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Abstract. The ultimate aim of image restoration like denoising is to
find an exact correlation between the noisy and clear image domains. But
the optimization of end-to-end denoising learning like pixel-wise losses
is performed in a sample-to-sample manner, which ignores the intrinsic
correlation of images, especially semantics. In this paper, we introduce
the Deep Semantic Statistics Matching (D2SM) Denoising Network. It
exploits semantic features of pretrained classification networks, then it
implicitly matches the probabilistic distribution of clear images at the
semantic feature space. By learning to preserve the semantic distribution
of denoised images, we empirically find our method significantly improves
the denoising capabilities of networks, and the denoised results can be
better understood by high-level vision tasks. Comprehensive experiments
conducted on the noisy Cityscapes dataset demonstrate the superiority
of our method on both the denoising performance and semantic segmen-
tation accuracy. Moreover, the performance improvement observed on
our extended tasks including super-resolution and dehazing experiments
shows its potentiality as a new general plug-and-play component.

Keywords: Denoising, Semantic Segmentation, Super-resolution, De-
hazing, Implicit Modeling, Score Matching

1 Introduction

Deep learning based methods [9, 24, 62] have achieved a dramatic leap in the
performance of various image restoration tasks. Typically, they employ a Con-
volutional Neural Network (CNN) on a set of image pairs, consisting of degraded
images and corresponding clear images, for restoration learning. By maximizing
the correspondence between each pair of the CNN-restored results and the clear
image, the CNN is trained to map images from the degraded domain into the
clear domain. However, blur issues always existed in such a manner. Recent
work [17] called perceptual loss finds that maximizing the correspondence in
the semantic feature space of pre-trained large-scale classification network (e.g.,
VGG [50] network trained on ImageNet [8]) leads to better visual quality [35,63].
A more widely used strategy inspired by GANs [12], which employs a discrimina-
tor to implicitly enforce the distribution of restored images to be consistent with
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Fig. 1: t-SNE of Denoised Images in the Semantic Feature Space By
exploiting t-SNE [34] to reduce dimensions of semantic features and project them
into 2D coordinates, we visualize the distributions of denoised animal images in
the semantic feature space. Ours preserves most semantics as the clear images.

the distribution of clear images in terms of KL- and JS- divergence, can largely
improve the perceptual quality of restored images. But the training procedure is
often unstable, mostly because the objective is a zero-sum non-cooperative game
that cannot be easily solved. Thus, it is straightforward to wonder whether it is
possible to combine the pre-trained large-scale networks in an adversarial or sta-
tistical manner to bypass their drawbacks and avail their advantages together?

To answer the above question, we first look at the training procedure from a
probabilistic view in the semantic feature space (the space of extracted semantic
features of each images), which contains many clusters of different semantics.
Figure 1 visualizes these clusters with t-SNE [34] in animals images selected
from ImageNet [8]. An image that belongs to a specific cluster and owns in-
trinsic semantics is called Single-Semantic Image in this paper. For example,
animal images are single-semantic images, because they have common semantics
of species, even though individual animals with the same specie look different.
Intuitively, restored single-semantic images should preserve the same distribu-
tion as the corresponding clear single-semantic images in the semantic feature
space. However, the objectives of existed methods for denoising learning cannot
preserve this, as w.L1 and w.LPerceptual show in Figure 1. Therefore, we argue
that minimizing the divergence between the probability distributions estimated
in the restored domain and the one estimated in the clear domain should be a
potential promising solution. Similar idea is also validated by MMDGAN [22]
and its variants for generating face and bedroom images, but the idea is rarely
researched in the restoration literature.

