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Abstract. Terahertz (THz) imaging has recently attracted significant
attention thanks to its non-invasive, non-destructive, non-ionizing, material-
classification, and ultra-fast nature for object exploration and inspec-
tion. However, its strong water absorption nature and low noise toler-
ance lead to undesired blurs and distortions of reconstructed THz im-
ages. The performances of existing restoration methods are highly con-
strained by the diffraction-limited THz signals. To address the problem,
we propose a novel Subspace-Attention-guided Restoration Network
(SARNet) that fuses multi-spectral features of a THz image for effective
restoration. To this end, SARNet uses multi-scale branches to extract
spatio-spectral features of amplitude and phase which are then fused
via shared subspace projection and attention guidance. Here, we exper-
imentally construct a THz time-domain spectroscopy system covering a
broad frequency range from 0.1 THz to 4 THz for building up tempo-
ral/spectral/spatial/phase/material THz database of hidden 3D objects.
Complementary to a quantitative evaluation, we demonstrate the effec-
tiveness of SARNet on 3D THz tomographic reconstruction applications.

1 Introduction

Ever since the first camera’s invention, imaging under different bands of electro-
magnetic (EM) waves, especially X-ray and visible lights, has revolutionized our
daily lives [16,29,39]. X-ray imaging plays a crucial role in medical diagnosis,
such as cancer, odontopathy, and COVID-19 symptom [1,30,35], based on X-
ray’s high penetration depth to great varieties of materials; visible-light imaging
has not only changed the way of recording lives but contributes to the develop-
ment of artificial intelligence (AI) applications, such as surveillance security and
surface defect inspection [38]. However, X-ray and visible-light imaging still face
tough challenges. X-ray imaging is ionizing, which is harmful to biological objects
and thus severely limits its application scope [9]. On the other hand, although
both non-ionizing and non-destructive, visible-light imaging cannot retrieve most
optically opaque objects’ interior information due to the highly absorptive and
intense scattering behaviors between light and matter in the visible light band.
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Fig. 1: THz data collection flow. (a) Our THz-TDS tomographic imaging system, (b)
the 3D printed object, (c) the ground-truth of one projected view, (d) the time-domain
THz signals of three different pixels (on the body and leg of the object and in the air),
(e) the magnitude spectra of the three signals, (f) the time-max image (the maximums
of each pixel’s THz signal, (g) the images at the water-absorption frequencies.

To visualize the 3D information of objects in a remote but accurate manner, ter-
ahertz (THz) imaging has become among the most promising candidates among
all EM wave-based imaging techniques [3,4].

THz radiation, in between microwave and infrared, has often been regarded
as the last frontier of EM wave [31], which provides its unique functionalities
among all EM bands. Along with the rapid development of THz technology,
THz imaging has recently attracted significant attention due to its non-invasive,
non-destructive, non-ionizing, material-classification, and ultra-fast nature for
advanced material exploration and engineering. As THz waves can partially pen-
etrate through varieties of optically opaque materials, it carries hidden material
tomographic information along the traveling path, making this approach a de-
sired way to see through black boxes without damaging the exterior [21,13,22].
By utilizing light-matter interaction within the THz band, multifunctional tomo-
graphic information of a great variety of materials can also be retrieved even at a
remote distance. In the past decades, THz time-domain spectroscopy (THz-TDS)
has become one of the most representative THz imaging modalities to achieve
non-invasive evaluation because of its unique capability of extracting geometric
and multi-functional information of objects. Owing to its unique material in-
teraction information in multi-dimensional domains — space, time, frequency,
and phase, THz-TDS imaging has found applications in many emerging fields, in-
cluding drug detection [18], industrial inspection, cultural heritage inspection [7],
advanced material exploration [34], and cancer detection [2].

