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Abstract. We propose a novel single-shot high dynamic range (HDR)
imaging algorithm based on exposure-aware dynamic weighted learn-
ing, which reconstructs an HDR image from a spatially varying exposure
(SVE) raw image. First, we recover poorly exposed pixels by developing a
network that learns local dynamic filters to exploit local neighboring pix-
els across color channels. Second, we develop another network that com-
bines only valid features in well-exposed regions by learning exposure-
aware feature fusion. Third, we synthesize the raw radiance map by adap-
tively combining the outputs of the two networks that have different char-
acteristics with complementary information. Finally, a full-color HDR
image is obtained by interpolating missing color information. Experimen-
tal results show that the proposed algorithm significantly outperforms
conventional algorithms on various datasets. The source codes and pre-
trained models are available at https://github.com/viengiaan/EDWL.
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1 Introduction

The luminance intensity range of real-world scenes is significantly higher than
the range that conventional cameras can capture [33,37]. Therefore, conven-
tional cameras typically acquire low dynamic range (LDR) images, which con-
tain under- and/or over-exposed regions. To overcome the limitations of the
conventional imaging systems, high dynamic range (HDR) imaging techniques
have been developed to represent, store, and reproduce the full visible luminance
range of real-world scenes. Due to its practical importance, various algorithms
have been developed to acquire high-quality HDR images [20,26,34,36,48,51,52].

A common approach to HDR imaging is to merge a set of LDR images of a
scene captured with different exposure times [7,28]. Whereas this approach works
well with static scenes, camera or object motion across LDR images leads to
ghosting artifacts in the synthesized HDR images. Although there has been much
effort to develop deghosting algorithms for HDR image synthesis [13,16,48,51,52],
developing an efficient, robust, and reliable algorithm that can handle com-
plex motions remains a significant challenge. Another approach, called inverse
tone mapping, attempts to reconstruct an HDR image from a single LDR im-
age [8,9,17,20,25,36]. Although this approach can prevent ghosting artifacts, it

https://github.com/viengiaan/EDWL
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often fails to reconstruct texture details in large poorly exposed regions due to
the lack of underlying information in the regions in a single LDR image.

Another effective approach to HDR imaging that does not result in ghosting
artifacts is spatially varying exposure (SVE) [31]. SVE-based HDR imaging, also
known as single-shot HDR imaging, algorithms capture a scene with pixel-wise
varying exposures in a single image and then computationally synthesize an HDR
image, which benefits from the multiple exposures of the single image. Because
of this merit, various SVE-based HDR imaging algorithms have recently been de-
veloped to improve synthesis performance by recovering poorly exposed pixels by
exploiting information from pixels with different exposures [4,5,6,10,38,40,44,50].
However, such algorithms are still susceptible to providing visible artifacts in the
synthesized HDR images, since they fail to faithfully recover the missing pixels
and texture information in poorly exposed regions.

To alleviate the aforementioned issues, we propose a novel single-shot HDR
imaging algorithm that recovers missing information by learning weights to
take advantage of the benefits of both neighboring pixels and learned deep fea-
tures. The proposed algorithm is composed of the dynamic interpolation network
(DINet), exposure-aware reconstruction network (ExRNet), and fusion network
(FusionNet). DINet recovers poorly exposed pixels by learning local dynamic fil-
ters. ExRNet combines only valid features in well-exposed regions. Specifically,
we develop the multi-exposure fusion (MEF) block for exposure-aware feature
fusion that learns local and channel weights to exploit the complementarity be-
tween these features. Finally, FusionNet generates the reconstructed radiance
map by adaptively merging the results from DINet and ExRNet. Experimental
results demonstrate that the proposed algorithm outperforms the state-of-the-
art single-shot HDR imaging algorithms [5,6,40,44,50] on various datasets.

The main contributions of this paper are as follow:

– We propose a learning-based single-shot HDR imaging algorithm that can
recover poorly exposed pixels by exploiting both local neighboring pixels
across color channels and exposure-aware feature fusion.

– We develop the MEF block, which learns adaptive local and channel weights
to effectively fuse valid deep features by exploit the complementary informa-
tion of the well-exposed regions.

– We experimentally show that the proposed algorithm significantly outper-
forms state-of-the-art single-shot HDR imaging algorithms on multiple datasets.

