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Supplementary Note 1: Inference from Scenes with

Non-Uniform Albedos

(a) Without Albedo Estimation

(b) With Albedo Estimation

Suppl. Fig. 1. Robustness to Albedo Variations. We again show a few NYUv2
patches and their accompanying transients. We show the transients the AbS method
has fitted to when not estimating scene albedo (a) and when jointly estimating scene
albedo (b).

Robustness to albedo variations: We observe that, in most cases, both the
theoretical and AbS approaches are robust to real-world albedo variations, and
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slight geometry variations, despite making no explicit attempt at modeling non-
uniform albedos. This is seen in both sample scenes in Suppl. Fig. 1(a): the
dashed transient are nearly identical which indicates good parameter estimation
despite challenging albedo variations.

We attribute this robustness to albedo variations to the implicit albedo
averaging that is performed through binning. Each transient bin will receive
contributions from all scene patches at a specific distance from the sensor. The
perceived albedo at that bin will thus effectively be the average albedo of all those
scene patches. This is illustrated in Suppl. Fig. 1(a) as the horizontal greyscale
color bar under each transient. While this per-bin albedo average could have
sharp transitions for a carefully crafted, adversarial scene, we observe that when
imaging real scenes, albedos are smooth over consecutive bins.

Estimating scene albedo: We can try to recover the scene’s point-wise albedo
by augmenting our AbS approach with a texture that stores the scene’s albedo.
Gradients with respect to this texture can then be computed, and the texture
optimized. However, due to the albedo binning process described above, the
best we can aim to recover is the average albedo per bin. The optimized albedo-
texture cannot contain the scene’s albedo as a single transient does not contain
enough spatial information.

With no added regularization, the albedo-texture map converges to what
looks like salt and pepper noise. While this albedo map is of no immediate use, it
can help the AbS method converge to better plane estimates. In Suppl. Fig. 1(b)
we show sample results for which the scene’s albedo was estimated. Notice that
when jointly estimating plane parameters and albedo, the AbS transient (green)
can more closely fit the observed one (blue). As seen in the last row, this can
cause over-fitting issues and lead to estimated parameters that describe a plane
that best fits the observed geometry instead of the planar part of the scene.
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Supplementary Note 2: Deep Model and Training Details

Model Architecture:
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Suppl. Fig. 2. Architecture of Model. Diagram showing our model architecture
and the refinement steps. We use two existing methods [16,33] (seen in blue) to refine
our depth predictions.

Suppl. Fig. 2 shows the full architecture of our model and the refinement
steps. Transients are first encoded as their first k Fourier coefficients and then
passed to our base network which consists of a few blocks, each containing two
convolutions followed by bilinear upsampling by a factor of 2×. For the 20× 15
tiling, we use k = 16 and five blocks. For the 4× 3 tiling, which is 160× smaller
than the output dimension, we use six blocks with the first one upsampling by
a factor of 5×, and we use k = 4.

The refinement step consists of two off-the-shelf networks: DKN [16] and
DPT [33]. The former was finetuned to refine our depth estimate using the RGB
image as an added input, while the latter is pretrained and only uses the RGB
image. We then use the depth map produced by DKN as a guide to warp the
DPT depth map. We first tile each depth map, then compute the scale and shift
that will minimize the L2 loss between them. This scale and shift tensor, of shape
n×m× 2, is then bilinearly interpolated to the full resolution of 640× 480 and
applied to DPT’s output. This enables our approach to gain from the spatial
details present in DPT’s output but not suffer from its low accuracy. The tiling
grid used by the tile-wise matching process can be adjusted to yield results with
greater details or greater accuracy. For our experiments, it matched the transient
tiling grid.

Loss Function: Traditionally, the loss function used for regression problems is
the squared Euclidean distance, or the L2 norm L2(ỹ−y) = ||ỹ−y||22 between the
predictions ỹ and ground truth y. However, using this simple L2 loss function
leads to blurry depth reconstructions [18,10,17]. To alleviate this, we use the
reverse Hubert loss (a.k.a: BerHu loss), B, as introduced by [30,45].
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This loss effectively acts like an L1 loss for small errors and an L2 for large
ones. It has the advantage of penalizing large errors as much as an L2 loss would
while still providing a large enough gradient for smaller errors. This yields a
sharper final prediction and a lower final error. Further, the hyper-parameter c
can be used to tune the BerHu loss and change where the L1/L2 switch occurs.