Different from the single-semantic image, natural images like a cityscape im-
age often consists of multiple objects, and can not be easily identified by a single
semantic, here it is called Complex-Semantic image. The semantic feature ex-
tracted from such an image may not belong to any simple semantic clusters,
but resides on an extremely complicated manifold in the semantic space. For
example, cityscape images usually consist of objects/regions of different seman-
tics like road, sidewalk, and building, as classified by the Cityscapes dataset [7].
To approximate and compare the probability distributions of complex-semantic
images is nontrivial due to their unique intrinsic uncertainty of semantics.
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In the paper, we propose a new distribution-wise objective for denoising learn-
ing, and is capable of being extended into general restoration tasks, towards both
the single-semantic images and complex-semantic images. It learns to preserve
the probability distribution of denoised images in the semantic feature space, and
it is called as Deep Semantic Statistics Matching (D2SM) Denoising Network.
The objective of D2SM exploits a way similar to Kernel Density Estimation
(KDE) [47] to implicitly estimate the probability distributions of semantic fea-
tures from a set of denoised images and clear images, and then Kullback-Leibler
(KL) divergence between two distributions is used as the objective. Here, one of
our major novelty comes from the way of density estimation, where we model
the probability distributions based on internal patches from a single complex-
semantic image or multiple single-semantic images. The way of availing internal
patches tends to be more appropriate than modeling the distribution of multiple
complex-semantic images. Such a phenomenon is also proved in recent work [66]
suggests that the internal visual entropy of a single image is much smaller than
multiple images. Therefore, we propose to use the divergence of patch distribu-
tions to guide the learning, called Patch-Wise Internal Probability.

Nevertheless, statistically estimating the density of patches conducted in a
single mini-batch usually requires a great large number of samples. To main-
tain the trade-off between the computational cost and accuracy, another major
novelty of the paper, called Memorized Historic Sampling, is proposed, inspired
by recent contrastive learning related works [14, 60]. By simply leveraging the
statistics among the mini-batch and memorized historic mini-batch in queues, we
demonstrate that D2SM significantly outperforms the same network backbone
with perceptual loss and other state-of-the-art objectives, without additional
information or parameters. Empirical evaluation validates that D2SM largely
improves not only the effectiveness of denoising, but also super-resolution and
dehazing, and hence it should be able to be generally applied to different tasks
and network architectures.

Our contributions are therefore three-fold:
(i) We propose D2SM for image denoising learning, which minimizes the dis-
tribution divergence instead of the sample-to-sample distance in the semantic
feature space. (ii) D2SM is adapted to complex-semantic images in a patch-wise
manner, which can decompose complex semantics in natural images for effi-
cient distribution approximation. (iii) Extensive experiments are conducted to
demonstrate that D2SM substantially outperforms the original perceptual loss
and other state-of-the-art losses, without modifying the network architecture or
accessing the additional data. The superior accuracy in high-level vision tasks
further validates that D2SM indeed transfers semantics for restoration.

2 Related Work

Resulted by the emergence of deep neural networks, recent CNN based meth-
ods have led to a dramatic leap in image restoration. Among them, most works
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utilize the pixel-wise similarity metrics as their objective, e.g., L1 and LMSE .
Though higher performance in metrics like PSNR or SSIM [59] is achieved by
using these loss functions, recent work [63] finds that these metrics do not reflect
human perceptual preferences. In contrast, results generated by CNNs trained
with the perceptual objective are more closely correlated with the human judg-
ment [35]. These methods measure the similarity of two images in the pre-trained
high-level vision networks, usually VGG classification network [50] trained in Im-
ageNet [8]. Different perceptual objectives have been proposed in this category,
e.g., LMSE of features [11, 17, 20, 38, 58, 63], contextual objective [35, 36], and
semantic label [27, 28]. However, these methods lack a reasonable explanation
of the effectiveness led by the perceptual objective [63]. Furthermore, the frozen
network pre-trained on certain datasets, e.g., ImageNet, is not appropriate for
the image restoration tasks conducted on the large-scale, diverse natural image
datasets [1] or specific semantic image datasets [7, 19, 32]. Here we hypothesize
that these issues come from the objectives that estimate the sample-to-sample
distance in the feature space. By exploiting the characteristics of single-semantic
patches from natural images, which can be associated with an embedded man-
ifold, we implicitly measure the divergence of the probability distributions esti-
mated from restored images and clear images in the semantic feature space, and
we use it as the objective to bypass the above issues.