2 Related Work

2.1 SVE-based HDR Imaging

An approach to SVE-based HDR imaging is to use spatial light modulators
in camera sensors to capture SVE images. Various such techniques have been
developed, including learned optical coding [2,27,41], focus pixel sensors [47], and
programmable sensors for per-pixel shutter [26,42]. However, these approaches
are too complex and expensive for use in practical applications.
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An alternative approach to capturing SVE images is to control the per-pixel
exposure time or camera gain. Algorithms in this approach can be divided into
two categories according to how they synthesize HDR images from captured
SVE images. The first category of algorithms attempts to first reconstruct mul-
tiple images with different exposures from a single SVE image and then merges
them to synthesize an HDR image. Interpolation [10], sparse representation [5],
and deep learning [6,40] have been employed to recover the different exposures.
However, artifacts in the reconstructed images remain in the synthesized HDR
images and degrade their visual quality. The algorithms in the second category
directly reconstruct HDR images from SVE images using neighboring pixels with
different exposures. Interpolation-based algorithms [4,11] and learning-based al-
gorithms [44,50] have been developed to exploit pixels with different exposures
for synthesis. However, they may fail to produce textures in poorly exposed re-
gions due to the spatial inconsistency among neighboring pixels with different
exposures.

2.2 Image Inpainting with Partial Convolution

Both single-shot HDR imaging and image inpainting attempt to fill in missing
regions of an image with visually plausible content. Recent learning-based ap-
proaches [18,32,46,55,56] have shown excellent inpainting performance. However,
since these algorithms use convolutional layers, which apply identical filters to
the entire image for feature extraction, they may extract invalid information in
irregular missing regions. For better handling of those irregular missing regions,
the partial convolutional (PConv) layer [19] was developed to ensure the use
of only valid information during convolution through a binary mask, which is
updated at each layer. In [49], the PConv was generalized by learnable masks
for convolution. We also adopt the masks, but the outputs of the learnable mask
convolutions are used as local weight maps that represent the relative importance
of each value in features for HDR image synthesis.

3 Proposed Algorithm

3.1 Overview

In this work, we assume the SVE pattern in Fig. 1, which consists of row-wise
varying exposures with two exposure times: a short exposure time ∆tS and a
long exposure time ∆tL, in a single raw Bayer image with the 2 × 2 RGGB
color filter array. This pattern has been commonly employed in single-shot HDR
imaging [5,6,44,50]. Specifically, the input SVE image Z with a resolution of
W ×H and bit-depth of 8 is modeled as

Z =

{
ZS , on 4n+ 1 and 4n+ 2-th rows,

ZL, on 4n+ 3 and 4n+ 4-th rows,
(1)
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Fig. 1. An overview of the proposed single-shot HDR imaging algorithm. Given a
linearized radiance map Ein, DINet, ExRNet, and FusionNet jointly recover missing
pixels to output the reconstructed radiance map Ê. Next, a demosaicing algorithm
synthesizes a full-color HDR image H. Missing values in Ein are illustrated in white.

where ZS and ZL denote the short- and long-exposure subimages, respectively,
and n = 0, 1, . . . , H

4 . We then linearize the input Z into the radiance map Ein

using the camera response function (CRF) [7], which is known a priori. As Z
contains poorly exposed pixels, Ein contains invalid values at the corresponding
pixel locations, which are represented by white in Fig. 1.

We synthesize an HDR image by recovering missing information inEin through
two procedures: restoration and demosaicing. In restoration, missing information
in Ein is recovered using DINet, ExRNet, and FusionNet. Then, given a recon-
structed output Ê, we obtain the full-color HDR image H using a demosaicing
algorithm. We describe each stage subsequently.

3.2 Restoration

Fig. 2 shows the restoration procedure, which is composed of three networks:
DINet, ExRNet, and FusionNet. DINet and ExRNet recover missing information
by learning dynamic weights in the image and feature domains, respectively.
Then, FusionNet fuses the restored results from DINet and ExRNet by exploiting
their complementarity to generate the reconstructed radiance map Ê.

DINet: Interpolation-based single-shot HDR imaging algorithms recover miss-
ing information from the neighboring pixels in each color channel using different
weighting strategies, such as bicubic interpolation [10], bilateral filtering [4], and
polynomial interpolation [11]. However, valid information may not be found in
the neighboring pixels in each color channel, especially in large missing regions.
To solve this issue, DINet exploits the neighboring pixels across color channels
to consider inter-channel correlations for more accurate recovery.

