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Abstract. Image harmonization aims to modify the color of the com-
posited region according to the specific background. Previous works model
this task as a pixel-wise image translation using UNet family structures.
However, the model size and computational cost limit the ability of
their models on edge devices and higher-resolution images. In this pa-
per, we propose spatial-separated curve rendering network (S2CRNet),
a novel framework to prove that the simple global editing can effec-
tively address this task as well as the challenge of high-resolution im-
age harmonization for the first time. In S2CRNet, we design a curve
rendering module (CRM) using spatial-specific knowledge to generate
the parameters of the piece-wise curve mapping in the foreground re-
gion and we can directly render the original high-resolution images us-
ing the learned color curve. Besides, we also make two extensions of
the proposed framework via cascaded refinement and semantic guid-
ance. Experiments show that the proposed method reduces more than
90% parameters compared with previous methods but still achieves the
state-of-the-art performance on 3 benchmark datasets. Moreover, our
method can work smoothly on higher resolution images with much lower
GPU computational resources. The source codes are available at: http:
//github.com/stefanLeong/S2CRNet.

1 Introduction

Image composition (or image splicing in multimedia security) is a popular and
necessary tool for image editing. However, in addition to the serrated edges
caused by the irregular borders, the “style” disharmony occurs when we di-
rectly copy source regions (foreground) to the host image (background). The
disharmony will degrade the quality of the composited images, which also can
be distinguished by the human eyes easily. In general, handling this gap requires
the professional editing of the well-knowledged experts. Thus, the task of image

* These authors contribute equally to this work.
B Corresponding author

http://github.com/stefanLeong/S2CRNet
http://github.com/stefanLeong/S2CRNet


2 J. Liang et al.

0 20 40 60
Model size (Million)

34

35

36

37
PS

N
R

(d
B

)

DIH
CVPR 17

DoveNet
CVPR 20

S2AM
TIP 20

BargainNet
ICME 21

IIH
CVPR 21

RainNet
CVPR 21Ours

(SqueezeNet)

Ours
(VGG16)

(a) Model Comparsions

(b) Input
Speed / MACs

(c) DoveNet
0.12 s / 1.21 T

(d) S2AM
0.46 s/ 3.02 T

(e) BargainNet
0.45 s/ 1.23 T

(f) Ours
0.11 s/ 0.61 G

(g) Target
N.A. / N.A.

Fig. 1: (a) Our methods outperform other methods using much less parameters
under the same setting (testing in 256 × 256 resolution). (b)-(f) Given a high-
resolution image (originally 2048 × 2048 in this example), our method shows
much better performance, lower computational cost (MACs) and faster speed
than previous methods.

harmonization aims to squeeze this gap by leveraging some advanced algorithms,
which also has a broad impact on image editing, relighting and augmented real-
ity [38,22].

Traditional image harmonization methods intend to manually adjust and
modify the specific features in the composite images, such as color [21,29], il-
lumination [35] and texture [33], etc.. However, the hand-crafted and statistic
low-level features cannot work well for the diverse composite images in compli-
cated real world. Since the deep convolutional neural network (CNN) has reached
impressive performance in many computer vision tasks, several attempts have
also been made to address image harmonization tasks. For example, the semantic
clues [34,32], the spatial differences of the neural network [5,12] and generative
adversarial network (GAN [9]) based methods [4,3] have been proposed follow-
ing the encoder-decoder based structures (UNet [30,18]) for pixel-wise prediction.
Thus, as shown in Figure 1(a), the speed and computational cost are sensitive
to image resolution because those structures require to predict the pixel-wise
results. Besides, their model sizes are too large for the edge devices, such as mo-
bile phone. The problems mentioned above restrict the applying range of their
methods since the real-world images editing are at any resolution. Furthermore,
further evaluations at high-resolution images would be also downgraded from
these inefficiencies.