Similar ideas that minimize the distribution divergence instead of the sample-
to-sample distance have been proposed before. In the area of image restoration,
Contextual loss [35, 36] that proposed for misaligned image transformation im-
plicitly minimizes the divergence between restored images and clear images. It
approximates the divergence by the contextual relationships within patches from
a single image (i.e. single image statistics [66]), and hence enables image-to-image
translation to be conducted on the misaligned image pairs. However, its perfor-
mance is usually limited by the low accuracy of feature matching [64] and leads to
worse restoration performance in aligned image restoration learning. More sim-
ilar works that avail statistical features are GMMN [26] and GFMN [46]. They
achieve the generative ability without adversarial learning in the problematic
min/max game. Nevertheless, they are not designed for the image restoration
learning that majorly consists of natural images with diverse appearance, and
the desired superiority cannot be gained here. In the area of domain adaption,
minimizing the statistics feature difference of the high-level vision networks can
help networks adapt to unseen domain directly, like CORAL [51] and MMD [53].
However, these methods require semantic labels, which is not practical in the
real-world image restoration datasets. By exploiting the internal statistics [66]
of natural images, our proposed method successfully facilitates the restoration
learning through more accurate divergence approximation.

3 Method

Let X ⊂ RH×W×C denotes the domain of degraded images caused by factors like
noising, and Y ⊂ RH×W×C denotes the domain of corresponding clear images.
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Fig. 2: Perceptual loss vs. Ours. We minimize the distribution divergence
between a set of restored images and the corresponding clear images, instead of
the sample-to-sample distance, in the semantic feature space (e.g . the penulti-
mate layer of VGG). This procedure better simplifies the restoration learning
and ameliorates underfitting compared with the perceptual loss.

We wish to restore x ∈ X to appear like its corresponding target image y ∈ Y by
using a denoising network G(·) that outputs ỹ = G(x). To force the outputs ỹ
maintains as much the perceptual detail as possible, recent works [11,17,20,35,36]
exploit the pre-trained high-level vision networks (e.g ., the intermediate layer
of VGG), denoted as Φ(·), to guide the restoration learning by minimizing the
similarity between ỹ and y in the feature space of Φ(∗). This can be formulated
as the objective with the similarity metric D(·):

L(x, y,G) = D(Φ(y), Φ(G(x))). (1)

In practical, the similarity metric D(·) is usually implemented by Mean Square
Error (MSE) or Contextual Distance [36].

Contrastively, we take the denoising learning as minimizing the divergence
of probability distributions estimated by denoised images and clear images in
the semantic feature space. Given N samples of image pairs that consist of
Tx = {x1, x2, . . . , xN} and Ty = {y1, y2, . . . , yN}, we incorporate the mutual
information [54] of them in the feature space of Φ(G(·)) into the restoration
learning. Such a manner is empirically proven to be effective to facilitate knowl-
edge transferring [5,31,40–43,55]. By minimizing the divergence of the estimated
probability distribution between samples Tx in Φ(G(·)) and Ty in Φ(·), denoted
as G′ and G, we force G(·) to better maintain the geometry of the feature space
Φ(·) estimated in the clear image domain Y. In doing so, we formulate the final
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objective as

L(Tx, Ty, G) =

N∑
i=1

N∑
j=1,j ̸=i

g′j|i log(
g′j|i

gj|i
). (2)

To elaborate, we will detail the divergence approximation in Section 3.1, and the
sampling strategy in Section 3.2 and Section 3.3.

3.1 Probability Distribution Divergence

Here we model the correlation of samples from the same domain in the semantic
feature space as the probability distribution. Several methods have been pro-
posed for modeling the correlation, including, but not limited to, probabilistic
based [41, 42], embedding based [5, 43], graph based [31], and more [40]. In this
work, we exploit the kernel density estimation to estimate the probability distri-
bution of samples in the semantic feature space, which describes the probability
of each sample to select its neighbors [34]. It is empirically proven to be effec-
tive for describing the geometry of feature space by Passalis et al. [41, 42]. To
elaborate, we denote the probability distribution between any two samples i, j
from the clear domain as gi|j and the restored domain as g′i|j . Based on the ex-

tracted feature fx and fy from Φ(G(·))) and Φ(·), the probability distributions
are estimated by:

g′i|j =
Kcosine(f

x
i , f

x
j )∑N

k=1,k ̸=j Kcosine(fx
k , f

x
j )
∈ [0, 1], (3)

and

gi|j =
Kcosine(f

y
i , f

y
j )∑N

k=1,k ̸=j Kcosine(f
y
k , f

y
j )
∈ [0, 1], (4)

where the cosine kernel function Kcosine is employed for estimating the proba-
bilty distribution, formulated with two vectors a and b as:

Kcosine(a, b) =
1

2
(

a⊤b

||a||2||b||2
+ 1) ∈ [0, 1]. (5)

As Turlach et al. [56] suggested, this kernel function avoids the bandwidth choos-
ing in Gaussian kernel, and it boosts performance compared with the Euclidean
measures as Wang et al. [57] suggested.

