 4.4, but rather than using a
max or average pooling operator, a predetermined central node in each cluster
is always used as the pooled value.

Dilation is handled in a way similar to the larger kernels described in Sec. 4.3.
The dilation amount defines how many times a selection is edge hopped. For
example, a dilation of two would indicate that instead of taking the left selection,
the left selection’s left selection should be used instead. This process is repeated
for each selection for the same number of times as the dilation’s value.

Padding in traditional 2D CNNs helps control the size of output layers. Graph
convolution layers do not change the size of the output since the number of
nodes will stay the same, so padding is not usually needed. Some 2D CNN
padding schemes, however, are used to help information propagate correctly
along the borders of an image (such as reflective padding in stylization networks).
We handle these situations not only by looking at nodes along a border, but
by determining what to do with any missing selections. The following padding
methods can be implemented effectively and approximate padding schemes used
for images:

– Zero: Missing selections are not considered (default).
– Constant: Missing selections are assigned a predetermined value.
– Replicate: Missing selections are assigned the value of the current node.
– Reflect: Missing selections are assigned the value of the selection in the

opposite direction.
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Some of these steps we mimic from CNNs currently have nondifferentiable im-
plementations. Though not needed for the scope of this work, which focuses on
transferring weights from pre-trained networks, all parts of our SelectionConv
network would need to be differentiable if any form of training or fine-tuning
was desired for the network after weights have been transferred.

4.6 Verification

To verify that the SelectionConv network can truly be equivalent to a traditional
CNN, we used a pre-trained VGG-11 network [28, 32] on CIFAR-10 [19] and
transferred the original weights to our network. We compared this to the original
image-based network using the 10,000-image validation set. As expected, the two
methods resulted in identical predictions and identical accuracies of 84.5%. This
remains true even when small random spatial perturbations are introduced to
the points in the graph structure.

5 Example Non-rectilinear Configurations

Sec. 4 describes how to configure a SelectionConv network to work on images
in exactly the same way as a regular CNN. This works as a baseline but does
not provide any additional power over a regular CNN. In this section, we give
examples of the flexibility of our method to work with data that cannot be
processed with a traditional CNN due to its irregular structure. Importantly,
our method can use the weights from a CNN pre-trained using standard image
datasets without the need to retrain for specific data types.

5.1 Panoramic and Spherical Images

Many smartphones and cameras allow users to take single or multiple pictures
of their surroundings to acquire panoramic or even up to the full 360◦ × 180◦

view of their environment. These panoramic and spherical images have non-
simple topologies but are typically stored as simple planar images. This requires
projection of the content to a surface of some kind. While there are many ways
to project, including spherical, equirectangular (cylindrical), and cubic, each
of these have distortion or seams of some nature that would be difficult for
a traditional CNN to handle due to irregular spatial sampling or topological
considerations. With our method, such seams and distortion can be handled by
proper construction of the graph.

As an example, we show how to construct the graph for a cubic projection
often used for environment maps in computer graphics, which we have found to
be effective to work with since it has low levels of distortion compared to other
projections. Seams are naturally present along each edge of the cube, and a 2D
image can only represent a few of those connections. In our graph, we simply
need to make the connections between the rest of the seams, as illustrated in
Fig. 4.a. Additionally, we orient our selection function in such a way so that the
upwards selection is always pointed towards the top pole of the map.
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a) b)

Fig. 4. a) Illustration of the graph connections for a cube map. Red arrows represent
the upwards selection for nodes in that part of the graph. Green and blue lines represent
connections made in the graph between faces. b) Illustration of the graph connections
between the centroids of superpixels in an image.

5.2 Superpixel Images

Using superpixels is a common approach for simplifying a high-resolution image
by representing it as a smaller set of similar regions. Because of the irregular
structure of the regions, superpixels cannot be used for standard CNNs. They
can, however, be easily represented as a graph and used with our approach.

To construct the graph from the set of superpixels, the centroid of each region
is treated as a node, and edges are selected using a K-nearest neighbors method.
Selections are then made using the dot product method described in Sec. 4.1
and the graph is pruned so only the closest neighbor to each node for a given
selection is used. This process is illustrated in Fig. 4.b.