To retrieve temporal-spatio-spectral information of each object voxel, our
THz imaging experiment setup is based on a THz-TDS system as shown in
Fig. 1(a). Our measured object (a covered 3D printed deer, see Fig. 1(b)) is
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Fig. 2: THz multi-spectral amplitude and phase images measured from Deer.

placed on the rotation stage in the THz path between the THz source and detec-
tor of the THz-TDS system. During the scanning, the THz-TDS system profiles
each voxel’s THz temporal signal (Fig. 1(d)) with 0.1 ps temporal resolution,
whose amplitude corresponds to the strength of THz electric field. Based on the
dependency between the amplitude of a temporal signal and THz electric field,
in conventional THz imaging, the maximum peak of the signal (Time-max) is ex-
tracted as the feature for a voxel. The reconstructed image based on Time-max

features can deliver great signal-to-noise ratio and a clear object contour. How-
ever, as shown in Fig. 1(f), the conventional THz imaging based on Time-max

features suffers from several drawbacks, such as the undesired contour in the
boundary region, the hollow in the body region, and the blurs in high spatial-
frequency regions. To break this limitation, we utilize the spectral information
(Fig. 1(g)) of THz temporal signals to supplement the Time-max features since
the voxel of the material behaviors are encoded in both the phase and amplitude
of different frequency components, according to the Fresnel equation [6].

Due to the large number of spectral bands with measured THz image data,
it is required to sample a subset of the spectral bands to reduce the training
parameters. The THz beam is significantly attenuated at water absorption fre-
quencies (i.e., the valleys indicated in Fig. 1(e)). Thus, the reconstructed THz
images based on water absorption lines offer worse details. Besides, our THz-
TDS system offers more than 20 dB SNR in a frequency range of 0.3 THz–1.3
THz. Considering the water absorption in THz regime [36,33] and the superior
SNR in the range of 0.3 THz–1.3 THz, we select 12 frequencies at 0.380, 0.448,
0.557, 0.621, 0.916, 0.970, 0.988, 1.097, 1.113, 1.163, 1.208, and 1.229 THz. The
spectral information including both amplitude and phase at the selected frequen-
cies is extracted and used to restore clear 2D images. Fig. 2 depicts multiple 2D
THz images of the same object at the selected frequencies, showing very dif-
ferent contrasts and spatial resolutions as these hyperspectral THz image sets
have different physical characteristics through the interaction of THz waves with
objects. Specifically, the lower-frequency phase images offer relatively accurate
depth information due to their higher SNR level, whereas the higher-frequency
phase images offer finer contours and edges because of the shrinking diffraction-
limited wavelength sizes (from left to right in Fig. 2). The phase also contains,
however, a great variety of information of light-matter interaction that could
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cause learning difficulty for the image restoration task. To address this issue,
we utilize amplitude spectrum as complementary information. Although the at-
tenuated amplitude spectrum cannot reflect comparable depth accuracy levels
as phase spectrum, amplitude spectrum still present superior SNR and more
faithful contours of a measured object. Besides, as complementary information
to phase, the lower-frequency amplitude offers higher contrast, while the higher-
frequency amplitude offers a better object mask.

In sum, the amplitude complements the shortcomings of phase. The advan-
tages of fusing the two signals from low to high frequencies are as follows: Since
the low-frequency THz signal provides precise depth (the thickness of an object)
and fine edge/contour information in the phase and amplitude, respectively, they
together better delineate and restore the object. In contrast, the high-frequency
feature maps of amplitude and phase respectively provide better edges/contours
and precise position information, thereby constituting a better object mask from
the complementary features. With these multi-spectral properties of THz images,
we can extract rich information from a wide spectral range in the frequency
domain to restore 2D THz images without additional computational cost or
equipment, which is beneficial for practical THz imaging systems.

We propose a Subspace-Attention-guided Restoration Net (SARNet) that
fuses complementary THz amplitude and phase spectral features to supplement
the Time-max image for restoring clear 2D images. To this end, SARNet learns
common representations in a latent subspace shared between the amplitude and
phase components, and then adopts a Self-Attention mechanism to learn the
wide-range dependencies of the spectral features for guiding the restoration task.
Finally, from clear 2D images restored from corrupted images of an object cap-
tured from different angles, we can reconstruct high-quality 3D tomography via
inverse Radon transform. Our main contributions are summarized as follows:

– Wemerge the THz temporal-spatio-spectral data, physics-guided data-driven
models, and material properties for high-precision THz tomographic imag-
ing. The proposed SARNet has demonstrated the capability in extracting and
fusing features from the light-matter interaction data in THz spectral regime,
which inherently contains interior 3D object information and its material
behaviors. Based on the designed architecture of SARNet on feature fusion,
SARNet delivers state-of-the-art performance on THz image restoration.

