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1 Statistics of the RSBlur

Table 1 shows a statistical comparison with the RSBlur and other real-world blur
datasets. The proposed RSBlur dataset consists of 13,358 real blurred images,
which make the dataset the second largest real-world dataset. While the Real-
Blur [19] and BSD [25, 26] datasets consist of real blurred images and ground-
truth sharp images, we provide real blurred images and sequences of nine sharp
images to enable analysis on the blur generation process between real blurred
and synthetic blurred images. In terms of image resolution, the RSBlur dataset
provides the largest resolution. We also report the estimated noise levels using
a single image noise estimation method [5] for comparing the amounts of noise
in the real-world blurred datasets.

Table 1. Statistical comparison of real-world blur datasets. The average noise levels
are estimated using a single image noise estimation method [5].

Frames Real/Synth. Resolution Shutter (ms) Noise

RealBlur [19] 4,738 Real 680× 773 500 0.4378
BSD [25, 26] 33,000 Real 640× 480 8, 16, 24 0.3404

RSBlur 13,358 Real & Synth 1920× 1200 100 0.7736

2 Real-world Deblurring Benchmark on the RSBlur

While there exist a couple of real-world blur datasets such as RealBlur [19]
and BSD [25, 26], their coverage is limited. The real-world blurred images in
the RSBlur dataset can also serve as an additional benchmark dataset that
complements the existing benchmark datasets in terms of coverage.

In this section, we provide a benchmark on recent state-of-the-art deblur-
ring methods using the RSBlur dataset to provide a basis for future deblur-
ring research. Using real-world blurred images of the RSBlur dataset, we train
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Table 2. Benchmark of state-of-the-art deblurring methods on the real blurred test
set of the RSBlur dataset. We trained all methods using real blurred training set of
the RSBlur dataset.

Methods PSNR / SSIM

SRN-Deblur [21] 32.53 / 0.8398
MiMO-UNet [7] 32.73 / 0.8457
MiMO-UNet+ [7] 33.37 / 0.8560
MPRNet [24] 33.61 / 0.8614
Restormer [23] 33.69 / 0.8628
Uformer-B [22] 33.98 / 0.8660

state-of-the-art deblurring methods [21, 7, 24, 23, 22]. We use the source codes
provided by the authors for training, and evaluate their performance using the
real-blur test set of the RSBlur dataset. Here, we briefly report the qualitative
and quantitative results of the state-of-the-art methods in Table 2 and in Fig.
2, respectively.

3 Details of Dual-Camera System

In this section, we describe the details of our dual-camera system. Fig. 2 shows
our dual-camera system and a diagram of the system. The system consists of a
mount for the lens, one beam splitter, and two camera modules with imaging
sensors (Basler daA1920-160uc) so that the camera modules can capture the
same scene while sharing one lens. For the lens, we used a Samyang 10mm F2.8
ED AS NCS CS. We installed a 5% neutral density filter (OD 1.3 VIS, 12.5mm
Dia. Non-Reflective ND Filter) in front of a camera module. For compensation
of beam-splitter tolerance, a 63% neutral density filter (0.2 OD, 25mm Dia.,
Precision Absorptive ND Filter) is installed in front of the other camera module.
Two camera modules are installed on adjustable plates, so we can physically align
the modules by adjusting the plates.

One camera module with a 5% neutral density filter captures a blurred image
with a long exposure time (0.1 seconds). The other module captures nine sharp
images with a short exposure time (0.005 seconds) during the exposure time of
a blurred image. The gains of the two modules are set to 0 for both. To increase
the number of images and diversity of blur, we capture 20 pairs of a blurred
image and a sequence of nine sharp images of the same scene.

