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1 More Implementation Details

1.1 The Details of Semantic Labels Extraction

In the proposed semantic curve rendering module (SCRM), correct foreground
semantic label benefits the performance of image harmonization. However, iHar-
mony4 [2] do not contain the ground truth labels of the foreground. To obtain
the semantic labels, firstly, we get the categories in HCOCO sub-dataset via
COCO API [11]. For the rest sub-datasets, we leverage a semantic segmentation
model in [17] to segment the composite images. Then, we choose the segmented
region which has maximal intersection with the foreground mask, and consider it
as the category label. Finally, we summarize the distributions of the foreground
labels of the whole dataset in Table 1. Particularly, we roughly divide the fore-
ground regions into 5 categories, including Person,Vehicle,Animal ,Food and
others. We argue that this setting is also suitable for the daily usages.

Table 1: Predicted foreground distributions in iHarmony4.
Classes HCOCO HAdobe5k HFlickr Hday2night iHarmony4

Person 13416 7274 1629 0 22319
Vehicle 4434 1338 808 10 6590
Animal 7274 747 675 0 8696
Food 6752 280 721 0 7753
Others 10952 11958 4444 434 27788

Total 42828 21597 8277 444 73146

1.2 The Details of User Study on DIH99.

As is discussed in the main paper, to evaluate the effectiveness on real-world
scenarios, we conduct subjective user study to compare our proposed method
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Fig. 1: The layout of a single image group example in our user study. The dis-
playing order of the composite input and the harmonization results is randomly
shuffled without annotations.

with baseline methods (DIH [14], DoveNet [2] and BargainNet [1]) on the DIH99
real composite dataset. In detail, we invite 18 participants with different ages
and genders for subjective experiments. As shown in Figure 1, each participant
can see a set of image groups and each group includes the original composite
input and the harmonized results that generated by DIH, DoveNet, BargainNet
and the proposed S2CRNet. Then, we let them to select the most favorable result
among different images in each image group, contributing 18×99 groups result
in total. The results have been listed in Table 2 of the main paper.

2 More Experiments

2.1 Comparison with Other Similar Global Editing Methods.

To further demonstrate the effectiveness of the proposed CRM, we replace our
piece-wise linear curve function in CRM by other similar global editing methods
in image enhancement (3DLUT [16]) and low-light enhancement (Zero-DCE [5]),
and compare the performance on HCOCO and iHarmony dataset. As summa-
rized in Table 2, the piece-wise curve (Ours) achieves superior performance at
all criteria metrics compared to other alternatives.

Table 2: Quantitative comparison in employing similar global editing methods
in our CRM.

HCOCO iHarmony

Methods MSE ↓ PSNR ↑ SSIM↑ MSE↓ PSNR ↑ SSIM↑
Zero-DCE [4] 37.22 36.64 99.10 75.31 34.39 98.27
3DLUT [16] 33.22 36.95 99.18 53.05 35.49 98.77
Ours 29.45 37.51 99.26 45.17 36.27 98.87
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2.2 Ablation Study for The Levels of Curve L.

In the proposed CRM, we approximate the editing curve by a L-levels piece-wise
linear function. Here, we conduct the ablation experiments to investigate the
influence of L by setting L = {32, 64, 96, 128} in our S2CRNet model. From Ta-
ble 3, it can be inferred that approximating the curve with more levels improves
the harmonizing performance. However, when L is larger than 64, increasing L
has minor improvements on HCOCO and even downgrades the performance on
the iHarmony dataset. It reveals that harmonizing images by a larger L will
make the network hard to learn the meaningful color distribution and increase
the computational cost. Hence, we set L = 64 in all models for a trade-off be-
tween model performance and memory computation.

Table 3: Ablation studies of the level of curve L.
Dataset HCOCO iHarmony

Numer of L PSNR↑ SSIM↑ MSE↓ PSNR↑ SSIM↑ MSE↓
32 37.60 99.24 29.13 36.17 98.83 48.31
64 37.72 99.26 27.40 36.45 98.92 43.20
96 37.72 99.26 27.81 36.24 98.88 46.63
128 37.68 99.26 28.58 36.19 98.86 47.00

2.3 The Effectiveness of Different Backbone.

Stronger backbone enables the networks to learn better. We evaluate the per-
formance of different backbones in our framework as shown in Table 4. We
find that more complicated structures such as VGG16 [13] perform much bet-
ter than the smaller backbones, but it lacks efficiency as reported in the main
paper. Also, complicated structures need more epochs to be convergent (for
example, SqueezeNet-based method only needs 20 epoch to get the best re-
sult while VGG16 achieves the best performance at 48 epoch.). Thus, we re-
port the results of best performance (VGG16 backbone) and the most efficient
model (SqueezeNet backbone) in the main paper.