– With our established THz tomography dataset, we provide comprehensive
quantitative/qualitative analyses among SARNet and SOTAs. SARNet sig-
nificantly outperforms Time-max, baseline U-Net, and multi-band U-Net by
11.17dB, 2.86dB, and 1.51dB in average PSNR.

– This proof-of-concept work shows that computer vision techniques can sig-
nificantly contribute to the THz community and further open up a new inter-
disciplinary research field to boost practical applications, e.g., non-invasive
evaluation, gas tomography, industrial inspection, material exploration, and
biomedical imaging.
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2 Related Work

2.1 Deep Learning-based Image Restoration

In recent years, deep learning methods were first popularized in high-level visual
tasks, and then gradually penetrated into many tasks such as image restora-
tion and segmentation. Convolutional neural network (CNNs) have proven to
achieve the state-of-the-art performances in fundamental image restoration prob-
lem [41,19,43,42,28]. Several network models for image restoration were pro-
posed, such as U-Net [28], hierarchical residual network [19] and residual dense
network [43]. Notably, DnCNN [41] uses convolutions, BN, and ReLU to build
17-layer network for image restoration which was not only utilized for blind image
denoising, but was also employed for image super-resolution and JPEG image
deblocking. FFDNet [42] employs noise level maps as inputs and utilizes a sin-
gle model to develop variants for solving problems with multiple noise levels. In
[19] a very deep residual encoding-decoding (RED) architecture was proposed
to solve the image restoration problem using skip connections. [43] proposed
a residual dense network (RDN), which maximizes the reusability of features
by using residual learning and dense connections. NBNet [5] employs subspace
projection to transform learnable feature maps into the projection basis, and
leverages non-local image information to restore local image details. Similarly,
the Time-max image obtained from a THz imaging system can be cast as an
image-domain learning problem which was rarely studied due to the difficul-
ties in THz image data collection. Research works on image-based THz imaging
include [24,25,37], and THz tomographic imaging works include [11,10].

2.2 Tomographic Reconstruction

Computer tomographic (CT) imaging methods started from X-ray imaging, and
many methods of THz imaging are similar to those of X-ray imaging. One of
the first works to treat X-ray CT as an image-domain learning problem was
[17], that adopts CNN to refine tomographic images. In [14], U-Net was used to
refine image restoration with significantly improved performances. [44] further
projects sinograms measured directly from X-ray into higher-dimensional space
and uses domain transfer to reconstruct images. The aforementioned works were
specially designed for X-ray imaging.

Hyperspectral imaging [32,23,8] constitutes image modalities other than THz
imaging. Different from THz imaging, Hyperspectral imaging collects continuous
spectral band information of the target sample. Typically, the frequency bands
fall in the visible and infrared spectrum; hence, most hyperspectral imaging
modalities can only observe the surface characteristics of targeted objects.

3 Physics-Guided Terahertz Image Restoration

3.1 Overview

As different EM bands interact with objects differently, THz waves can partially
penetrate through various optically opaque materials and carry hidden material
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Fig. 3: (a) Overall network architecture of SARNet consisting of five scale-branches,
where the finest-scale takes the feature tensor of one view’s Time-max image as input.
Additionally, each scale of the second to fifth takes 6 images of spectral frequencies (3
amplitude bands and 3 phase bands) as inputs. The three gray blocks show the detailed
structures of (b) Spectral Fusion, (c) Channel Fusion, and (d) Conv-Block.

tomographic information along the traveling path. This unique feature provides
a new approach to visualize the essence of 3D objects, which other imaging
modalities cannot achieve. Although existing deep neural networks can learn
spatio-spectral information from a considerable amount of spectral cube data,
we found that directly learning from the full spectral information to restore
THz images usually leads to an unsatisfactory performance. The main reason
is that the full spectral bands of THz signals involve diverse characteristics of
materials, noises, and scattered signal, which causes difficulties in model training.
To address this problem, our work is based on extracting complementary
information from both the amplitude and phase of a THz signal. That is, as
illustrated in Fig. 2, in the low-frequency bands, the amplitude images delineate
finer edges and object contours while the phase images offer relatively precise
depths of object surfaces. In contrast, in the high-frequency bands, the amplitude
images offer object mask information while the phase images delineate finer edges
and object contours. Therefore, the amplitude and phase complement to each
other in both the low and high frequency bands.