Differently, in this paper, we rethink the image harmonization in a totally
different way: Reviewing the image harmonization process in image editing soft-
ware (e.g. PhotoShop), experts tend to adjust the global properties (color curve,
illuminant, etc.) over the whole images rather than the pixel-wise color adjust-
ment. Thus, the global editing can be enabled by considering those properties as
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Fig. 2: We learn global mappings for image harmonization and are totally differ-
ent from previous methods [5,4,3,32,12,34,11,23] that consider it as a pixel-wise
image-to-image translation task.

the mapping function of the pixels intensities. Moreover, this global adjustment
is reliably efficient at any resolution images without extra expense of computa-
tional cost.

Above observation inspires us to doubt the effect of the locally-aware edit-
ing networks in previous image harmonization methods and learning the global
editing curves of the composite foreground in terms of efficiency as shown in
Figure 2. Hence, a novel curve rendering module (CRM) is designed to pro-
duce the image-adaptive parameters of the curves that we will use to render the
composite image. Specifically, we first separate the composite image into fore-
ground/background regions using the given foreground mask. Then, we extract
the global high-level features from both regions by a shared pre-trained general
feature extractor (SqueezeNet [17] or VGG16 [31]). Particularly in CRM, the
extracted features from foreground / background are learnt by a single layer lin-
ear projection for each region separately. Finally, the combination of these two
spatial-specific features will be represented as the parameters of color curves, and
we render the original foreground for each color channel with the approximate
curves we learned.

Furthermore, we also make two extensions to the proposed framework. On
one hand, we propose semantic-CRM. Since different foregrounds represent dif-
ferent categories, we learn the class-aware feature embeddings for each category
individually by the user-guided foreground semantic encoding. On the other
hand, we propose the cascaded -CRM, which is also inspired by the photo editing
software since the image editing process generally contains multiple steps. In our
implementation, we predict different domain embedding to achieve this goal via
a cascaded prediction. Benefit by the proposed framework, our method shows a
significantly better performance than previous state-of-the-art image harmoniza-
tion networks with only 2% (25% using VGG16 backbone) of the parameters.
Besides, our method can also run much faster than most previous methods with
few computation cost on high-resolution images.

Our main contributions are summarized as follows:
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– We find that the image harmonization can work well with the global editing
method for the first time. To this end, we introduce a novel spatial-separated
curve rendering network (S2CRNet), which also enables our method for ef-
ficient and high-resolution image harmonization.

– We show the extension ability of the proposed S2CRNet via better backbones
or enhanced curve rendering module (CRM) via the Cascaded-CRM and
Semantic-CRM.

– Experiments show that our method can achieve state-of-the-art performance
and run much faster than the previous methods, while using fewer parame-
ters and lower computational cost.

2 Related Works

Image Harmonization. Traditional image harmonization methods aim at im-
proving composite images via low-level appearance features, such as manually
adjusting global color distributions [2,1], applying gradient domain composition
[19,28] or manipulating multi-scale transformation and statistical analysis [33].
Although these methods achieve preliminary results in harmonization tasks, the
realism of the composite images cannot be visually guaranteed.

As the deep learning approaches has been successfully applied to the com-
puter vision tasks, [39] back-propagate a pre-trained visual discriminator model
to change the appearance harmony of the composite images. Later, further re-
searches consider this task as an image to image translation problem. For ex-
ample, additional semantic decoder [34] and pre-trained semantic feature [32]
are used to ensure the semantic consistence between the composite inputs and
harmonized outputs. Another noticeable idea is to model the differences between
the foreground and background with the given mask. For example, novel spatial-
separated attention module [5,12] under image-to-image translation framework;
Domain-guided features as the discriminator of GAN [4] and as additional in-
put [3]; masked-guided spatial normalizations [23,11] for the foreground and
background respectively. However, all the previous deep networks still model
this task as a pixel-wise image to image translation problem using an encoder-
decoder structure, which suffers from computational inefficiency and may de-
grade the performance and visual quality on high-resolution inputs.