Table 4: Performance of different backbones in the proposed S2CRNet. All ex-
periments are trained and evaluated on iHarmony dataset under the same con-
figurations.

Backbones Param PSNR ↑ SSIM ↑ MSE ↓
SqueezeNet [7] 0.95M 36.45 98.92 43.20
AlexNet [9] 2.79M 35.82 98.80 50.79
ResNet18 [6] 11.8M 36.55 98.92 41.04
VGG16 [13] 15.14M 37.18 99.01 35.58
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2.4 Harmonization Performance on CPU.

Our method also shows good speed on CPU devices, which enables our method to
run on the device side without any cloud computation. To this end, we compare
the proposed S2CRNet with other baseline methods [3,2,1,5] in harmonizing
different resolution images using the same experimental environment (Intel i7-
10700K CPU with 16 GB RAM on Ubuntu 18.04). Here, we choose the default
SqueezeNet backbone in the proposed S2CRNet for efficiency. The evaluations
are conducted on the 50 images in HAdobe5k sub-dataset [2] and we present
the average processing time in Table 5. The quantitative results show that our
method achieves the fastest performance when operating on the CPU, and also
outperforms other baselines by a large margin as the image resolution increases.
Notice that our method also shows better performance than these methods as
discussed in the main paper.

Table 5: Average processing time on the CPU under different image resolution.
The best results are marked as boldface and the “NA” denotes running out of
memory in our experiment.

Resolution S2AM DoveNet BargainNet IIH S2CRNet

256×256 0.25s 0.05s 0.21s 1.17s 0.03s
512×512 0.85s 0.18s 0.75s 8.02s 0.06s

1024×1024 3.93s 0.79s 3.23s NA 0.47s
2048×2048 NA 3.19s 13.06s NA 2.60s

2.5 The Results on Different Foreground Ratios.

The differences of the composite foregrounds are also important in our task
since the background is totally the same. Thus, we further compare the pro-
posed S2CRNet (including SqueezeNet [7] and VGG16 [13] backbones) with
other state-of-art image harmonization approaches in different foreground ratio
ranges, and the quantitative results on iHarmony4 dataset are summarized in Ta-
ble 6. Following previous methods [2,1,12], we employ mean square error (MSE)
and foreground mean square error (fMSE) as evaluation metrics, where fMSE
measures the MSE scores of the harmonized foreground regions. We follow pre-
vious works [2,1] to evaluate the performance in four different foreground ranges,
including 0% to 5%, 5% to 15%, 15% to 100% and overall results. As shown in
Table 6, the performance of all the models will be downgraded as the foreground
ratios increase. Nevertheless, our S2CRNet-SqueezeNet achieves the best perfor-
mance in most of the foreground ratio intervals especially on small foreground
regions (0%-5% and 5%-15% foreground ratios). Furthermore, when employing
VGG16 backbone (S2CRNet-VGG16), our method achieves state-of-art perfor-
mance and outperforms other methods by a large margin in all the foreground
ratio intervals.
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Fig. 2: Qualitative comparisons with existing methods in harmonizing images at
different resolutions.From left to right are (a)Input (b) DoveNet [2], (c) Bar-
GainNet [1], (d) S2AM [3], (e) S2CRNet-S (Ours), (f) S2CRNet-V (Ours) and
(g) Target. Here, we resize the all the images to the same resolutions for pre-
sentation. The original input images are 256 × 256, 512 × 512, 1024 × 1024,
2048 × 2048 from the bottom up successively. We mark the composite fore-
ground mask as yellow region. S2CRNet-S and S2CRNet-V denote our method
employing SqueezeNet and VGG16 backbone, respectively.

2.6 Visual Comparison on High-Resolution Images

Our method shows the resolution-invariant results that benefits from the pro-
posed curve-based framework. Here, we visualize an example to show the influ-
ence of the input resolution in different methods. Similar to the high-resolution
image harmonization experiments in the primary paper, we compare our method
with other baseline methods [2,1,3] in harmonizing images at different resolu-
tions including the square of 256, 512, 1024 and 2048. As shown in Figure 2, due
to the changes of reception fields, the other state-of-the-art methods show unsta-
ble results. Differently, both the proposed S2CRNet-SqueezeNet and S2CRNet-
VGG16 get more stable and favorable results, while the others show downgraded
harmonization qualities as the resolutions increase.