To minimize the difference of two estimated probability distributions, we
avail the Kullback-Leibler (KL) divergence as the similarity metric, formulated
as:

DKL(G′||G) =
∫
t

G′(tx) log
G′(tx)
G(ty)

dt. (6)

where tx ∈ X and ty ∈ Y. In practical implementation, we avail the mini-
batch that consists of N samples for approximation, aiming for acceleration in
a parallel fashion.
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Fig. 3: Sampling with Historic Gradients. We approximate the divergence
with historic sampling by using two queues to bypass the GPU memory limits.

3.2 Memorized Historic Sampling

Intuitively, the number of selected samples in a mini-batch should be as large as
possible during training. However, in practical implementation, increasing the
number of samples is greatly limited by the GPU memory. Such a limitation is
more serious in the extracted semantic feature space, and hence greatly limits
the effectiveness of our method.

To bypass the limitation, we introduce a Memorized Historic Sampling strat-
egy, visualized in Figure 3. It maintains two queues of feature samples, i.e.,
QX and QY that can store historic features from previous mini-batches with
limited GPU memory cost. In doing so, we can estimate the probability dis-
tributions among queues instead of mini-batches. Therefore, it allows a larger
number of samples and a relatively smaller mini-batch used at runtime. The
queue is updated according to the First-In-First-Out rule, which enforces the
historical samples in the queue are always newest, and hence it allows the prob-
ability distribution to be more consistent with the immediate state. Based on
such a strategy, we can formulate Equation 3 as below:

g′i|j =
Kcosine(Q

X
i , QX

j )∑q
k=1,k ̸=j Kcosine(QX

k , QX
j )
∈ [0, 1], (7)

and

QX
1...N , QX

N...q ← fx
{1...N}, Q

X
{1...q−N}. (8)

where q is the queue size of the appied queue for extracted features fx from a
sigle mini-batch with the number of N , and q ≫ N .

For example, the maximum size of a mini-batch can only be 32 in a single
GPU card with a memory of 12GB, but the number of samples is usually set as
128 to ensure the accuracy of the estimation, which is not practical in a single
GPU. By using the queue in the size of 128, we can directly use the current
mini-batch with features from 3 historical memorized mini-batch to perform an
estimation with 128 samples, while without using additional 12× 3 GB memory
at running time. It is because the queue that saves historical features costs less
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Fig. 4: Sampling with Internal Patches. Patches cropped from a single image
may consist of different semantic objects that showed in different appearances.

GPU memory compared with the procedure of feature extraction. Similar strate-
gies for enlarging the number of samples also exist, e.g, memory bank [60] and
momentum encoder [14]. Compared with them, our memorized historic queue is
simpler but also enlarges the maximum number of samples to be used without
additional GPU memory. In the supplement we provide discussion about the
effects of different queue sizes.

3.3 Patch-Wise Internal Probabilities

The most straightforward way to construct samples for the mini-batch is to ran-
domly choose multiple images from the domains X and Y, respectively. Even
though it is elegant, it fails to exploit another crucial probability in the single
image, i.e., internal probability of patches from a single image, or internal statis-
tics, which has been widely employed and empirically evaluated in many image
restoration tasks [39, 48, 49, 66]. As illustrated in Figure 4, we can notice that
the cropped patches from the single image, specifically the complex-semantic
image, can be seen as multiple single-semantic images. In addition, the proba-
bility estimated on multiple complex-semantic images is not always accurate in
some cases, e.g., the denoising learning [62] in mixed noise levels. In such a case,
conventional sampling results in an inaccurate estimation, because the restored
images in the mini-batch come from different noisy levels. These restored images
distribute in different manifolds in the semantic feature space. In contrast, by ex-
tracting patches from a single image resulted from extreme similar degradation,
their similarity allows the probabilities to be accurately estimated.