Motivated by the above findings, we devise a novel multi-scale SARNet to cap-
ture such complementary spectral characteristics of materials to restore damaged
2D THz images effectively. The key idea of SARNet is to fuse spatio-spectral fea-
tures with different characteristics on a common ground via deriving the shared
latent subspace and discovering the short/long-range dependencies between the
amplitude and phase to guide the feature fusion. To this end, SARNet is based
on U-Net[28] to perform feature extraction and fusion in a multi-scale manner.
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3.2 Network Architecture

On top of U-Net [28], the architecture of SARNet is depicted in Fig. 3. Specifi-
cally, SARNet is composed of an encoder (spectral-fusion module) with 5 branches
of different scales (from the finest to the coarsest) and a decoder (channel-
fusion module) with 5 corresponding scale branches. Each scale branch of the
encoder involves a Subspace-Attention-guided Fusion module (SAFM), a con-
volution block (Conv-block), and a down-sampler, except for the finest-scale
branch that does not employ SAFM. To extract and fuse multi-spectral features
of both amplitude and phase in a multi-scale manner, the encoder takes a THz
2D Time-max image as the input of the finest-scale branch as well as receives to
its second to fifth scale branches 24 images of additional predominant spectral
frequencies extracted from the THz signal, where each branch takes 6 images of
different spectral bands (3 bands of amplitude and 3 bands of phase) to extract
learnable features from these spectral bands. To reduce the number of model
parameters, these 24 amplitude and phase images (from low to high frequencies)
are downsampled to 4 different resolutions and fed into the second to fifth scale
branches in a fine-to-coarse manner as illustrated in Fig. 3. We then fuse the
multi-spectral amplitude and phase feature maps in each scale via the proposed
SAFM that learns a common latent subspace shared between the amplitude and
phase features to facilitate associating the short/long-range amplitude-phase de-
pendencies. Projected into the shared latent subspace, the spectral features of
amplitude and phase components, along with the down-sampled features of the
upper layer, can then be properly fused together on a common ground in a
fine-to-coarse fashion to obtain the final latent code.

The Conv-block(L) contains two stacks of L×L convolution, batch normal-
ization, and ReLU operations. Because the properties of the spectral bands of
amplitude and phase can be significantly different, we partly use L = 1 to learn
the best linear combination of multi-spectral features to avoid noise confusion
and reduce the number of model parameters. The up-sampler and down-sampler
perform 2× and 1

2× scaling, respectively. The skip connections (SC) directly pass
the feature maps of different spatial scales from individual encoder branches to
the Channel Attention Modules (CAMs) of their corresponding branches of the
decoder. The details of SAFM and CAM will be elaborated later.

In the decoder path, each scale-branch for channel fusion involves a up-
sampler, a CAM, and a Conv-block. The Conv-block has the same functional
blocks as that in the encoder. Each decoding-branch receives a “shallower-layer”
feature map from the corresponding encoding-branch via the skip-connection
shortcut and concatenates the feature map with the upsampled version of the
decoded “deeper-layer” feature map from its coarser-scale branch. Besides, the
concatenated feature map is then processed by CAM to capture the cross-channel
interaction to complement the local region for restoration.

Note, a finer-scale branch of SARNet extracts shallower-layer features which
tend to capture low-level features, such as colors and edges. To complement the
Time-max image for restoration, we feed additional amplitude and phase images
of low to high spectral-bands into the fine- to coarse-scale branches of SARNet.
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Fig. 4: Block diagram of Subspace-and-Attention guided Fusion Module (SAFM).

Since the spectral bands of THz amplitude and phase offer complementary in-
formation, as mentioned in Sec. 3.1, besides the Time-max image SARNet also
extracts multi-scale features from the amplitude and phase images of 12 selected
THz spectral bands, which are then fused by the proposed SAFM.

3.3 Subspace-Attention guided Fusion Module

How to properly fuse the spectral features of THz amplitude and phase are,
however, not trivial, as their characteristics are very different. To address the
problem, inspired by [5] and [40], we propose the SAFM as shown in Fig. 4.