5.3 Masked Images and Texture Maps

Many applications require operating only on the foreground or a specified region
of the image. Our graph construction can naturally handle these cases by simply
dropping nodes and edges that are not part of the desired region, and any desired
padding mode described in Sec. 4.5 can be used to handle the irregular border.

Texture maps for 3D meshes can also be thought of as masked regions. Not
all pixels present on a texture map image will be used to determine colors on the
actual mesh, so we can mask out the regions that contain pixels that represent
some part of a face on the mesh. If we further connect these faces in the graph,
we can operate on the texture map in the same fashion as any image. To do this
in general, we start by determining which edges are only referenced once in the
UV map, since these represent the boundaries of groups of faces on the UV map.
We then find all closed loops of edges to separate each boundary. Finally, we do
a polygon-contains-point test for each pixel to see if the pixel is inside any of
our boundaries. This becomes the mask of relevant pixels on the texture map.
An overview of this process is shown in Fig. 5.
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a) b) c)

Fig. 5. A 3D model (a) and its texture map. The model’s texture seams can be deter-
mined from UV coordinates and represent boundaries on the texture map (b). From
this, we construct a mask of relevant pixels (c) and connect discontiguous regions.

If it is known which geometric faces are connected to each other, this can be
built into the graph construction. Otherwise, each edge boundary is paired with
a corresponding edge on another face that is used to make the connections. All
regions are connected regardless of where they are located on the image.

6 Results

To demonstrate transfer from image networks to SelectionConv networks, we
present the results of applying this and the graph-construction methods from
the previous section to various applications and image types. Additional results
can be found in the accompanying supplemental materials.

6.1 Spherical Style Transfer

A simple but effective illustration of the seamless nature of a selection-based
graph convolution is to perform style transfer on a spherical image. For this we
use the feed-forward style transfer approach recently proposed by Li et al. [20].
Usually for this task, a special piece-wise optimization approach or fine-tuned
network would be needed, such as that proposed by Ruder et al. [30]. However, by
generating our spherical graph using the method shown in Sec. 5.1, we naturally
avoid distortion, minimize seams, and can stylize in a single feed-forward pass.
An example is shown in Fig. 6. The whole process of generating the graph,
transferring the weights, and running the graph convolution can run in 15-20
seconds on a consumer GPU, while [30] would take 8-10 minutes per 360◦ image.
Even the faster approach suggested in [30] requires fine-tuning a network for
120,000 iterations per style image. Our approach uses a state-of-the-art feed
forward style transfer method, can be used for any style image, and still enforce
consistency across the seams of the cube map.

6.2 Spherical Segmentation

We apply SelectionConv to the task of semantic segmentation on images in
the Stanford 2D-3D-S [2] dataset. To do so, we first trained a standard 2D
FCN [23] using a ResNet-50 [15] backbone on 2D projected views. We then
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a) b)

(c) Ground View (d) Naive (e) SelectionConv

Fig. 6. A 360◦ image (a) and its stylization using our feed-forward method (b). An
example view looking downward at the lower pole of the image (c) has seams and distor-
tion when naively stylizing the rectangular image (d), but those seams and distortion
are minimized with our method (e). Image taken from [5].

transfer the weights to a SelectionConv-based version of FCN [23] and apply the
network, with no additional training, to the standard test set, converting the
data to spherical graphs using the method described in Sec. 5.1. This gives an
improvement over naively applying the network to the equirectangular images,
as shown in Fig. 7. When operating on the validation set, the naive approach
gives an average IOU score of 32.57%. We compare our results with that of
another transfer-based method, distortion-aware convolutions [36], who reported
an average IOU score of 34.56% on the same dataset. Our results show an average
IOU score of 36.29%. Although this is only a small improvement and is still
below state-of-the-art performance for RGB spherical segmentation (45.6% [7]),
we again note that other methods are designed and fine-tuned specifically for