We first rearrange the radiance map Ein ∈ RW×H into a set of single-color
subimages {Ec

in} ∈ RW
2 ×H

2 ×4, where c ∈ {R,G1, G2, B} denotes color channels
in an SVE image. It is easier to encode long-range dependencies across color chan-
nels in the subimages {Ec

in} than in Ein, and the subimages contain structurally
similar information. DINet consists of four dynamic filter networks (DFNs) [12]
that generate local filters for each color channel. Each DFN1 takes the four
subimages {Ec

in} as input and generates local filter coefficients kc ∈ R3×3×4 dy-
namically for each color channel c to fuse the 3×3 local neighboring pixels in the

1 The details of the DFN architecture are provided in the supplemental document.
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Fig. 2. An overview of the proposed restoration algorithm, consisting of DINet, ExR-
Net, and FusionNet. DINet learns dynamic local filters for restoration. ExRNet com-
bines only valid features in well-exposed regions for restoration. FusionNet fuses the
outputs of DINet and ExRNet to form the reconstructed radiance map Ê.

four subimages. For each pixel (x, y) of the input {Ec
in}, we obtain the filtered

output for channel c via local convolution (LC) as

Ẽc
DI(x, y) =

∑
c′

1∑
i=−1

1∑
j=−1

kc(i, j, c′)Ec′

in(x+ i, y + j), (2)

where (i, j) are local coordinates around (x, y), and c′ is the color channel in-
dex. The filter coefficients are normalized,

∑
c′
∑

i

∑
j k

c(i, j, c′) = 1. Next, we

rearrange the filtered outputs {Ẽc
DI} into a single image ẼDI ∈ RW×H

Instead of the entire filtered radiance map ẼDI, we use restored radiance
values only on the poorly exposed regions and use those in Ein on well-exposed
regions. To this end, we first define a soft mask M with values in the range of
[0, 1] to reveal poorly exposed regions as

M = min

(
max(0,Z− τ) + max(0, 255− τ − Z)

255− τ
, 1

)
, (3)

where τ is a threshold to determine the over-exposure. We then obtain the
reconstructed image ÊDI in an exposure-aware manner as

ÊDI = M⊗ ẼDI + (1−M)⊗Ein, (4)

where ⊗ is element-wise multiplication.

ExRNet: As the radiance map Ein is formed by interlacing two subimages
{ES ,EL} for long and short exposures, respectively, poorly exposed regions in
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Ein are irregular. Thus, previous approaches that do not take into account the
spatial characteristic of poorly exposed regions in Ein may fail to faithfully re-
store missing information in an SVE image [6,40,44]. To solve this issue, we
develop ExRNet, which combines only valid features in well-exposed regions so
that missing pixels in Ein are restored more reliably and accurately.

Fig. 2 shows the architecture of ExRNet. We employ U-Net [35], which con-
tains an encoder GE and decoder GD, as the baseline. The subimages {ES ,EL}
are first upsampled vertically using linear interpolation Up(·) to the same resolu-
tion asEin. Then, the set of interpolated images {Up(ES),Up(EL)} ∈ RW×H×1×2

is used as input to ExRNet. The encoder GE extracts multi-exposure features

F (l) =
{
F (l)

S ,F (l)
L

}
=

{
G

(l)
E (Up(ES)), G

(l)
E (Up(EL))

}
at each downsampling

level l. In the encoder of ExRNet, the convolution is applied to each subimage
and its corresponding feature maps independently. However, note that the fea-
ture map F (l) contains invalid information due to poorly exposed regions in Ein.
Thus, we develop the MEF block as shown in Fig. 3, which enables the network
to fuse two feature maps with different exposures by exploiting the information
of the well-exposed regions in Ein.

Because the two feature maps
{
F (l)

S ,F (l)
L

}
contain irregular missing regions,

their fusion using convolution with local weights, which exploits only spatial
information, may cause inaccurate restoration with large errors. In this scenario,
global contexts across channels may contain meaningful information of a scene.
Therefore, to exploit both spatial and global information, the MEF block fuses{
F (l)

S ,F (l)
L

}
by learning local and channel weights for the spatial fusion and

channel fusion, respectively.