Let XA
in, X

P
in ∈ RH×W×3 denote the spectral bands of the THz amplitude

and phase, respectively. The Conv-block fC(·) extracts two intermediate feature
maps fC(X

A
in), fC(X

P
in) ∈ RH×W×C1 from XA

in and XP
in, respectively. As a result,

we then derive the K shared basis vectors V = [v1,v2, ...,vK ] from fC(X
A
in) and

fC(X
P
in), where V ∈ RN×K , N = HW denotes the dimension of each basis

vector, and K is the rank of the shared subspace. The basis set of the shared
common subspace is expressed as

V = fF (fC(X
A
in), fC(X

P
in)), (1)

where we first concatenate the two feature maps in the channel dimension and
then feed the concatenated feature into the fusion-block fF (·). The structure of
the fusion-block is the same as that of the Conv-block with K output channels as
indicated in the red block in Fig. 4. The weights of the fusion-block are learned
in the end-to-end training stage. The shared latent-subspace learning mainly
serves two purposes: 1) learning the common latent representations between the
THz amplitude and phase bands, and 2) learning the subspace projection matrix
to project the amplitude and phase features into a shared subspace such that
they can be analyzed on a common ground. These both help identify wide-range
dependencies of amplitude and phase features for feature fusion.

To find wide-range dependencies between the amplitude and phase features
on a common ground, we utilize the orthogonal projection matrix V in (1) to
estimate the self-attentions in the shared feature subspace as

βj,i =
exp(sij)∑N
i=1 exp(sij)

, sij = vT
i vj (2)
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where βj,i represents the model attention in the i-th location of the j-th region.
The projection matrix P is derived from the subspace basis V as follows [20]:

P = V(VTV)−1VT (3)

where (VTV)−1 is the normalization term to make the basis vectors orthogonal
to each other during the basis generation process. As a result, the output of the
self-attention mechanism becomes

oj =

(
N∑
i=1

βj,isi

)
, si = Concate(PXA

in,PXP
in) (4)

where the key of si ∈ RHW×6 is obtained by concatenating the two feature maps
PXA

in and PXP
in projected by orthogonal projection matrix P ∈ RHW×HW , and

XA
in and XP

in are reshaped to HW × 3. Since the operations are purely linear
with some proper reshaping, they are differentiable.

Finally, we further fuse cross-scale features in the self-attention output by
adding the down-sampled feature map Xf from the finer scale as

Xout = fs(o) +Xf (5)

where fs is the 1×1 convolution to keep the channel number consistent with Xf .

3.4 Channel Attention Module

To fuse multi-scale features from different spectral bands in the channel di-
mension, we incorporate the efficient channel attention mechanism proposed in
[26] in the decoder path of SARNet. In each decoding-branch, the original U-Net
directly concatenates the up-sampled feature from the coarser scale with the fea-
ture from the corresponding encoding-branch via the skip-connection shortcut,
and then fuses the intermediate features from different layers by convolutions.
This, however, leads to poor image restoration performances in local regions
such as incorrect object thickness or details. To address this problem, we pro-
pose a channel attention module (CAM) that adopts full channel attention in
the dimensionality reduction operation by concatenating two channel attention
groups. CAM first performs global average pooling to extract the global spatial
information in each channel:

Gt =
1

H ×W

H∑
i=1

W∑
j=1

Xt(i, j) (6)

where Xt(i, j) is the t-th channel of Xt at position (i, j) obtained by concatenat-
ing the up-sampled feature map Xc of the coarser-scale and the skip-connection
feature map Xs. The shape of G is from C ×H ×W to C × 1× 1.

We directly feed the result through two 1×1 convolution, sigmoid, and ReLU
activation function as:
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w = σ (Conv1×1 (δ (Conv1×1(G)))) , (7)

where Conv1×1(·) denotes a 1 × 1 convolution, σ is the sigmoid function, and
δ is the ReLU function. In order to better restore a local region, we divide the
weights w of different channels into two groups w = [w1,w2] corresponding to
two different sets of input feature maps, respectively. Finally, we element-wise
multiply the input Xc and Xs of the weights w and add these two group features.

3.5 Loss Function for THz Image Restoration

To effectively train SARNet, we employ the following mean squared error (MSE)
loss function to measure the dissimilarity between the restored image Xrec and
its ground-truth XGT:

LMSE(XGT,Xrec) =
1

HW

H∑
i=1

W∑
j=1

(XGT(i, j)−Xrec(i, j))
2, (8)

where H and W are the height and width of the image.

