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Fig. S-1. Architecture of DFN in DINet and FusionNet.

Fig. S-1 shows the architecture of DFN in DINet and FusionNet in Fig. 2
in the main paper. It consists of seven convolutional layers with symmetric skip
connections. All convolutional layers have 3 x 3 kernels. The numbers of feature
channels of the first six convolutional layers are 32, and that of the last con-
volutional layer (Conv7) depends on the number of input channels, i.e., 36 for
DINet and 18 for FusionNet. Each convolutional layer is followed by a batch
normalization (BN) [3] and PReLU activation function, except for Conv7.
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1.2 Weight Learning Network
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Fig. S-2. Architecture of the weight learning network in the MEF block.

Fig. S-2 shows the architecture of the weight learning network in the MEF
block in Fig. 3 in the main paper. It consists of three branches to generate
three weight maps W(Clw),Wg[% and WET_ZI), respectively. Each branch has two
convolutional layers. The first convolutional layer is followed by a BN and PReLU
activation function. The sigmoid activation function is used to generate weight
values in the range of [0,1]. All convolutional layers have 3 x 3 kernels with the
same number of feature channels at each scale I, i.e., C() = 128, C(?) = 256,
and C®) = 512.
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1.3 Discriminator Network D

Table S-1. Architecture of the discriminator network D.

Layer ‘ # of channels ‘ Kernel size ‘ Stride ‘ Padding size

Conv1_0 128 3x3 1x1 1x1
SN1_0 — - _ _
LeakyReLU (o = 0.2) - - - _
Residual block 128 — - _

Conv2_0 256 2 X2 2 X2 -
SN2_0 — — — _
LeakyReLU (a = 0.2) - - — _
Residual block 256 — - _

Conv3_0 512 2 %2 2x2 -
SN3_0 - - - —
LeakyReLU (a = 0.2) - - - -
Conv3_1 512 3x3 1x1 1x1
SN3_1 - - - -
LeakyReLU (a = 0.2) - - - -
Conv3_2 512 3 x3 1x1 1x1
SN3_2 — — - -
LeakyReLU (a = 0.2) - - - -
Conv3_3 512 3x3 1x1 1x1
SN3_3 - - - -
LeakyReLU (a = 0.2) - - - -

Global average pooling 512
Conv4_0 1 1x1 1x1 -
SN4_0 — - - -
Tanh - - - -

Conv
SN
LeakyReLU
Conv
SN
Y
]

Fig. S-3. Architecture of the residual block in the discriminator network D.

Table S-1 lists the details of the discriminator network D to compute the ad-
versarial loss Laq4y in (18) in the main paper. We employ spectral normalization
(SN) [6] after each convolutional layer to stabilize the training. We use residual
blocks [2] in Figure S-3 after Conv1l_0 and Conv2_0 in Table S-1 to increase the
receptive field. All convolutional layers in the residual block have 3 x 3 kernels.
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2 Datasets

2.1 HDM-HDR!

Fig. S-4 shows 12 randomly selected frames from the HDM-HDR, dataset, which
are used for the test.

Fig. S-4. HDR frame selected from the HDM-HDR dataset for the test.

2.2 HDRv [5]

Fig. S-5 shows 16 randomly selected frames from the HDRv dataset, which are
used for the test.

Fig. S-5. HDR images selected from the HDRv dataset for the test.

1 https://www.hdm-stuttgart.de/vmlab/hdm-hdr-2014
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3 More Experimental Results

We pr0v1de more comparative results on the Kalantari’s [1], HDM-HDR,? HDR-
Eye,® and HDRv [7] datasets.

3.1 Kalantari’s Dataset
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Fig. S-6. Qualitative comparison of synthesized HDR images and their magnified parts
on the Kalantari’s dataset.

3.2 HDM-HDR
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Fig. S-7. Qualitative comparison of synthesized HDR images and their magnified parts
on HDM-HDR.

2 https://www.hdm-stuttgart.de/vmlab/hdm-hdr-2014
3 https://mmspg.epfl.ch/hdr-eye


https://www.hdm-stuttgart.de/vmlab/hdm-hdr-2014
https://mmspg.epfl.ch/hdr-eye
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3.3 HDR-Eye

GT Input Choi et al. Suda et al. C.and A. V.and L. Xu et al. Proposed

Fig. S-8. Qualitative comparison of synthesized HDR images and their magnified parts
on HDR-Eye.

GT Input Choi et al. Suda et al. C.and A. V.and L. Xu et al. Proposed

Fig. S-9. Qualitative comparison of synthesized HDR images and their magnified parts
on HDRyv.
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4 DRIM Assessments

We also provide the distortion maps using the dynamic range independent qual-
ity metric (DRIM) [1] for the test images. DRIM estimates the probability of
the differences between two images in each local region being noticed by view-
ers. DRIM provides three types of differences: loss of visible contrast (green),
amplification of invisible contrast (blue), and reversal of visible contrast (red).
In Figs. S-10-S-13, the proposed algorithm yields significantly less differences in
all the changes than the conventional algorithms.

4.1 Kalantari’s Dataset

Choi et al. Suda et al. C. and A. Vien and Lee Xu et al. Proposed
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Fig. S-10. DRIM assessment on the Kalantari’s dataset.

4.2 HDM-HDR

Choi et al. Suda et al. C. and A. Vien and Lee Xu et al. Proposed
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Fig. S-11. DRIM assessment on HDM-HDR.
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4.3 HDR-Eye

Choi et al. Suda et al. C. and A. Vien and Lee Xu et al. Proposed
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Fig. S-12. DRIM assessment on HDR-Eye.