Implementation details:Unless otherwise noted, all experiments used a BerHu
loss with tuning parameter c = 0.1 and ran on a single GeForce RTX 3090 or a
GeForce RTX 2080 Super for up to 500 epochs. We used the Adam optimizer,
with a learning rate of 0.01. Transient histograms are simulated from the ground-
truth data using Eq. (1) where we used the green channel of the RGB images as
a proxy for scene albedoes.
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Supplementary Note 3: Definition of Metrics Used

The metrics used to evaluate our results follow that of previous work [7] and are
defined as follows:

– Absolute Relative Error (AbsRel):

1

n
Σn
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– Root Mean Squared Error (RMSE):

√
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– Average Log Error (Log10):
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n
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– Threshold Accuracy (δ < thr):
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(

ŷi
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,
yi

ŷi

)
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where ŷi is a pixel in the predicted depth map ŷ, yi is a pixel in the ground-
truth depth map y, and n is the number of valid pixels. Again, prior work has
only used 1.25i for i = 1, 2, 3 as the threshold for the threshold accuracy metric.
These correspond to 25%, 56%, and 95% error respectively. We have introduced
the tighter thresholds of 1.05i for i = 1, 2, 3 to better characterize approaches.
These correspond roughly to 5%, 10.25%, and 15.76% error.
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Supplementary Note 4: Comparison with MDE

RGB Image Ground Truth Ours Refined Ours Error DPT DPT Error

Suppl. Fig. 3. Results and L1 Error on NYUv2 Dataset. From left to right this
figure shows the RGB image, ground truth depth, our refined for the 20× 15 grid, the
absolute error of our approach, a MDE result from DPT [33], and their absolute error.

In Suppl. Fig. 3, we show results from our method and a leading MDE
method. While visually DPT results look marginally better, they often have
large absolute depth errors. Even for small indoor scenes of less than 10 meters,
DPT can produce absolute errors of the order of 2 meters. For these reasons our
method is better suited for applications that require precise depth.
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Supplementary Note 5: Additional Hardware Results

While our hardware setup, shown in Fig. 6(left), has a bin-width of 16 ps, our
models were trained with transients having 512 bins over an unambiguous depth
of 10m. Instead of retraining our models, we preprocess the measured transients
by re-binning them accordingly and subsequently applying a small amount of
Gaussian smoothing (σ = 2 bins).

Suppl. Fig. 4. Transient Histogram Preprocessing. We show example measured,
simulated and processed transients.

An assumption which was made while training the network on simulated data
is that the laser pulse could be modeled as a Dirac delta pulse (with respect to
the bin-width), however, the hardware setup uses a laser with a pulse width of
6 ns which corresponds to about 375 bins. Not only is the pulse width much larger
than in simulation, but it is also not the same shape: all measured transients are
effectively convolved with an unknown kernel.

To estimate this kernel, we first simulated transients from the ground truth
depth, as measured by the Kinect, using a laser pulse of larger width. We then
trained a shallow fully connected neural network to map the measured transients
to the simulated ones using only 20% of the acquired data as a training set. This
small model was trained with an Adam optimizer (with default parameters)
and a Kullback-Leibler divergence loss. Examples of the measured transients,
simulated ones, and neural network processed ones are shown in Suppl. Fig. 4.

Results using the processed transients can be seen in Fig. 6(right) and Suppl.
Fig. 5. Finally Suppl. Fig. 6 shows the accuracy of our method (with and without
refinement) as well as DPT’s [33] on the scene shown in Suppl. Fig. 5. Our results,
on this scene, achieve better threshold accuracy overall, especially for lower
thresholds. With more data this preprocessing scheme would not be needed,
as our model could be finetuned to adapt to the characteristics of the hardware
setup in use.
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(a) RGB Image (b) True Depth Map

(d) Ours Refined(c) Bilinear Upsampling

Suppl. Fig. 5. Results with experimental setup. (a) We image a table-top scene
with a wide range of albedos and textured objects. (b) The true depth map captured
using a Kinect v2. (c) Since the capture is a low-resolution 20× 15 grid, simple peak-
finding-based depth map provides no depth details. (d) Using the RGB image as a
guide, our method generates a high-resolution depth map.

Suppl. Fig. 6. Threshold Accuracy on Real Data. We show the continuous
threshold accuracy for our method without refinement (“Base”), with refinement
(“Refined”), and DPT [33] for all thresholds in the range [1, 2]. Results are reported
on a single scene in Suppl. Fig. 5.
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Supplementary Note 6: Dealing with Pile-up Distortions
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Suppl. Fig. 7. Measuring a transient histogram using a SPAD. (a) The test
scene consists of a ring-shaped target with a background wall. (b) Asynchronous
acquisition using a SPAD reliably captures later photons by avoiding pile-up distortion
seen in conventional acquisition.

If the total photon flux incident on the SPAD is high enough, photon detections
in earlier histogram bins prevent later bins from capturing photons. This causes
pile-up distortions that follow a characteristic exponentially decaying shape. This
pile-up can be due to ambient light or due to laser photons reflecting from a
high albedo target. Suppl. Fig. 7 shows a histogram with and without pileup for
the ring-shaped target with a wall in the background. Observe that the pile-up
distorted histogram has fewer total photon counts in later photon bins. We use
an asynchronous acquisition scheme [11] that counteracts pile-up distortion by
operating the SPAD in a free-running mode. The SPAD pixel enters a dead-time
immediately after each photon detection event and is reset to capture the next
photon after the dead-time period ends. By capturing raw timestamps for each
photon detection and laser pulse, photon timestamps can be re-synchronized to
the periodic laser source and a histogram free from pile-up distortion can be
captured.