3.6 3D Tomography Reconstruction

The 3D tomography of an object can then be reconstructed from the restored
THz 2D images of the object scanned in different angles. To this end, we can
directly apply the inverse Radon transform to obtain the 3D tomography, using
methods like filtered back-projection [15] or the simultaneous algebraic recon-
struction technique [27].

4 Experiments

We conduct experiments to evaluate the effectiveness of SARNet against existing
state-of-the-art restoration methods. We first present our experiment settings
and then evaluate the performances of SARNet and the competing methods on
THz image restoration.

4.1 THz-TDS Image Dataset

As shown in Fig. 1, we prepare the sample objects by a Printech 3D printer
and use the material of high impact polystyrene (HIPS) for 3D-printing the
objects due to its high penetration of THz waves. We then use our in-house
Asynchronous Optical Sampling (ASOPS) THz-TDS system [12] to measure the
sample objects. Although the speed of our mechanical scanning stage limits
the number and the size of the objects in the dataset, we carefully designed 7
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Table 1: Quantitative comparison (PSNR and SSIM) of THz image restoration per-
formances with different methods on seven test objects. (↑: higher is better)

Method PSNR↑ SSIM↑
Deer DNA Box Eevee Bear Robot Skull Deer DNA Box Eevee Bear Robot Skull

Time-max 12.42 12.07 11.97 11.20 11.21 11.37 10.69 0.05 0.05 0.14 0.14 0.12 0.08 0.09

DnCNN-S [41] 19.94 23.95 19.13 19.69 19.44 19.72 17.33 0.73 0.77 0.73 0.72 0.63 0.77 0.36

RED [19] 19.30 24.17 20.18 19.97 19.17 19.76 16.28 0.81 0.83 0.74 0.77 0.75 0.80 0.74

NBNet [5] 20.24 25.10 20.21 19.84 20.12 20.01 19.69 0.81 0.85 0.75 0.77 0.80 0.80 0.78

U-Netbase [28] 19.84 24.15 19.77 19.95 19.09 18.80 17.49 0.55 0.78 0.77 0.76 0.56 0.76 0.51

U-NetMB 22.46 25.05 20.81 20.34 19.86 20.64 19.43 0.76 0.73 0.78 0.76 0.78 0.79 0.78

SARNet (Ours) 22.98 26.05 22.67 20.87 21.42 22.66 22.48 0.84 0.90 0.83 0.82 0.82 0.83 0.84

objects to increase the dataset variety for the generalization to unseen objects.
For example, the antler of Deer and the tilted cone of Box are designed for high
spatial frequency and varying object thickness. Each sample object is placed
on a motorized stage between the source and the receiver. With the help of
the motorized stage, raster scans are performed on each object in multiple view
angles. In the scanning phase, we scan the objects covering a rotational range
of 180 degrees (step-size: 6 degrees), a horizontal range of 72mm (step-size:
0.25mm), and a variable vertical range corresponding to the object height (step-
size: 0.25mm). In this way, we obtain 30 projections of each object, which are
then augmented to 60 projections by horizontal flipping. The ground-truths of
individual projections are obtained by converting the original 3D printing files
into image projections in every view-angle. We use markers to indicate the center
of rotation to align the ground truths with the measured THz data. In this paper,
a total of 7 objects are printed, measured, and aligned for evaluation.

4.2 Data Processing and Augmentation

In our experiments, we train SARNet using the 2D THz images collected from our
THz imaging system shown in Fig. 2. The seven sample objects are consisting
of 60 projections per object and 420 2D THz images in total. To evaluate the
effectiveness of SARNet, we adopt the leave-one-out strategy: using the data of 6
objects as the training set, and that of the remaining object as the testing set.
Due to the limited space, we only present part of the results in this section, and
the complete results in the supplementary material. We will release our code
(Link) and the THz image dataset (Link) after the work is accepted.