4 Camera ISP

To collect our dataset, we captured all images in the camera RAW format,
and converted them into the nonlinear sRGB space using a simple image signal
processing (ISP) pipeline. Our ISP consists of four steps: 1) white balance, 2)
demosaicing, 3) color correction, and 4) conversion to the sRGB space using a
camera response function. We use the demosaicing method of Malvar et al. [14]
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(a) Blurred image
PSNR/SSIM

(b) SRN-Deblur
28.86/0.7968

(c) MIMO-UNet
29.29/0.8110

(d) MIMO-UNet+
30.46/0.8296

(e) MPRNet
31.13/0.8408

(g) Uformer-B
31.30/0.8433

(f) Restormer
31.24/0.8430

(h) Ground truth

(i) Blurred image
PSNR/SSIM

(j) SRN-Deblur
30.02/0.8691

(k) MIMO-UNet
30.49/0.8743

(l) MIMO-UNet+
31.52/0.8823

(m) MPRNet
30.02/0.8747

(o) Uformer-B
32.77/0.8964

(n) Restormer
30.42/0.8772

(p) Ground truth

Fig. 1. Qualitative comparison of state-of-the-art deblurring methods on real-world
blurred images of the RSBlur test set.

for the second step and a gamma correction of standard RGB space for the
fourth step.

For the white balance and color correction steps in our ISP, we utilize a color
chart. Specifically, when collecting our dataset, we captured reference images of
a color chart for different scenes. Using the reference images, we estimate the
gain gc for the color channel c ∈ {R,G,B} for the white balance as:

gc =
Pn(G)

Pn(c)
(1)

where Pn(c) is the mean intensity of the color channel c of neutral patches in
the color chart. Then, in the first step of our ISP, each color channel of a RAW
image is multiplied by the corresponding gain.
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(a) Our dual-camera system (b) Diagram of our system
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Fig. 2. The dual-camera system and detailed diagram of the system.

For the color correction in the third step of our ISP, we estimate a color
correction matrix of the XYZ color space as:Xref

1 · · · Xref
24

Y ref
1 · · · Y ref

24

Zref
1 · · · Zref

24

 = α · T

X1 · · · X24

Y1 · · · Y24

Z1 · · · Z24

 (2)

where (Xref
i , Y ref

i , Zref
i ) is the reference XYZ color of the i-th color chart patch,

and (Xi, Yi, Zi) is the measured XYZ color after white balancing and demosaic-
ing. α is a single scalar value for matching the brightness levels of the color
chart patches and the captured patches. T is a 3×3 color correction matrix. We
first estimate α by minimizing the mean-squared error between the color chart
patches and captured patches. Then, we estimate T by finding the least-squares
solution of Eq. (2) with fixed α.

Once a color correction matrix T is obtained, we apply T in the third step
of our ISP as follows:RLin

GLin

BLin

 = MXY Z2Lin · T ·MLin2XY Z ·

RDem

GDem

BDem

 (3)

where (RDem, GDem, BDem) is an RGB color of an image after demosaicing, and
(RLin, GLin, BLin) is a resulting RGB color in the linear sRGB space. MLin2XY Z

and MXY Z2Lin are matrices for color conversion between the linear sRGB and
XYZ color spaces. Fig. 3 shows intermediate results of our camera ISP.

5 Photometric Alignment between Camera Modules

Due to the optical spectrum difference caused by the beam splitter and ND
filters, captured images may have slight photometric misalignments. To mitigate
this, we conduct photometric alignment using a color chart image after the color
correction step of our camera ISP. Specifically, we formulate the relationship
between the colors of images from the two camera modules as:
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(a) RAW (b) Demosaic (c) WB (d) Color Corrected

Fig. 3. Intermediate images of our camera ISP. All images are gamma corrected for
visualization.

(a) Camera 1 (b) Camera 2 (c) After 
Alignment of (b)

(d) Magnified 
View of (a)

(e) Magnified 
View of (b)

(f) Magnified 
View of (c)

Fig. 4. Result of photometric alignment. (a) & (b) show captured images from a one
camera module and the other camera module, respectively. (c) shows the photometric
alignment result of (b). (d)-(f) show magnified views of (a)-(c).

XC1
1 · · · XC1

24

Y C1
1 · · · Y C1

24

ZC1
1 · · · ZC1

24

 = Tp

XC2
1 · · · XC2

24

Y C2
1 · · · Y C2

24

ZC2
1 · · · ZC2

24

 (4)

where (XC1
i , Y C1

i , ZC1
i ) and (XC2

i , Y C2
i , ZC2

i ) are the XYZ color values of the
i-th color chart patch after the color correction of one camera module (C1) and
the other camera module (C2), respectively. Tp is a 3 × 3 matrix for the pho-
tometric alignment. We estimate Tp by finding the least-squares solution of Eq.
(4). As shown in Fig. 4(a)-(b), images captured by the two camera modules have
color differences. After photometric alignment, the color difference is significantly
reduced, as shown in Fig. 4(c).