First, for spatial fusion, we construct two local weight mapsW(l) = {W(l)
S ,W

(l)
L }

by considering the information on poorly exposed regions. To this end, we use
the encoder GE with learnable mask convolution [49] to effectively exploit the
well-exposed information. Specifically, as shown in Fig. 2, we first extract multi-
exposure submasks {MS ,ML} from a mask (1−M) and then vertically upsam-
ple them to obtain {Up(MS),Up(ML)}, which are used as input to the encoder.
After each convolution, to constrain each mask value in the range of [0, 1], the
mask-updating function gM is used as an activation function, given by

gM (x) =
(
ReLU(x)

)α
, (5)

where α > 0 is a hyper-parameter. At each downsampling level l, we obtain

two adaptive local weight maps W(l) = {W(l)
S ,W

(l)
L } by using the learnable

attention function gA [49] as an activation function as

gA(x) =

{
a · e−γl(x−β)2 , if x < β

1 + (a− 1) · e−γr(x−β)2 , otherwise,
(6)

where a, β, γl, and γr are the learnable parameters. We then obtain the fused

feature map F (l)
Sp by spatial fusion in an exposure-aware manner as

F (l)
Sp =

F (l)
S ⊗W

(l)
S +F (l)

L ⊗W
(l)
L

W
(l)
S +W

(l)
L

, (7)
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Fig. 3. Architecture of the MEF block.

where the division is component-wise.
Next, assuming that each channel of features represents different visual con-

tent, at each downsampling level l, the MEF block learns two channel weight

maps α(l) = {α(l)
S ,α

(l)
L } ∈ RC(l)×1×1, where C(l) is the number of channels.

Then, the fused feature map F (l)
Ch by channel fusion is obtained by

F (l)
Ch =

F (l)
S ⊙α

(l)
S +F (l)

L ⊙α
(l)
L

α
(l)
S +α

(l)
L

, (8)

where ⊙ denotes channel-wise multiplication, and the division is channel-wise.

Although the two feature maps {F (l)
Ch,F

(l)
Sp} are obtained by fusing multi-

exposure features by learning local and channel weights in (7) and (8), respec-

tively, the feature representations in F (l)
Ch and F (l)

Sp may become inconsistent
due to independent weight learning. Thus, a straightforward fusion of those fea-
ture maps using local convolutions may fail to convey essential information in
the feature maps, because local convolutions can capture only local information
from a small region. To address the limitation of local convolutions by capturing
the long-range dependencies in an entire image, transformers [43] or a non-local
module [45] have been employed [53,54] that can exploit the correlations be-
tween features. In this work, we develop an element-wise weighting scheme that

can consider the relationship between F (l)
Ch and F (l)

Sp in both spatial and chan-
nel domains inspired by transformers and non-local module, as shown in Fig. 3.

Specifically, the output of the MEF block F (l)
M is obtained as the element-wise

weighted sum of the two features, given by

F (l)
M = A(l) ⊗FCh + (1−A(l))⊗FSp, (9)

where A(l) is the learnable weight map.
In (9), the weight map A(l) is obtained so that the merged feature map

carries the complementary information from the two feature maps. To this end,

we employ a neural network2 to learn three weight maps W(l)
W , W(l)

H , and W(l)
C

of the size C(l) ×W (l) ×H(l) for each dimension of the feature maps. Next, the
similarities (relevance) between the two fused features across spatial and channel

2 The details of the network are provided in the supplemental document.
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domains are computed for relevance embedding. Specifically, we first reshape

F (l)
Ch and F (l)

Sp into matrices in RC(l)×W (l)H(l)

, RH(l)×W (l)C(l)

, and RW (l)×H(l)C(l)

.
Then, for each pair of reshaped feature maps, we compute the relevance map
between the two feature maps; we thereby obtain three relevance maps: channel

relevance map S
(l)
C to measure channel-wise similarities and height and width

relevance maps S
(l)
W and S

(l)
H to measure width- and height-wise similarities. For

example, let RC
Ch and RC

Sp denote the reshaped feature maps in the channel

domain, then the channel relevance map S
(l)
C is obtained by

S
(l)
C =

(
RC

Ch

∥RC
Ch∥

)(
RC

Sp

∥RC
Sp∥

)T

. (10)

Then, the weight map A(l) is obtain by aggregating the weight maps with the
relevance maps as

A(l)(i, j, c) =
sW ·W(l)

W (i, j, c) + sH ·W(l)
H (i, j, c) + sC ·W(l)

C (i, j, c)

W(l)
W (i, j, c) +W(l)

H (i, j, c) +W(l)
C (i, j, c)

, (11)

where sW =
∑W (l)

k=1 S
(l)
W (i, k), sH =

∑H(l)

k=1 S
(l)
H (j, k), and sC =

∑C(l)

k=1 S
(l)
C (c, k),

and (i, j, c) are the indices of W (l), H(l), and C(l), respectively. For each channel

c, the weights are normalized,
∑

i

∑
j A

(l)(i, j, c) = 1.