Efficient Network Design for Image Enhancement. Efficient networks
designed for edge devices have also been widely-discussed in computer vision
tasks [15]. For image enhancement, [8] introduce the deep bilateral learning for
high-resolution and real-time image processing on mobile devices. Also, learn-
ing the image-adaptive global style features shows promising results in Expo-
sure [16] , CURL [26] and 3DLUT [36] for global image enhancement. Besides,
Guo etal. [10] design a high-order pixel-wise curve function for low-light en-
hancement. Since our image harmonization task can be considered as a regional
image enhancement problem, it is natural to leverage the style curve to image
harmonization tasks. However, different from the networks for image enhance-
ment [16,26,36] and low-light enhancement [10], image harmonization methods
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Fig. 3: The overview of the S2CRNet, including CRM and its two variants: SCRM
and Cascaded-CRM/SCRM.

rely on regional modification under the guidance of the background. Thus, we
design the network structure and learn global mapping functions on this task
for the first time.

3 Method

We first show the overall network structure of the proposed method. Then, we
give the details of Curve Rendering Module (CRM) and its variants, which are
the key components in S2CRNet, including CRM, Semantic-CRM (SCRM) and
their cascaded extensions. Finally, we discuss the loss functions.

3.1 Overall Network Structure

As shown in Figure 3, given a high-resolution composite image Icom ∈ R3×H×W

and its binary mask M ∈ R1×H×W of the corresponding foreground, we first
get the thumbnail image Ithumb ∈ R3×h×w and the mask M ′ ∈ R1×h×w by
down-sampling Icom and M with a factor of H/h for fast inference and the
minimal computational cost. For the spatial-separated feature encoding, we first
segment the thumbnail image Ithumb into foreground and background via the
mask M ′ and inverse mask M ′

inv = 1 −M ′, respectively. Next, given the fore-
ground Ifore = Ithumb × M ′ and background Iback = Ithumb × M ′

inv images,
we use a shared domain encoder Φ to extract the spatial-separated features for
foreground and background respectively. Here, we choose the SqueezeNet [17]
as the domain encoder (backbone), which is pre-trained on the ImageNet [7]
and we only use the first 12 layers to get deeper color feature embedding. We
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Fig. 4: CRM maps the input pixels to the target pixels using curve function ψ(·),
where the parameters P of ψ(·) are learnt from the embeddings of the spatial-
aware encoders.

also try different backbones (e.g., VGGNet [31]) to achieve better performance
as shown in Table 1. While considering the purpose of this paper is for efficient
and high-resolution image harmonization, thus we use SqueezeNet as our default
backbone for its good balance between the efficiency and effectiveness.

After obtaining the embedding foreground Ffore ∈ RD×h′×w′
and back-

ground Fback ∈ RD×h′×w′
features from the domain encoder, we squeeze the

foreground/background feature dimensionally via the global average pooling to
avoid the influence of spatial information. Then, foreground Ff ∈ RD and back-
ground Fb ∈ RD are learnt to generate the parameters of the color curve and
render the channel-wise color curve via the proposed Curve Rendering Module
automatically. We will discuss the details and its variants in the later sections.

3.2 Curve Rendering Modules and its Variants

We first introduce the basic idea behind the proposed network via the Curve
Rendering Module (CRM). Then, we discuss two different extensions using the
semantic label and recurrent refinement.

Curve Rendering Module (CRM). Most previous image harmonization
methods [4,5,32,12] consider this task as a pixel-wise image to image translation
task, which is heavy and only works on certain resolution as we discussed in the
related works. Differently, we model this task as a global region image enhance-
ment task. Thus, our goal of CRM is try to adjust the foreground color under
the given background.

To achieve the above goal, as shown in Figure 3, after obtaining the spatial-
separated foreground embedding Ff and background embedding Fb from the
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domain encoder separately, we first embed these spatial-aware features using
two projection functions ϕf (·)/ϕb(·) for foreground/background correspondingly,
where each projection function is a single linear layer with ReLU activation.
Then, to harmonize the foreground under the guidance of the related background
features, we get P ∈ R3L by performing channel-wise addition between ϕf (Ff )
and ϕb(Fb). Here, L includes the parameters of R, G, B color channels and each
channel has L = 64 piece parameters for the balance between the computational
complexity and performance.