2.7 More Rendering Curves Visualization

We present more visual results to visualize the preliminary rendering curves and
the curves in cascaded refinements. As shown in Figure 3, the curves generated by
the CRM are different according to various input samples, which demonstrates
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Table 6: Foreground Harmonization Comparisons on iHarmony4. The fMSE mea-
sures the mean square error scores of the harmonized foreground regions. The
best and the second best are marked as boldface and underline respectively.

Foreground Ratios 0%-5% 5%-15% 15%-100% 0%-100%

Evaluation metric MSE ↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓
Input composition 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30
Xue etal. [15] 41.52 1481.59 120.62 1309.79 444.65 1467.98 150.53 1433.21
Lalonde & Efros [10] 31.24 1325.96 132.12 1459.28 479.53 1555.69 155.87 1411.40
Zhu etal. [18] 33.30 1297.65 145.14 1577.70 682.69 2251.76 204.77 1580.17
DIH[14] 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18
DoveNet[2] 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96
S2AM[3] 13.51 509.41 41.79 454.21 137.12 449.81 48.00 481.79
BargainNet[1] 10.55 450.33 32.13 359.49 109.23 353.84 37.82 405.23
IIH[5] 9.97 441.02 31.51 363.61 110.22 354.84 38.71 400.29
RainNet[12] 11.66 550.38 32.05 378.69 117.41 389.81 40.29 469.61

S2CRNet-SqueezeNet 8.42 301.97 29.74 336.24 126.56 405.13 43.21 336.99
S2CRNet-VGG16 6.80 239.94 25.37 271.70 103.42 333.96 35.58 274.99

that the S2CRNet can produce the practical curve parameters for each images
via the deep features. Also, for cascaded refinement, the curves in each stage are
also different and these stage-aware curves contribute to the improvement of the
harmonization performance according to the visualized results of different stages
in Figure 3.

2.8 Visualized Comparison in DIH99 and RealHM Dataset

To demonstrate the effectiveness of the proposed method on real-world scenarios,
we further evaluate the proposed S2CRNet with two backbones (SqueezeNet [7]
and VGG16 [13]) and the baseline methods (DIH [14], DoveNet [2] and Bargain-
Net [1]) on DIH99 [14] and RealHM [8] real composite dataset, and visualize
the harmonization results in Figure 4 and Figure 5. As shown in Figure 4 and
and Figure 5, the proposed efficient S2CRNet can also achieve favorable results
on real composite images compared to other presented methods, showing the
reliable generalization in real-scenario applications.

2.9 More Visual Results on iHarmony4 Dataset

Given some composite images and their foreground masks, in Figure 6, we
present more harmonized results generated by methods including S2AM [3],
DoveNet [2], BargainNet [1] and our S2CRNet on iHarmony4 dataset. Compared
with the other baselines, both S2CRNet-SqueezeNet and S2CRNet-VGG16 can
generate more harmonious results and also maintain visual similarities with the
target natural images.
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Fig. 3: More visualized results of the cascaded rendering curves generated by
S2CRNet. We mark the composite foreground mask as yellow region.
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(a) (b) (c) (d) (e) (f)

Fig. 4: More comparisons with baseline methods [14,2,1] on DIH99 dataset. From
left to right are (a)Input (b) DIH [14], (c) DoveNet [2], (d) BarGainNet [1],
(e) S2CRNet-S (Ours) and (f) S2CRNet-V (Ours). We mark the composite fore-
ground mask as yellow region. S2CRNet-S and S2CRNet-V denote our method
employing SqueezeNet and VGG16 backbone, respectively.
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(a) (b) (c) (d) (e) (f)

Fig. 5: More comparisons with baseline methods [3,2,8] on RealHM dataset [8].
From left to right are (a)Input (b) DoveNet [2],(c) S2AM [3], (d) SSH [8],
(e) S2CRNet-S (Ours) and (f) S2CRNet-V (Ours). S2CRNet-S and S2CRNet-V
denote our method employing SqueezeNet and VGG16 backbone, respectively.
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Fig. 6: More qualitative comparison with other methods [2,1,3] on iHarmony4
Dataset. From left to right are (a)Input (b) DoveNet [2], (c) BarGainNet [1],
(d) S2AM [3], (e) S2CRNet-S (Ours), (f) S2CRNet-V (Ours) and (g) Target. We
mark the composite foreground mask as yellow region. S2CRNet-S and S2CRNet-
V denote our method employing SqueezeNet and VGG16 backbone, respectively.
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