Finally, similarly to DINet, we reconstruct the output image ÊExR of ExRNet
in an exposure-aware manner as

ÊExR = M⊗ ẼExR + (1−M)⊗Ein. (12)

FusionNet: In Fig. 2, FusionNet synthesizes an output image Ê by combining
two reconstructed images, ÊDI and ÊExR, from DINet and ExRNet, respectively.
Since the two images are reconstructed in the image and feature domains, re-
spectively, they have different characteristics with complementary information,
as will be discussed in Section 4.4. We adopt DFN in DINet as FusionNet, which
learns local filters kFuse ∈ R3×3×2 for combining the two images, ÊDI and ÊExR,
and then obtains the filtered image Ê via the LC in (2).

3.3 Demosaicing

As mentioned above, the reconstructed image Ê is the Bayer pattern image, as
shown in Fig. 1. It therefore requires the interpolation of missing color informa-
tion to obtain a full-color HDR image H. In this work, we employ the existing
demosaicing algorithms [1,21,39,57]. The choice of the demosaicing algorithm
affects the synthesis performance, as will be discussed in Section 4.4.

3.4 Loss Functions

To train DINet, ExRNet, and FusionNet, we define the DI loss LDI, ExR loss
LExR, and fusion loss LFusion, respectively, as will be described subsequently.
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DI loss: To train DINet, we define the DI loss LDI as the weighted sum of the
reconstruction loss Lr and the multi-scale contrast loss LMC between a ground-
truth radiance map Egt and reconstructed radiance map ÊDI as

LDI = Lr(Egt, ÊDI) + λMCLMC(Egt, ÊDI), (13)

where λMC is a hyper-parameter to balance the two losses. To define the losses,
we compress the range of radiance values using the µ-law function T [13] as

T (x) =
log(1 + µx)

log(1 + µ)
, (14)

where the parameter µ controls the amount of compression. We employ the
ℓ1-norm as the reconstruction loss Lr in poorly-exposed regions as

Lr =
∥∥Mh ⊗

(
T (Egt)− T (ÊDI)

)∥∥
1
, (15)

where Mh denotes a hard binary mask. A mask value of 1 indicates that the
corresponding pixel in Z is poorly exposed, i.e., Z(x, y) < τ or Z(x, y) > 255−τ
with the threshold τ . The multi-scale contrast loss [58] is defined as

LMC = 1−
M∏
j=1

csj
(
T (Egt), T (ÊDI)

)
, (16)

where M is the number of scales, and csj denotes the contrast and structure
term at the j-th scale of SSIM.

ExR loss: We define the ExR loss LExR to train ExRNet as a weighted sum of
the DI loss LDI and the adversarial loss LAdv between Egt and a reconstructed

map ÊExR as

LExR = LDI(Egt, ÊExR) + λAdvLAdv(Egt, ÊExR), (17)

where λAdv is a hyper-parameter that controls the relative impacts of the two
losses. The adversarial loss LAdv penalizes the semantic difference estimated by
the discriminator network D,3 which is defined as

LAdv = − logD
(
Mh ⊗ T (ÊExR)

)
. (18)

Fusion loss: To train FusionNet, we define the fusion loss LFusion between Egt

and Ê similarly to the DI loss LDI in (13) but without Mh in Lr.

4 Experiments

4.1 Datasets

Since there is no publicly available SVE image dataset with ground-truths,
we evaluate the performance of the proposed algorithm on synthetic images

3 The details of the network architecture is provided in the supplemental document.
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from various datasets. Specifically, we define a set of exposure values as EV =
{−1,+1} for short and long exposures and then generate Bayer pattern im-
ages. The images in the datasets are either calibrated in units of cd/m2 or
non-calibrated. We multiply non-calibrated HDR images by a single constant to
approximate luminance values, as done in [22,24,44].