Since this hybrid feature P contains both the information from the back-
ground and foreground, it can be a good representation for the guidance of the
foreground editing. To better modeling the color-wise changes, we consider the
mappings between intensities rather than the semantic information. Thus, we
choose the color curve as the editing tool and make it differentiable [16] by
approximating L levels monotonous piece-wise linear function, and then render-
ing the original pixels in the foreground region. As shown in Figure 4, for each
pixels (xr, xg, xb) in the foreground of the original composited image, we use
CRM to map it with the learnt color curve. Here, the mappings of each inten-
sity is identical and not related to the specific location or semantic information.
The parameters of the piece-wise linear function is provided and learnt by the
spatial-separated encoder and each channel is learnt individually.

Mathematically, after getting the mixed embedding for each channel P c =
[p0, p1, p2, . . . , pL−1], we render the foreground I

c
fore (c ∈ {R,G,B}) of the com-

posite image via the curve rendering function ψ(Icfore, P
c), which can be denoted

as:

ψc(I
c
fore, Pc) =

1∑L−1
j=0 pj

L−1∑
i=0

piξ

(
x− i

L

)
, x ∈ Icfore,

where ξ(y) =

0, y < 0
y, 0 ≤ y < 1

L
1, y > 1

L

(1)

Finally, the harmonized image can be obtained by the combination of the
original background: Ifinal = Ψ(Ifore, P ) + Iback.

Semantic CRM. Previous methods [4,5] intend to obtain a unified harmo-
nization model for any foreground images without any specific semantic knowl-
edge. However, the semantic information is also important for the image harmo-
nization [34,32] and it does not make sense if we apply the same style to har-
monize different categories (e.g. Car and Person). Since we have supposed that
the linear layers in the CRM contain the domain knowledge of the foreground,
we make a further step by adding extra semantic label of the foreground object
to our vanilla CRM.

As shown in Figure 3, given the semantic label d of the foreground region, we
first embed the labels using a two-layer Multi-layer Perceptron (MLP), obtaining
the semantic-aware embedding D. Then, we concatenate the embedded feature
from the network Φ and the label embedding D to the CRM. For semantic label
definition, we analyze the categories of the foreground regions in iHarmony4 and
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divide it into 5 classes as guidance, including Person, Vehicle, Animal, Food and
others. More details can be found in the supplementary materials.

Cascaded CRM/SCRM. It is natural for the image editing tools to ad-
just the images with multiple steps for better visual quality. Inspired by this
phenomenon, we extend our CRM (or SCRM) via the cascaded refinements. To
reduce the inference time and learn a compact model, we keep the global fea-
tures from the backbone unchanged and generate multi-stage heads and give the
supervisions of each stage.

As shown in Figure 3, given the global foreground features Ff and background
features Fb from the backbone, we firstly generate P0 via a CRM and get its
rendered image I0 using Ψc(I

c
fore, P0). Then, we use another set of linear layers to

predict the parameters Pn from the same global features (Ff , Fb) and rendering
the curve using the previous prediction In−1 via Ψc(In−1, Pn). We set n equals
to 2 to ensure the high efficiency as well as the high harmonization quality.

3.3 Loss Function

We consider image harmonization as a supervised problem. Specifically, we mea-
sure the difference between the target and the corresponding rendered images (for
each stage) in the composited region. Thus, we use relative L1 loss between the
predicted foreground and the target via the foreground mask M . Besides, for
better visual quality, we also leverage the adversarial loss [9] to our framework.
We give the details of each part as follows.

Relative L1 Loss Lpixel. Another key idea to make our method work is that
we only calculate the metric between the foreground of the predicted image and
the target, where the differences are only measured in a single domain. Thus,
inspired by recent works in watermark removal [14,6], we perform the pixel-wise
L1 loss in the foreground region M by masking out the background pixels and
setting the meaningful region. Specifically, giving the rendered images In in each
stage, we calculate the loss over the masked region:

Lpixel =
N∑

n=1

||M × In −M × Igt| |1
sum(M)

(2)

where N = 2 is the number of iterations.

Adversarial Loss Ladv. By considering the proposed S2CRNet as the gen-
erator G, we also utilize an additional discriminatorD to identify the naturalness
of the color. In detail, we use a standard 5 layers CONV-BN-RELU discrimina-
tor [40] and leverage a least squares GAN [25] as criteria. Then, the generator is
learnt to fool the discriminator and the discriminator is trained to identify the
real or fake feed images iteratively.