In our method, a sliding window in a spatial size of K × K is availed to
extract patches from the restored image Ỹ and clear image Y . These patches
are then inputted into the high-level vision network Φ(·) as a single mini-batch
and transformed into feature sets, which can be formulated as:

fx = Φ(sliding window(Ỹ )). (9)
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Then we exploit Equation 7 to estimate the probability distribution in the fea-
ture sets respectively for divergence approximation. In the empirical evaluation,
shown in Table 1, though the vanilla version achieves gains on the restoration
performance, the generated images contain less semantic details (lower MIoU
performance). This decreasing may boil down to incorrect probability estima-
tion. In contrast, with the help of internal probability, our restoration network
achieves a performance leap in both the restoration and semantic evaluation.

4 Experiments

Different from conventional denoising works, we focus on not only the restora-
tion performance, but also the semantic accuracy, i.e., how the denoised images
can be understood by semantic segmentation networks, as well as whether the
method can be extended into the other restoration tasks. Such a similar evalua-
tion protocol is also employed in recent restoration works [21,23,52]. Therefore,
our experiments are divided into three parts, including Cityscape Denoising and
Segmentation [7], Face Super-resolution and Alignment [32], and Natural Image
Restoration [2]. More details please refer to the supplemental.

4.1 Cityscape Denoising and Segmentation

To demonstrate the superiority of our method, we conduct complementary de-
noising and segmentation experiments on the Cityscapes dataset. The most rep-
resentative denoising network, i.e., FFDNet [62], as well as the state-of-the-
art denoising networks, i.e., CBDNet [13] and SADNet [4] are availed as the
generation network G(·). Various objectives are applied, i.e., L1, LSSIM [59],
LPerceptual [17], LLPIPS [63], LContextual [36], LCrossEntropy [28], and ours. No-
tably, LCrossEntropy is conducted with the HRNet48 that pre-trained on the
Cityscapes dataset, which requires semantic labels during the denoising learn-
ing. In contrast, ours does not need any additional data. We then modify the
original loss function of CBDNet and SADNet, i.e., L2 + LAsymmetric + LTV

and L2, by attaching our proposed objective. For convenience, we set the size of
the sliding window K as 224 and its stride as 56.

For denoising training, we construct noisy images by adding additive color
Gaussian noise of noise level σ ∈ [0, 75] to the clean images from the Cityscapes
training set. The images are randomly cropped into 512×512 patches in a mini-
batch size of 64. Other settings are kept the same as the settings in FFDNet.
For evaluation, we first measure appearance similarities between restored images
and corresponding clear images in the Cityscapes validation set, in noisy levels
{25, 35, 50}, which is commonly selected by the denoising community. We then
measure the semantic segmentation accuracy on restored images in the term of
Mean Intersection-over-Union (MIoU) in 19 pre-defined semantic classes, i.e.,
road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation,
terrain, sky, person, rider, car, truck, bus, train, motorcycle, and bicycle.
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Table 1: Quantitative performance comparison on the cityscape denois-
ing and segmentation. The comprasion is conducted with various state-of-the-
art denoising objectives and ours on the representative denoising networks.

Noise-Level σ=25 Noise-Level σ=35 Noise-Level σ=50

Method (Backbone) Objective PSNR ↑ SSIM ↑ MIoU (%) ↑ PSNR ↑ SSIM ↑ MIoU (%) ↑ PSNR ↑ SSIM ↑ MIoU (%) ↑

FFDNet [62]

L1 35.033(6) 0.925(6) 0.605(8) 34.074(6) 0.912(6) 0.537(8) 32.845(6) 0.895(6) 0.451(7)

+ LSSIM [59] 35.567(3) 0.935(2) 0.642(2) 34.469(4) 0.922(2) 0.584(2) 33.180(3) 0.906(2) 0.450(8)

+ LPerceptual [17] 34.319(7) 0.912(7) 0.629(4) 33.486(7) 0.899(7) 0.582(4) 32.383(7) 0.881(7) 0.509(2)

+ LLPIPS [63] 35.551(4) 0.929(4) 0.613(6) 34.463(5) 0.916(4) 0.541(7) 33.138(5) 0.899(4) 0.452(6)

+ LContextual [36] 25.115(8) 0.762(8) 0.628(5) 24.938(8) 0.758(8) 0.583(3) 24.775(8) 0.753(8) 0.509(2)

+ LCrossEntropy [28] 35.913(2) 0.932(3) 0.630(3) 34.800(2) 0.919(3) 0.565(5) 33.477(2) 0.903(3) 0.491(4)