Fairchild’s dataset4: It contains 105 HDR images of the resolution 2848×4288;
36 images are calibrated and 69 images are non-calibrated.

Kalantari’s dataset [13]: Its test set contains 12 non-calibrated HDR images
of the resolution 1500× 1000.

HDM-HDR5: It contains 10 non-calibrated videos of the resolution 1856×1024.
We randomly selected 12 HDR frames for the test, and they are provided in the
supplemental document.

HDR-Eye6: It contains 46 HDR images of the resolution 1920× 1056, of which
16 are calibrated and 30 are non-calibrated.

HDRv [15]: It contains four calibrated HDR videos of HD (1280× 720) resolu-
tion. For each video, we chose four different frames; thus, there are 16 calibrated
HDR images in total.

4.2 Training

We first train DINet and ExRNet separately and then, after fixing them, train
FusionNet. Next, we train the demosaicing networks with optimized DINet, ExR-
Net, and FusionNet in an end-to-end manner.

DINet, ExRNet, and FusionNet: We use the Adam optimizer [14] with
β1 = 0.9 and β2 = 0.999 and a learning rate of 10−4 for 150 epochs. The
threshold τ in (3) and (15) is set to 15, and the hyper-parameters α in (5),
λMC in (13), λAdv in (17), and µ in (14) are fixed to 0.8, 0.75, 10−3, and 5000,
respectively.

Demosaicing: We retrain conventional demosaicing networks [57,39] using the
robust loss in [44] with the same settings as those in DINet and ExRNet training.

Training dataset:We use only 36 calibrated images from the Fairchild’s dataset
in Section 4.1 for training. We augment the dataset by rotating and flipping im-
ages, and then we divided all training HDR images into non-overlapping patches
with the size of 32× 32.

4.3 Performance Comparison

We evaluate the synthesis performance of the proposed algorithm with those
of conventional algorithms: Choi et al .’s [5], Suda et al .’s [40], Çoğalan and
Akyüz’s [6], Vien and Lee’s [44], and Xu et al .’s [50]. We retrained the learning-
based algorithms [6,40,44,50] with the parameter settings recommended by the

4
http://markfairchild.org/HDRPS/HDRthumbs.html

5
https://www.hdm-stuttgart.de/vmlab/hdm-hdr-2014

6
https://mmspg.epfl.ch/hdr-eye

http://markfairchild.org/HDRPS/HDRthumbs.html
https://www.hdm-stuttgart.de/vmlab/hdm-hdr-2014
https://mmspg.epfl.ch/hdr-eye
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Table 1. Quantitative comparison of the proposed algorithm with the conventional
algorithms on the test sets using six quality metrics. For each metric, the best result
is boldfaced, while the second best is underlined.

Kalantari’s dataset

pu-MSSSIM pu-PSNR log-PSNR
HDR-VDP

HDR-VQM
Q P

Choi et al. [5] 0.9750 36.17 35.47 69.35 0.4559 0.9266
Suda et al. [40] 0.9833 37.19 36.27 71.48 0.5103 0.8826
Çoğalan and Akyüz [6] 0.9870 38.96 37.67 70.25 0.7694 0.9296
Vien and Lee [44] 0.9964 45.10 42.22 73.72 0.3930 0.9696
Xu et al. [50] 0.9957 44.62 42.01 73.00 0.5593 0.9700
Proposed 0.9969 46.17 43.04 74.03 0.3889 0.9718

HDM-HDR

Choi et al. [5] 0.9540 33.71 27.20 66.13 0.4523 0.5677
Suda et al. [40] 0.9594 32.41 25.62 66.33 0.5989 0.4418
Çoğalan and Akyüz [6] 0.9399 35.61 27.15 67.07 0.6711 0.6246
Vien and Lee [44] 0.9769 38.58 29.52 68.34 0.4580 0.6520
Xu et al. [50] 0.9758 38.68 29.89 68.05 0.4878 0.6533
Proposed 0.9759 39.44 30.87 68.70 0.4340 0.6948