Overall, our algorithm can be trained in an end-to-end function via the com-
bination of the losses above: Lall = λpixelLpixel+λadvLadv, where all the hyper-
parameters (λpixel and λadv) are empirically set to 1 for all our experiments.
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Fig. 5: Comparisons with other methods on iHarmony4 Dataset. From left
to right are (a)Input (b) DoveNet [4], (c) BarGainNet [3], (d) S2AM [5],
(e) S2CRNet-S (Ours), (f) S2CRNet-V (Ours) and (g) Target. Here, we visu-
alize the input mask as yellow for easy reading. S2CRNet-S and S2CRNet-V
denote our method employs SqueezedNet and VGG16 backbone, respectively.

4 Experiments

4.1 Implementation Details

We implement our method in Pytorch [27] and train on a single NVIDIA TITAN
V GPU with 12GB memory. The batch size is set to 8 and we train 20 epochs (50
epochs for VGG16 backbone) for convergence. All the images are resized to
256×256 and random cropped and flipped for fair training and evaluation as
previous methods [4,5]. We leverage the AdamW optimizer [24] with the learning
rate of 2× 10−4, the weight decay value of 10−2 and momentum of 0.9.

As for evaluation, we validate our approaches on the iHarmony4 using Mean-
Square-Errors (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural SIMilar-
ity (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) as criteria
metrics. Since DIH99 does not contain the target images, we conduct the sub-
jective experiments.

4.2 Comparison with Existing Methods

Performance Comparison on iHarmony4. We compare our methods with
other state-of-the-art image harmonization algorithms, including DoveNet, S2AM,
BargainNet, IIH [11], RainNet [23], etc.. In our experiments, we choose the
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Table 1: Comparisons on iHarmony4. The best and the second best are marked
as boldface and underline respectively.

Sub-dataset HCOCO HAdobe5k HFlickr Hday2night All

Evaluation metric # Param. MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑
Input Composition - 67.89 34.07 342.27 28.14 260.98 28.35 107.95 34.01 170.25 31.70
Lalonde & Efros [21] - 110.10 31.14 158.90 29.66 329.87 26.43 199.93 29.80 150.53 30.16
Xue etal. [35] - 77.04 33.32 274.15 28.79 249.54 28.32 190.51 31.24 155.87 31.40
Zhu etal. [39] - 79.82 33.04 414.31 27.26 315.42 27.52 136.71 32.32 204.77 30.72
DIH[34] 41.76M 51.85 34.69 92.65 32.28 163.38 29.55 82.34 34.62 76.77 33.41
DoveNet[4] 54.76M 36.72 35.83 52.32 34.34 133.14 30.21 54.05 35.18 52.36 34.75
S2AM[5] 66.70M 33.07 36.09 48.22 35.34 124.53 31.00 48.78 35.60 48.00 35.29
BargainNet[3] 58.74M 24.84 37.03 39.94 35.34 97.32 31.34 50.98 35.67 37.82 35.88
IIH[11] 40.86M 24.92 37.16 43.02 35.20 105.13 31.34 55.53 35.96 38.71 35.90
RainNet[23] 54.75M 31.12 36.59 42.84 36.20 117.59 31.33 47.24 36.12 44.50 35.88

S2CRNet-SqueezeNet 0.95M 28.25 37.65 44.52 35.93 115.46 31.63 53.33 36.28 43.20 36.45
S2CRNet-VGG16 15.14M 23.22 38.48 34.91 36.42 98.73 32.48 51.67 36.81 35.58 37.18

Cascaded-SCRMmodel in different backbones (SqueezeNet and VGG16 as shown
in Table 1), where the semantic labels are generated by a pre-trained segmen-
tation model [37]). All previous methods are tested using their official imple-
mentations and pre-trained models for fair comparison. As shown in Table 1,
even training and testing on 256×256 limits the high-resolution performance,
our S2CRNet-SqueezeNet only use 2% of the parameters to achieve the state-of-
the-art performance in PSNR metric, which demonstrates the effectiveness of the
proposed network. On the other hand, when using VGG16 backbone (S2CRNet-
VGG16), our method outperforms other related methods by a clear margin and
still uses only 40% of the parameters. Moreover, the proposed method also works
better even on higher-resolution images, which will be discussed in later section.
Besides the numeric comparison, our proposed method also obtains better visual
quality than others. Qualitative examples in Figure 5 show that the proposed
method can generate harmonized results that are more realistic than other meth-
ods, which further indicates the benefits of the proposed framework. More visual
comparisons are presented in the supplementary materials.