4.4 HDRyv

Choi et al. Suda et al. C. and A. Vien and Lee Xu et al. Proposed

100

Predicted visible differences

50 100 50 100 50

Fig. S-13. DRIM assessment on HDRwv.
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5 More Analyses

5.1 Necessity of Subnetworks

Table S-2. Effectiveness of multi-domain learning on the synthesis performance.

HDR-VDP
Model pu-MSSSIM  pu-PSNR  log-PSNR Q7P HDR-VQM
U-Net 0.9963 45.48 42.44 73.46  0.4242 0.9692
U-Net with M 0.9963 45.62 42.38 73.57 0.4097 0.9692
Proposed 0.9969 46.17 43.04 74.03 0.3889 0.9718

Because of the diversity in shapes and sizes of poorly exposed regions, a
single network may be ineffective in recovering those regions, as experimen-
tally observed and described in the main paper. We address this issue by using
multi-domain learning and combining the outputs of the two subnetworks having
complementary information.

Table S-2 demonstrates the necessity of multi-domain learning. A single U-
Net exhibits the worst performance, and the addition of M fed into U-Net im-
proves the performance. The proposed algorithm with multi-domain learning
outperforms the single U-Net with large margins, which confirms the effective-
ness of the proposed network architecture.

5.2 Short- and Long-Exposures

Table S-3. Effectiveness of different EV spacing on the synthesis performance.

Avg. HDR-VDP
EV pu-MSSSIM  pu-PSNR log-PSNR —— HDR-VQM
DR Q P
{-1,+1} 226.3 0.9969 46.17 43.04 74.03 0.3889 0.9718
{-2,+2} 230.3 0.9956 45.10 42.44 73.53 0.4344 0.9710
{-3,+3} 23838 0.9917 42.41 40.65 71.73  0.5551 0.9697

The proposed algorithm used the EV spacing {—1,+1}, because it has been
commonly used in single-shot HDR imaging [4, 44, 50]. To further analyze the
effects of different short- and long-exposures on the synthesis performance, we
evaluate the proposed algorithm with different EV spacing. Table S-3 shows that
as the EV spacing increases, higher dynamic range (DR) can be recovered while
the synthesis performance decreases.
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5.3 Necessity of Filter Learning in DFN

Table S-4. Effectiveness of filter learning in DFN on the restoration performance.

pu-MSSSIM  pu-PSNR  log-PSNR,

Direct learning 0.9957 43.37 43.65
Filter learning (Proposed) 0.9969 44.84 45.11

Filter learning with DFNs can better exploit the information of missing re-
gions in an SVE image during both interpolation in DINet and fusion in Fusion-
Net, providing spatially consistent results, than direct image learning. Table S-4
compares the performance of DINet for different learning strategies.

5.4 Necessity of Multi-scale MEF

Table S-5. Effectiveness of multi-scale MEF on the restoration performance.

pu-MSSSIM  pu-PSNR  log-PSNR

Single MEF 0.9962 46.55 46.68
Multi-scale MEF (Proposed) 0.9965 46.96 47.01

If an input image contains large missing regions, a single MEF block only in
the first layer is ineffective to extract good features because of small receptive
fields, degrading the synthesis performance. Table S-5 shows that multi-scale
MEF yields higher scores than a single MEF.
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5.5 Demosaicing

Table S-6. Impacts of the network architecture design.

HDR-VDP
pu-MSSSIM  pu-PSNR  log-PSNR, Q—P HDR-VQM
Vien [44] 0.9964 45.10 42.22 73.72  0.3930 0.9696
Xu [50] 0.9957 44.62 42.01 73.00  0.5593 0.9700
Proposed 0.9969 46.17 43.04 74.03 0.3889 0.9718
Proposed™ 0.9965 45.80 42.64 73.79  0.4100 0.9705

Table S-6 includes the performance of the proposed algorithm, where Fusion-
Net directly outputs the demosaiced image, denoted by Proposed*. It is worth
pointing out that Proposed® outperforms the two best-performing conventional
algorithms, which output demosaiced images. This confirms that the choice of
demosaicing algorithm affects the performance as we stated in the main paper.

5.6 Execution Times

Table S-7. Analysis of execution time of each component in the proposed algorithm.

DINet ExRNet FusionNet Demosaicing Total
GPU 21.56 63.47 23.25 104.17 212.45
CPU 30.17  334.59 30.07 302.56 697.39

Table S-8. Execution time comparison of the proposed algorithm with the conven-
tional algorithms.

Choi [5] Suda [10] Cogalan [6] Vien [44] Xu [50] Proposed
GPU - 74.44 20.64 20.86 38.36 212.45
CPU  741.46 210.88 41.36 172.95 92.86 697.39

Tables S-7 and S-8 compare the average execution times in seconds of the
proposed algorithm to process the test images in the Kalantari’s dataset. Note
that about half of execution time is consumed by demosaicing.



12 A. G. Vien and C. Lee
References
1. Aydin, T.O., Mantiuk, R., Myszkowski, K., Seidel, H.P.: Dynamic range independent

image quality assessment. ACM Trans. Graph. 27(3), 69:1-10 (Aug 2008) 7

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. CVPR. pp. 770-778 (Jun 2016) 3

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proc. ICML. pp. 448-456 (Jul 2015) 1
Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic
scenes. ACM Trans. Graph. 36(4), 144:1-144:12 (Jul 2017) 5

Kronander, J., Gustavson, S., Bonnet, G., Unger, J.: Unified HDR reconstruction
from raw CFA data. In: Proc. ICCP. pp. 1-9 (Apr 2013) 4, 5

Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for gen-
erative adversarial networks. In: Proc. ICLR (Apr 2018) 3



	Supplemental Document on  Exposure-Aware Dynamic Weighted Learning for Single-Shot HDR Imaging