4.3 Quantitative Evaluations

To the best of our knowledge, there is no method specially designed for restor-
ing THz images besides Time-max. Thus, we compare our method against sev-
eral representative CNN-based image restoration models, including DnCNN [41],
RED [19], and NBNet [5]. Moreover, we also compare two variants of U-Net [28]:
baseline U-Net (U-Netbase) and multi-band U-Net (U-NetMB). U-Netbase extracts

https://github.com/wtnthu/SARNet
https://github.com/wtnthu/THz_data
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Fig. 5: Qualitative comparison of THz image restoration results for Deer, Box, and
Robot from left to right: (a) Time-max, (b) DnCNN-S [41], (c) RED [19], (d) NBNet [5],
(e) U-Netbase [28], (f) U-NetMS, (g) SARNet, and (h) the ground-truth.

Fig. 6: Illustration of 3D tomographic reconstruction results onDeer andRobot
from left to right: (a) Time-max, (b) DnCNN-S [41], (c) RED [19], (d) NBNet [5],
(e) U-Netbase [28], (f) U-NetMB, (g) SARNet, and (h) the ground-truth.

image features in five different scales following the original setting in U-Net [28],
whereas U-NetMB incorporates multi-spectral features by concatenating the fea-
tures of Time-max image with additional 12 THz bands for amplitude as the
input (i.e., 12 + 1 channels) of the finest scale of U-Net. For objective qual-
ity assessment, we adopt two widely-used metrics including the Peak Signal-to-
Noise Ratio (PSNR) and Structural SIMilarity (SSIM) to respectively measure
the pixel-level and structure-level similarities between a restored image and its
ground-truth. To estiamte the 3D tomographic reconstruction, we adopt the
Mean-Square Error (MSE) between the cross-sections of a reconstructed 3D
tomography and the corresponding ground-truths for assessing the 3D recon-
struction accuracy as compared in Table 2.

Table 1 shows that our SARNet significantly outperforms the competing meth-
ods on all sample objects in both metrics. Specifically, SARNet outperforms
Time-max, baseline U-Net (U-Netbase), and the multi-band U-Net (U-NetMB) by
11.17 dB, 2.86 dB, and 1.51 dB in average PSNR, and 0.744, 0.170, and 0.072
in average SSIM for 7 objects. Similarly, in terms of 3D reconstruction accuracy,
Table 2 demonstrates that our models both stably achieve significantly lower av-
erage MSE of tomographic reconstruction than the competing methods on all
the seven objects. For qualitative evaluation, Fig. 5 illustrates a few restored
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Table 2: Quantitative comparison of MSE between the cross-sections of reconstructed
3D objects and the ground-truths with different methods on 7 objects. (↓: lower is
better)

Method MSE↓
Deer DNA Box Eevee Bear Robot Skull

Time-max 0.301 0.026 0.178 0.169 0.084 0.203 0.225

DnCNN-S [41] 0.153 0.162 0.309 0.149 0.056 0.223 0.293

RED [19] 0.139 0.238 0.300 0.179 0.070 0.215 0.324

NBNet [5] 0.240 0.184 0.305 0.134 0.088 0.128 0.138

U-Netbase [28] 0.227 0.166 0.266 0.157 0.077 0.093 0.319

U-NetMB 0.183 0.043 0.205 0.114 0.089 0.196 0.080

SARNet (Ours) 0.107 0.015 0.041 0.105 0.050 0.065 0.052

Table 3: Quantitative comparison (PSNR and SSIM) of THz image restoration
performances on seven test objects with the different variants of SARNet based
on different settings. (↑: higher is better)

Method PSNR↑ SSIM↑
Deer DNA Box Eevee Bear Robot Skull Deer DNA Box Eevee Bear Robot Skull

U-Netbase 19.84 25.63 19.77 19.95 19.09 18.80 10.69 0.55 0.78 0.77 0.76 0.56 0.76 0.51
Amp-Unet w/o SAFM 22.05 25.84 20.32 20.21 20.48 20.63 20.70 0.80 0.83 0.77 0.79 0.80 0.78 0.77
Phase-Unet w/o SAFM 21.14 24.98 20.42 20.26 20.15 20.58 21.36 0.82 0.72 0.78 0.78 0.81 0.74 0.75
Mix-Unet w/o SAFM 21.44 25.78 20.00 20.32 20.44 21.12 21.18 0.81 0.81 0.78 0.80 0.79 0.81 0.82
Amp-Unet w/ SAFM 20.97 26.00 21.83 20.22 20.30 21.11 20.18 0.84 0.90 0.78 0.80 0.79 0.83 0.79
Phase-Unet w/ SAFM 22.66 25.52 21.65 20.63 20.18 21.50 21.42 0.83 0.86 0.79 0.74 0.81 0.83 0.82