Performance on real-world composite datasets. Since the real-wold
image composition is still different from the synthesized dataset, we evaluate the
proposed method (S2CRNet-SqueezeNet) and existing methods (DIH, DoveNet,
BarginNet) by subjective experiments on DIH99. In detail, we randomly shuf-
fle the displaying order of all the images and invite 18 users to select the most
realistic results. As shown in Table 2, the proposed method gets the most votes
with faster inference time and fewer model parameters as discussed previously.

Table 2: User study on DIH99 [34] test set.
Method Input DIH DoveNet BargainNet Ours

Total votes 224 385 403 328 442
Preference 12.57% 21.60% 22.62% 18.41% 27.80%
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(a) Running time. (b) Computational cost. (c) Performance.

Fig. 6: The influence of the image resolution from different aspects. Note that all
experimental values are transformed into log scale. IIH [11] cause out of memory
error on 2048× 2048 images.

Additionally, we evaluate our method on RealHM dataset following [20] and
summarize the qualitative results in Table 3. From Table 3, our method out-
performs others at SSIM and LPIPS metrics with much less parameters and
processing time. Particularly, we obtain the similar performance compared with
SSH [20] at PSNR and MSE metrics while SSH is trained on 2× larger dataset
with 10× lager model and stronger data augmentation. The harmonization re-
sults on DIH99 and RealHM dataset effectively demonstrate that our method
has good generalization ability on the real-world applications. More details of
the user study and more harmonization results of the real composite samples are
shown in the supplementary.

High-Resolution Image Harmonization. We conduct extra experiments
on the HAdobe5k sub-dataset in iHarmony4 to verify the speed and performance
of the proposed method on higher-resolution. As experiment setup, we resize the
source composite images with the square resolution of 256, 512, 1024 and 2048,
and test the average processing time, computational cost and PSNR scores on the
same hardware platform. Since other state-of-the-art methods (DoveNet, Bar-
gainNet, S2AM, IIH) employ the fully convolutional encoder-decoder structures,
they can be tested directly in higher resolution. As for our method, we test two
backbones of the proposed S2CRNet and donate them as Ours-S (SqueezeNet
as backbone) and Ours-V (VGG16 as backbone) shown in Figure 6.

As shown in Figure 6(a), we plot the speed of different image harmonization
methods in the log space. All the methods suffer a speed degradation with the

Table 3: Quantitative comparisons on RealHM dataset [20].
PSNR↑ MSE↓ SSIM↑ LPIPS↓ Time↓ Parameters↓

DoveNet 27.41 214.11 94.14 0.049 0.081s 54.76M
S2AM 26.77 283.27 93.66 0.096 0.282s 66.70M
SSH 27.91 206.85 94.79 0.039 0.153s 15.19M
Ours 27.89 229.64 96.16 0.025 0.012s 0.95M
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resolution increasing. However, our the research quality code of Ours-S and Ours-
V runs much faster (0.1s around on a 2048×2048 image) than all other methods
and is nearly 5× faster than S2AM and BargainNet. Also, since we use a fixed
size input, the required computation cost of our method still much less than
previous methods as the resolution increasing as shown in Figure 6(b). In terms
of the harmonization quality, there are also some interesting phenomenons. As
shown in Figure 6(c), most of other methods confront a significant performance
decline as the resolution increases. It might be because the encoder-decoder
based structure will produce different reception fields of original images and
then downgrade its performance. Differently, our methods maintain the higher
performance at all resolutions.