D2SM (Ours)
w/o. Internal 35.543(5) 0.929(4) 0.612(7) 34.475(3) 0.916(4) 0.546(6) 33.167(4) 0.899(4) 0.463(5)

w/. Internal 36.454(1) 0.936(1) 0.644(1) 35.206(1) 0.923(1) 0.587(1) 33.807(1) 0.907(1) 0.520(1)

CBDNet [13]
- 36.152(3) 0.936(2) 0.655(3) 34.964(3) 0.923(3) 0.599(3) 33.613(3) 0.907(3) 0.539(3)

w/o. Internal 36.254(2) 0.935(3) 0.679(2) 35.158(2) 0.925(2) 0.631(2) 33.904(2) 0.911(2) 0.550(2)

w/. Internal 36.899(1) 0.941(1) 0.691(1) 35.596(1) 0.929(1) 0.652(1) 34.172(1) 0.914(1) 0.600(1)

SADNet [4]
- 36.310(3) 0.936(3) 0.674(3) 35.081(3) 0.924(2) 0.637(3) 33.730(3) 0.908(3) 0.581(3)

w/o. Internal 36.822(2) 0.940(2) 0.691(2) 35.247(2) 0.924(2) 0.655(2) 34.133(2) 0.912(2) 0.600(2)

w/. Internal 37.130(1) 0.943(1) 0.701(1) 35.839(1) 0.931(1) 0.670(1) 34.440(1) 0.916(1) 0.634(1)

Quantitative Comparison. In Table 1, it is easy to see that ours outperforms
all compared objectives largely in PSNR, SSIM, and MIoU metrics on all noisy
levels, when applied in the same backbone. Compared with the state-of-the-art
objectives that combine high-level vision tasks, i.e., LCrossEntropy [28], which
requires the semantic label of images during training, ours still outperforms it
by 0.542dB in PSNR, 1.4% in MIoU, without using any additional data. Besides,
ours shows strong robustness when adopted with different network architectures
and objectives, e.g ., it helps the original CBDNet improves 0.747dB in PSNR and
0.5% in MIoU. Also, the comparison between using and without using internal
probability further demonstrates its superiority for complex-semantic images.

Qualitative Comparison. Though LPerceptual applied in restoration methods
has been proven to lead to better perceptual quality in restored images, we
find that ours significantly outperforms it with more visually pleasant and exact
details as shwon in Figure 5. As shown in Figure 6, our restored results best
preserve the edge of the character “S” in the red rectangle area. Besides, the
blue rectangle area shows the best sharp details in our restored results compared
with others. With regard to the segmentation evaluation, restored results from
restoration networks trained with ours can best be segmented accurately. For
instance, as two green rectangle areas are shown in the Figure 6, our result
is the only one that is successfully recognized into traffic light. This indicates
that ours can best preserve semantic details during restoration in the way of
divergence minimization.

Distribution Visualization. In order to get insights into the probability dis-
tribution, here we visualize the semantic feature space estimated by restored
images and clear images. To elaborate, we randomly select 500 animal images
that belong to 10 categories, i.e., cat, dog, chicken, cow, horse, sheep, squirrel,
elephant, butterfly, and spider. We then process their noisy version (i.e. adding
additive color Gaussian noise of noise level σ=25) with the FFDNet pre-trained
on the noisy Cityscapes dataset. After that, the denoised images, as well as the
clear images, are inputted into the pre-trained ResNet101 [16] to extract seman-
tic feature maps. As such, we can visualize the distribution of semantic features
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Noisy Image L1 LSSIM [59] LPerceptual [17] LLPIPS [63]

LContextual [36] LCrossEntropy [28] Ours w/o. Internal Ours Clear Image

Fig. 5: Qualitative comparison on the denoising results. Ours results contain the
most fine-grained high-frequency information and more visual pleasant details.
(400% Zoom is recommended to see their difference in details and color bias.)

with the t-SNE [34] in 2D coordinates. Compared with others, the visualized
distribution from our restored images best preserves the distribution of clear
images in the semantic feature space. This indicates that our proposed method
indeed implicitly minimizes the probability distribution divergence between re-
stored images and clear images in the semantic feature space.