HDR-Eye

Choi et al. [5] 0.9522 34.49 33.56 67.95 0.5334 0.8633
Suda et al. [40] 0.9823 39.78 37.23 71.80 0.5481 0.8452
Çoğalan and Akyüz [6] 0.9728 37.43 34.87 70.15 0.7952 0.8894
Vien and Lee [44] 0.9937 42.06 39.32 72.68 0.4902 0.9209
Xu et al. [50] 0.9933 41.28 38.28 72.42 0.6039 0.9149
Proposed 0.9950 43.35 40.16 73.02 0.4053 0.9354

HDRv

Choi et al. [5] 0.9886 45.30 44.16 71.71 0.1809 0.9782
Suda et al. [40] 0.9954 47.87 44.36 74.27 0.3088 0.9731
Çoğalan and Akyüz [6] 0.9935 45.20 43.88 69.79 0.4352 0.9816
Vien and Lee [44] 0.9979 50.75 48.00 74.96 0.1290 0.9841
Xu et al. [50] 0.9976 50.99 47.49 74.13 0.3366 0.9835
Proposed 0.9983 54.58 49.83 75.74 0.0978 0.9854

authors using the training dataset in Section 4.2. We use six quality metrics: pu-
MSSSIM, pu-PSNR, log-PSNR [3], Q and P scores of HDR-VDP [23,29], and
HDR-VQM [30]. The pu-MSSSIM and pu-/log-PSNR metrics are extensions of
the MS-SSIM and PSNR, respectively, that consider human perception.

Table 1 compares the synthesis performances quantitatively on various datasets.
First, the proposed algorithm outperforms the conventional algorithms in terms
of pu-MSSSIM and pu-/log-PSNR in all cases by large margins, except for pu-
MSSSIM on the HDM-HDR dataset, where the proposed algorithm achieves the
second-best results. For example, the proposed algorithm achieves a 3.59 dB
higher pu-PSNR and a 1.83 dB higher log-PSNR scores on HDRv dataset, and
a 0.0013 higher pu-MSSSIM score on the HDR-Eye dataset in comparison with
the second best, Vien and Lee’s. Second, the proposed algorithm also provides
the best results for perceptual quality metrics HDR-VDP and HDR-VQM, with
no exception. In particular, on the HDRv dataset, the proposed algorithm yields
a 0.79 higher HDR-VDP Q score than the second best, Vien and Lee’s. These
results indicate that the proposed algorithm synthesizes high-quality HDR im-
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. Qualitative comparison of synthesized HDR images. (a) Ground-truths and
the magnified parts for the red rectangles in (b) ground-truths, (c) synthetic SVE
images, and synthesized images obtained by (d) Choi et al .’s [5], (e) Suda et al .’s [40],
(f) Çoğalan and Akyüz’s [6], (g) Vien and Lee’s [44], (h) Xu et al .’s [50], and (i) the
proposed algorithm.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Synthesis results of the captured images. The magnified parts in (a) SVE
images, and synthesized images obtained by (b) Choi et al .’s [5], (c) Suda et al .’s [40],
(d) Çoğalan and Akyüz’s [6], (e) Vien and Lee’s [44], (f) Xu et al .’s [50], and (g) the
proposed algorithm.

ages by recovering missing pixels accurately and in consideration of semantic
information.

Fig. 4 qualitatively compares the synthesis results obtained by each algo-
rithm. The conventional algorithms in Figs. 4(d)–(h) fail to synthesize textures
and, thus, produce results with blurring, jaggy, and false-color artifacts in poorly
exposed regions. In contrast, the proposed algorithm in Fig. 4(i) synthesizes high-
quality HDR images without visible artifacts by restoring textures faithfully.
For example, the conventional algorithms yield strong visible artifacts around
the edges of the red light bar in the first row, which are effectively suppressed
by the proposed algorithm. More qualitative comparisons are provided in the
supplemental document.

Finally, we compare the synthesis results for the captured image dataset,
provided in [44]. The synthesized results in Fig. 5 exhibit similar tendencies to
those in Fig. 4. These results indicate that the proposed algorithm can effec-
tively process real SVE images with real noise captured by real-world cameras,
providing a superior generalization ability.
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Table 2. Impacts of the multi-domain learn-
ing in the restoration algorithm on the syn-
thesis performance.

pu-MSSSIM pu-PSNR log-PSNR

DINet 0.9969 44.84 45.11
ExRNet 0.9965 46.96 47.01

FusionNet 0.9973 47.72 47.75

Input DINet ExRNet FusionNet

Fig. 6. Comparison of the error maps
for different networks.