4.3 Ablation Studies

We conduct the ablation experiments to demonstrate the effectiveness of each
component in the proposed S2CRNet. All the experiments are performed on
both HCOCO and iHarmony4 with same configurations using the SqueezeNet
backbone. More ablation studies are presented in the Appendix.

Loss Function. As shown in Table 4 Model A to C, we compare the perfor-
mance using different loss functions. Since background and foreground domains
are different, restricting the loss function on the masked region by using relative
L1 (rL1) rather than L1 loss helps a lot. Besides, Ladv are used to improve the
realism of the predicted result.

Encoder Design Φ. Extracting and learning the global foreground and
background features individually (Ours in Model C in Table 4) are also the keys
to facilitate the performance of the whole framework. As shown in Table 4 and
Figure 7, compared with other alternatives that extract the global features using
the foreground region only (Ifore in Model D) and the full image (Icom in Model
E), spatial-separated encoder shows a much better performance due to domain
separation.

CRMs. The numerical metrics of different CRMs have been listed in Ta-
ble 4, both Cascaded -CRM (Model F ) and Cascaded -SCRM (Model G) hugely

Table 4: Ablation studies.
# Loss Network HCOCO iHarmony

Lpixel Ladv Φ CRM MSE ↓ PSNR ↑ MSE ↓ PSNR ↑
- Original Input 67.89 34.07 170.25 31.70

A L1 Ours ✓ 67.64 34.08 114.65 32.11
B rL1 Ours ✓ 28.43 37.59 46.79 36.20
C rL1 ✓ Ours ✓ 29.45 37.51 45.17 36.27
D rL1 ✓ Ifore ✓ 34.62 36.98 79.73 34.57
E rL1 ✓ Icom ✓ 58.53 34.69 88.61 33.88
F rL1 ✓ Ours C 28.47 37.60 44.08 36.41
G rL1 ✓ Ours CS 27.40 37.72 43.20 36.45
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(e) Input (f) Ifore (g) Icom (h) Ours

Fig. 7: The influence of different encoder designs.
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Fig. 8: Results and rendering curves of SCRM using different foreground semantic
labels (Person, Animal).
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Fig. 9: Given a composite image (a) and its mask (b), Cascaded-CRM learns to
generate different harmonization results (c, d) via curves (g, h). Also,our method
can harmonize the current foreground via novel backgrounds (e, f).

improve the base model (Model E). To further explore the influence of each vari-
ants, firstly, we show the importance of semantic labels. As shown in Figure 8,
different semantic labels will produce different style curves under the same input.
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Then, for cascaded refinement, in Figure 9, cascaded refinement will produce dif-
ferent curves and achieve gradually better performance. Finally, the global color
curves enable the proposed method to harmonize images with domain-aware
features from novel images. In Figure 9, a novel background can also guide the
harmonization of different foreground regions, which means our method can
handle two objects harmonization by generating corresponding curves for each
object individually.

5 Discussion and Real-World Application

By utilizing the global editing only, the proposed framework start a new di-
rection for image harmonization which is efficient, flexible and transparent. As
for efficiency, both performance and speed are better than previous methods.
With respect to flexibility, images at any resolution can be edited without ad-
ditional processing, like guided filter [34,13]. As for transparency, our method
is a “white-box” algorithm because the learned curves can be further edited by
the user to increase/decrease the harmony. On the other hand, since the search
space of the global editing is bounded, the proposed method can be used directly
for video harmonization without retraining on video datasets. We show a brief
video harmonization result in the supplementary to demonstrate the potential
of our framework.

6 Conclusion

In this paper, we investigate the possibility of global editing only for image har-
monization for the first time. To this end, we present Spatial-separated Curve
Rendering Network (S2CRNet), a novel framework for efficient and high-resolution
image harmonization. In detail, we utilize an efficient backbone to obtain spa-
tial domain-aware features and the extracted features are used to generate the
parameters of piece-wise curve function in the proposed curve render model.
Besides, we extend the proposed curve rendering method to cascaded refine-
ment and semantic-aware prediction. Finally, the learnt parameters are used to
render the original high-resolution composite foreground. Experiments show the
advantages of the proposed framework in terms of efficiency, accuracy and speed.
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