SARNet (Ours) 22.98 26.05 22.67 20.87 21.42 22.66 22.48 0.84 0.90 0.83 0.82 0.82 0.83 0.84

views for Deer, Box, and Robot, demonstrating that SARNet can restore ob-
jects with much finer and smoother details (e.g., the antler and legs of Deer, the
depth and shape of Box, and the body of Robot), faithful thickness of material
(e.g., the body and legs of Deer and the correct edge thickness of Box), and
fewer artifacts (e.g., holes and broken parts). Both the quantitative and quali-
tative evaluations confirm a significant performance leap with SARNet over the
competing methods.

4.4 Ablation Studies

To verify the effectiveness of multi-spectral feature fusion, we evaluate the restora-
tion performances with SARNet under different settings in Table 3. The compared
methods include (1) U-Netbase using a single channel of data (Time-max) without
using features of multi-spectral bands; (2) Amp-Unet w/o SAFM employing
multi-band amplitude feature (without the SAFMmechanism) in each of the four
spatial-scale branches, except for the finest scale (that accepts the Time-max im-
age as the input), where 12 spectral bands of amplitude (3 bands/scale) are fed
into the four spatial-scale branches with the assignment of the highest-frequency
band to the coarsest scale, and vice versa; (3) Phase-Unet w/o SAFM em-
ploying multi-spectral phase features with the same spectral arrangements as (2),
and without the SAFM mechanism; (4) Mix-Unet w/o SAFM concatenating
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multi-spectral amplitude and phase features (without the SAFM mechanism) in
each of the four spatial-scale branches, except for the finest scale (that accepts
the Time-max image as the input), where totally 24 additional spectral bands
of amplitude and phase (3 amplitude plus 3 phase bands for each scale) are
fed into the four branches; (5) Amp-Unet with SAFM utilizing attention-
guided multi-spectral amplitude features with the same spectral arrangements
as specified in (2); and (6) Phase-Unet with SAFM utilizing attention-guided
multi-spectral phase features with the same spectral arrangements as in (2).

The results clearly demonstrate that the proposed SAFM can benefit fusing
the spectral features of both amplitude and phase with different characteris-
tics for THz image restoration. Specifically, employing additional multi-spectral
features of either amplitude or phase as the input of the multi-scale branches
in the network (i.e., Amp-Unet or Phase-Unet w/o SAFM) can achieve perfor-
mance improvement over U-Netbase. Combining both the amplitude and phase
features without the proposed subspace-and-attention guided fusion (i.e., Mix-
Unet w/o SAFM) does not outperform Amp-Unet w/o SAFM and usually
leads to worse performances. The main reason is that the characteristics of the
amplitude and phase features are too different to be fused to extract useful
features with direct fusion methods. This motivates our subspace-and-attention
guided fusion scheme, that learns to effectively identify and fuse important and
complementary features on a common ground.

4.5 3D Tomography Reconstruction

Our goal is to reconstruct clear and faithful 3D object shapes through our THz
tomographic imaging system. In our system, the tomography of an object is re-
constructed from 60 views of 2D THz images of the object, each being restored
by SARNet, via the inverse Radon transform. Fig. 6 illustrates the 3D recon-
structions of our reconstruct results much clearer and more faithful 3D images
with finer details such as the thickness of body and clear antlers of of Deer
and the gun in Robot’s hand, achieving by far the best 3D THz tomography
reconstruction quality in the literature. Complete 3D reconstruction results are
provided in the supplementary material.

5 Conclusion

We proposed a 3D THz imaging system that is the first to merge THz spatio-
spectral data, data-driven models, and material properties to restore corrupted
THz images. Based on the physical characteristics of THz waves passing through
different materials, our SARNet efficiently fuses spatio-spectral features with dif-
ferent characteristics on a common ground via deriving a shared latent subspace
and discovering the wide-range dependencies between the amplitude and phase
to guide the feature fusion for boosting restoration performance. Our results
have confirmed a performance leap from the relevant state-of-the-art techniques
in the area. We believe our findings in this work will stimulate further applicable
research for THz imaging with advanced computer vision techniques.
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