4.2 Face Super-resolution and Alignment

Here we extend D2SM with historic sampling as the objective and conduct face
super-resolution learning under the settings of DICNet [33]. For the evaluation of
high-level vision applications, we exploit the face alignment as a measurement,
and its accuracy is denoted in the term of NRMSE. The queue size is set as 256
and the mini-batch size is 32, which means the probability is estimated among
32 face images instead interal patches.

In table 2, we show the quantitative performance comparison between DIC-
Net and ours, as well as the other state-of-the-art methods. Notably, the face
alignment network is pre-trained on the CelebA dataset, and hence its evaluation
on the Helen dataset is generally not good enough, which can only be used for
reference. By combining our objective with existing L1 and LAlignment proposed
by DICNet, our modified version successfully outperforms the original DICNet
and DICNet in the GAN manner (DICGAN), in both the distortion measure-
ment and alignment measurement. In contrast, the original DICNet can only
achieve leading performance in the distortion measurement but is poor in align-
ment measurement, while the DICGAN can only achieve leading performance in
the alignment measurement but is bad at distortion measurement.
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Noisy Image
Acc: 23.66%

L1

Acc: 42.59%
LSSIM [59]
Acc: 44.84%

LPerceptual [17]
Acc: 45.35%

LLPIPS [63]
Acc: 43.25%

LContextual [36]
Acc: 43.28%

LCrossEntropy [28]
Acc: 44.09%

Ours w/o. Internal
Acc: 42.90%

Ours
Acc: 46.31%

Clear Image
Acc: 55.60%

Fig. 6: Qualitative comparison on the denoising and segmentation results. Ours
preserves most of the semantic details, including the human shape and font edge
in the highlighted area. Additionally, in the shown segmentation results, our
result is the only one that can be successfully recognized into traffic light.

4.3 Natural Image Restoration

Different from cityscape images collected from limited scenes, natural images
contain more diverse and complex semantics. Therefore, the intrinsic seman-
tics of natural images are more complex and diverse, which indicate a more
challenging probability distribution estimation for our method. To validate our
effectiveness in such cases, here we follow the settings of the state-of-the-art de-
hazing method, i.e., MSBDN-DFF [10] on the end-to-end dehazing tasks [37],
and we extend the dehazing network with our proposed objective. As the quanti-
tative performance comparison shown in Table 3, though the density estimation
is challenging, our method can successfully outperform the compared method in
both the indoor scenes and outdoor scenes without additional cost. In Figure 7,
we show some randomly highlighted visual results for comparison, and all of our
results contain the most clear appearance with less haze remained. Specifically,
we can notice that objects, e.g., floor, chair, roof, toy that contain certain se-
mantics, are better restored with accurate color than the method trained with
pixel-wise loss functions only. This phenomenon further demonstrates the se-
mantics transferring ability of our method, which regularizes restored objects to
be semantic consistent and avoids incorrect color that againsts its semantics.

5 Discussion

Designing Choice of KL Divergence. The way of the divergence estimation be-
ween G′ and G accounts a lot in our method. We empirically employed the
Kullback-Leibler (KL) divergence weighted by G′ for D2SM. Indeed, there are
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Table 2: Quantitative performance comparison on the face super-resolution and
alignment. By simply attaching our objective into the DICNet, our method can
outperform the state-of-the-art DICNet and DICGAN in both the distortion
measurement and high-level vision application measurement.

CelebA Dataset Helen Dataset

Method (Backbone) Objective PSNR ↑ SSIM ↑ NRMSE ↓ PSNR ↑ SSIM ↑ NRMSE ↓
Bicubic - 23.58(10) 0.6285(10) 0.3385(8) 23.89(10) 0.6751(10) 0.4577(8)*

SRResNet [20] [CVPR-17] L2 25.82(6) 0.7369(6) - 25.30(6) 0.7297(7) -

URDGN [61] [ECCV-16] L2 + LGAN 24.63(8) 0.6851(9) - 24.22(9) 0.6909(9) -

RDN [65] [ECCV-18] L1 26.13(5) 0.7412(5) 0.1415(4) 25.34(5) 0.7249(8) 0.4437(7)*

PFSR [18] [BMVC-18] L2 + LPerceptual + LGAN + LHeatmap + LAttention 24.43(9) 0.6991(8) 0.1917(7) 24.73(8) 0.7323(6) 0.3498(4)*

FSRNet [6] [CVPR-18]
L2 + LPerceptual 26.48(3) 0.7718(3) 0.1430(5) 25.90(4) 0.7759(3) 0.3723(6)*