Table 3. Impacts of the maskM in DINet and ExRNet on the restoration performance.

M pu-MSSSIM pu-PSNR log-PSNR

DINet
0.9960 38.18 38.53

✓ 0.9969 44.84 45.11

ExRNet
0.9893 42.86 42.96

✓ 0.9965 46.96 47.01

4.4 Model Analysis

We analyze the contributions of key components in the proposed algorithm:
multi-domain learning, exposure-aware reconstruction, and the MEF block. We
also analyze the effects of the demosaicing algorithms on the synthesis perfor-
mance. All experiments are performed using the Kalantari’s dataset.

Multi-domain learning: To analyze the effects of DINet, ExRNet, and Fusion-
Net in Fig. 2 on the synthesis performance, we train the proposed network with
different settings. Table 2 compares the average scores. ExRNet yields signifi-
cantly higher pu-PSNR and log-PSNR scores but a slightly worse pu-MSSSIM
score than DINet. This indicates that, while ExRNet faithfully recovers missing
pixels, its ability to preserve consistency between poorly and well-exposed re-
gions is inferior to that of DINet. Finally, combining the results of DINet and
ExRNet using FusionNet further improves the synthesis performance by exploit-
ing complementary information from the two networks. In addition, Fig. 6 shows
the error maps for each network, which indicates that DINet and ExRNet yield
complementary results, and FusionNet combines the complementary information
to improve the synthesis performance.

Exposure-aware reconstruction:We analyze the effectiveness of the exposure-
aware reconstruction using a mask M in (4) and (12) in DINet and ExRNet,
respectively. Table 3 compares the average scores of these settings for both net-
works. The exposure-aware reconstruction using M improves the performances
of both DINet and ExRNet significantly by enabling the networks to recover
only missing regions.

MEF block: To analyze the effectiveness of the proposed MEF block, we train
ExRNet with different settings. Table 4 compares the results. ExRNet without
the MEF block provides the worst performance because valid information in
multi-exposed features cannot be fully exploited. Using either of the channel
and spatial fusions improves the restoration performance by exploiting the ex-
posure information, and the use of both fusion strategies further improves the
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Table 4. Impacts of fusion schemes in the MEF block on the restoration performance.

Fusion
pu-MSSSIM pu-PSNR log-PSNR

Channel Spatial A(l)

0.9962 46.05 46.24
✓ 0.9963 46.67 46.77

✓ 0.9963 46.63 46.80
✓ ✓ 0.9964 46.85 46.88
✓ ✓ ✓ 0.9965 46.96 47.01

Table 5. Impacts of different demosaicing algorithms on the synthesis performance.

Demosaicing pu-MSSSIM pu-PSNR log-PSNR
HDR-VDP

HDR-VQM
Q P

Adams [1] 0.9963 45.22 42.29 70.96 0.2252 0.9697
Malvar et al. [21] 0.9962 44.99 41.21 73.61 0.4707 0.9675
Sharif et al. [39] 0.9968 46.01 42.91 73.98 0.4627 0.9713
Zhang et al. [57] 0.9969 46.17 43.04 74.03 0.3889 0.9718

performance. Finally, the element-wise weighting scheme using the weight A(l)

yields the best performance.

Demosaicing: To analyze the effects of demosaicing algorithms on the syn-
thesis performance, we test four demosaicing algorithms: two model-based algo-
rithms [1,21], which were employed in conventional algorithms [4,5,6], and two
learning-based algorithms [39,57]. Table 5 compares the results. The choice of
demosaicing algorithm significantly affects the synthesis performance. In partic-
ular, Zhang et al .’s [57] yields the best overall performance.

5 Conclusions

We proposed a learning-based single-shot HDR imaging algorithm that recov-
ers poorly exposed regions via exposure-aware dynamic weighted learning. The
proposed algorithm consists of three networks: DINet, ExRNet, and FusionNet.
DINet recovers poorly exposed pixels by learning local dynamic filters. ExRNet
combines only valid features in well-exposed regions. To achieve this, we de-
veloped the MEF block to learn local and channel weights for exposure-aware
feature fusion. FusionNet aggregates the outputs from DINet and ExRNet to
produce the reconstructed images. Extensive experiments demonstrated that the
proposed algorithm outperforms conventional algorithms on various datasets.
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