(a) Orig. Image (b) Ground Truth (c) Naive (d) SelectionConv

Fig. 7. A visual comparison of semantic segmentation of images from the Stanford
2D-3D-S [2] dataset (a,b) between an FCN [23] with a ResNet-50 [15] backbone using
standard convolutions (c) versus our SelectionConv operations (d). Note that the use
of SelectionConv gives cleaner segmentation results along the poles of and seam of the
image (located in the center of this representation).
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(a) Original (b) Prediction (c) Low-Res (d) SelectionConv

Fig. 8. A high-resolution image (a) requires ∼25.9 seconds on a CPU to create a
predicted depth map (b). A lower-resolution 256 × 256 version can be processed by a
network in ∼0.8 seconds on a GPU, but with low-fidelity results when upscaled to the
same resolution (c). Generating approximately the same number of superpixels as the
low-resolution image then using our graph-based network requires only ∼5.1 seconds
on a GPU with higher-fidelity results (d).

spherical tasks, whereas we can achieve a performance boost through a simple
design of our graph structure.

6.3 Superpixel Depth Prediction

We now illustrate possible applications using our method with superpixels for
efficient processing of high-resolution images. We use a Pytorch implementation
of a monocular depth estimator [14, 26]. When operating on a 4K image, the
amount of data is too large for a consumer-grade GPU, necessitating downsam-
pling the input before processing. By comparison, if the image is first converted
into a graph of neighboring SLIC superpixels [1], SelectionConv can process it
on a GPU and output results that are of much higher quality than using a down-
sampled image. An example of such cases is shown in Fig. 8. We again note that
Yang et al. [43] complete a similar task with state-of-the-art performance, but
their method requires using superpixels generated by their trained network. The
SelectionConv network, in comparison, can utilize any superpixel method.

6.4 Masked Image and 3D Mesh Style Transfer

Lastly, we demonstrate the ability of our network to work on data with many
discontinuities by performing style transfer on masked images and texture maps.

To achieve style transfer on a masked region with a regular CNN would
require stylizing the entire image or a zero-padded masked image and then reap-
plying the unmasked region. This means that background features can affect
stylization of the foreground. In comparison, our method can handle these sce-
narios natively, leading to a stylization that only depends on the foreground
statistics. Comparisons of these approaches are shown in Fig. 9.

As another illustration, treating a texture map as a 2D image and naively
performing style transfer leads to noticeable seams in the mapped texture. In
comparison, using the graph structure proposed in Sec. 5.3 leads to more contin-
uous patterns. Visualizations of these two methods for various stylizations and
meshes are shown in Fig.10.
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(a) Original (b) Post-masking (c) Pre-masking (d) Ours

Fig. 9. A content image, a masked region of interest, and a given style image (a). To
stylize the masked region with a traditional CNN, the entire image can be stylized (b)
or the image can be masked before stylization (c) and then the masked result can be
applied back to the original. In both cases, outside statistics influence the stylization
inside the region of interest (making (b) darker than expected and (c) brighter than
expected). In comparison, our method (d) can generate a graph just for the masked
region, which more closely matches the style image statistics in the region of interest.

(a) 3D Mesh (b) Naive (c) Close-up (d) SelectionConv (e) Close-up

Fig. 10. 3D mesh (a), the result of naively stylizing the texture map (b) and a magni-
fication (c), and the result of using our method (d) and a magnification (e). Note the
visible seams shown in the magnifications of the naive method (c), whereas our method
in (e) minimizes the visibility of those seams.

Others have attempted style transfer between two different 3D objects [11, 35,
44], but we are not aware of other work attempting direct style transfer between
the texture map of the 3D mesh and a 2D image.

7 Conclusion

We have presented a method that allows for information from pre-trained tradi-
tional convolutional neural networks to be transferred directly to a new kind of
graph convolutional network. This makes it possible for these previously trained
networks to operate on data that they could not before, such as superpixels,
spherical images, and texture maps. We have demonstrated various use cases
and given the general framework so that others can continue to extend this
method for their needs. In theory, any set of adjacency matrices could be de-
signed to work with the particular data of a graph. Future research could also use
selection-based convolution to improve applications outside of the image domain.
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