L2 + LPerceptual + LGAN 25.06(7) 0.7311(7) 0.1463(6) 24.99(7) 0.7424(5) 0.3408(3)*

DICNet [33] [CVPR-20]
L1 + LAlignment 27.28(2) 0.7929(2) 0.1345(3) 26.69(2) 0.7933(2) 0.3674(5)*

L1 + LAlignment + LPerceptual + LGAN 26.34(4) 0.7562(4) 0.1319(2) 25.96(3) 0.7624(4) 0.3336(1)*

Ours w/o. Internal 27.39(1) 0.7973(1) 0.1292(1) 26.94(1) 0.8005(1) 0.3366(2)*

Table 3: Quantitative comparison on the natural image dehazing. Our proposed
objective is capable of being extended to the dehazing task based on MSBDN-
DFF, which shows superiority in both the indoor and outdoor datasets.
Method Metric DCP [15] MSCNN [44] DcGAN [25] GFN [45] PFFNet [37] GDN [29] DuRN [30] MSBDN-DFF [10] Ours

I-HAZE
PSNR↑ 14.43(9) 15.22(8) 16.06(5) 15.84(7) 16.01(6) 16.62(4) 21.23(3) 23.93(2) 24.31(1)

SSIM↑ 0.752(6) 0.755(5) 0.733(9) 0.751(7) 0.740(8) 0.787(4) 0.842(3) 0.891(2) 0.902(1)

O-HAZE
PSNR↑ 16.78(9) 17.56(8) 19.34(4) 18.16(7) 18.76(6) 18.92(5) 20.45(3) 24.36(2) 24.79(1)

SSIM↑ 0.653(8) 0.650(9) 0.681(4) 0.671(6) 0.669(7) 0.672(5) 0.688(3) 0.749(2) 0.787(1)

some other ways to estimate the divergence. The most similar one, i.e., inverse
KL divergence weighted by G, which is also asymmetrical. Based on KL diver-
gence, another way to estimate the divergence is Jensen–Shannon divergence,
which is symmetric and can be seen as the smoothed version of KL divergence,
formulated as:

DJS(G′||G) =
1

2
DKL(G′||G) +

1

2
DKL(G||G′). (10)

According to [3], the optimization procedure of the optimal discriminator D∗ in
GAN yields minimizing the JS divergence, formulated as:

L(D∗, G) = 2DJS(G′||G)− 2 log 2. (11)

Method σ PSNR ↑ SSIM ↑ MIoU (%) ↑

FFDNet 25 35.03 0.925 0.605
+ LiKLD 25 35.97 0.931 0.638
+ LJSD 25 36.31 0.935 0.640
+ LGAN 25 35.55 0.931 0.621
Ours 25 36.45 0.936 0.644

Table 4: Performance comparison with
different distribution divergence.
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Fig. 8: Convergence visualization be-
tween different queue size.
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Fig. 7: Qualitative comparison on the real-world dehazing. Compared with the
SOTA method that employs pixel-wise loss functions, our extended version bet-
ter recover the scenes under severe ill-posed distortion.

Here we present the quantitative comparison with the three additional divergence
estimation or objectives in Cityscapes. The comprasion empirically proves our
superiority of using KL-divergence compared with the others in the denoising
tasks.

Designing Choice of Queue Size. The convergence curve visualized in the Fig-
ure 8 further demonstrates that our proposed method significantly accelerates
convergence with the proposed memorized historic sampling. From the figure we
can notice that the applied historic sampling with large queue size (Q > 64)
can greately accelerate the learning, while the vanilla version can only achieve
poor performance (Q ≤ 64). Thus, in our practical implementation, we chose
the queue size with the possible max value under the computational limitation.

6 Conclusion

We propose a simple but practical method for facilitating the restoration learning
and preserving the semantic attribute. It does not rely on any external informa-
tion nor introduce additional parameters. By implicitly approximating the di-
vergence on the semantic feature space, we can force existed generation networks
to learn to preserve semantic attributes during restoration learning. We further
transfer the method from the single-semantic image to the complex-semantic
image i.e. natural image by using internal statistics. Empirically evaluation vali-
dates that the proposed method can be adapted to various restoration tasks and
network architectures with general performance improvement.
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