6 Geometric Alignment between Camera Modules

Although the two camera modules are physically aligned as much as possible,
there may exist a small amount of geometric misalignment between images from
them (Fig. 5(c)). Thus, after capturing images, we conduct geometric alignment
to compensate for this. The geometric alignment is performed for each pair of
a blurred image and its corresponding sharp image sequence as the degree of
misalignment can vary with respect to the distance between the camera system
and scene.
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(a) Before Geometric 
Alignment

(b) After Geometric 
Alignment

(c) Magnified 
View of (a)

(d) Magnified 
View of (b)

Fig. 5. Result of geometric alignment. (a) & (b) show stereo-anaglyph images, where
a real blurred and the averaging of nine sharp images are visualized in red and cyan,
respectively. (c) & (d) show magnified views of (a) and (b).

Specifically, for a given sharp image sequence, we first increase the frame rate
8× using a frame interpolation method [17], and synthesize a blurred image by
averaging them. Then, we estimate a homography between a real blurred image
and the synthesized one using the enhanced correlation coefficient method [8].
Finally, we warp the sharp images according to the estimated homography. We
perform geometric alignment to the images processed by the ISP. Fig. 5(d) shows
a result of our geometric alignment, where the red and cyan lights are better
aligned after geometric alignment. Also, it shows that the real blurred image and
nine sharp images are well synchronized.

7 Camera ISP for the RealBlur Dataset

In the main paper, we improve the performance of SRN-DeblurNet [21] by
mimicking the ISP of the Sony A7R3 camera, which is used for the RealBlur
dataset [19]. Our camera ISP for the Sony A7R3 also consists of the white bal-
ance, demosaicing, color correction, and camera response function (CRF) steps.

As the ISP affects the noise distribution and non-linearity of the blur, we
match the white balance gains, color correction matrix, and CRF as much as
possible to those of the RealBlur dataset. For white balance, we extract the
white balance gains from the RAW images of the RealBlur training set. Similar
to [3], we randomly sample the gains from the RealBlur training set and multiply
a RAW image by the gains. After white balancing, we apply the demosaicing
method of Malvar et al. [14].

For the color correction, we extract a characterization matrix of A7R3 from
the Libraw library and convert it into a color correction matrix following [20].
The extracted color correction matrix directly maps from the RAW space to the
XYZ color space. We convert a demosaiced image into the linear sRGB space
as: RLin

GLin

BLin

 = MXY Z2Lin · TA7R3 ·

RDem

GDem

BDem

 (5)
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(a) Estimated CRF using color chart (b) Estimated CRF using an image from the internet
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Fig. 6. The blue and red lines show the estimated CRFs of the Sony A7R3 using color
chart images and a raw-RGB image from the internet, respectively. The orange dots
show measured values. The green lines show gamma correction of sRGB space.
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Fig. 7. Overview of our realistic blur synthesis pipeline. Lin2Cam: Inverse color cor-
rection, i.e., color space conversion from the linear sRGB space to the camera RAW
space. WB: White balance. Cam2Lin: Color correction.

where (RDem, GDem, BDem) is an RGB color of an image after demosaicing, and
(RLin, GLin, BLin) is a resulting RGB color in the linear sRGB space.

The final step applies a CRF. Motivated by [15], we model the CRF as a
high-order polynomial as follows:

Isrgb =

K∑
k=0

ckI
k
Lin (6)

where Isrgb, ILin, and ck are a non-linear and a linear sRGB image, and polyno-
mial coefficients, respectively. K is the polynomial order, which is set to 7. We
capture 11 color chart images with different shutter speeds using a Sony A7R3
camera. Then, we measure the RGB values of the color patches in JPEG images
from the camera and in linear sRGB images converted from RAW images. Using
the pairs of the measured RGB values, we estimate the coefficients of the CRF
ck by solving a least-squares problem. Fig. 6(a) shows the estimated CRF using
color chart images.
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8 Conversion from sRGB to RAW

Fig. 7 shows an overview of our realistic blur synthesis pipeline. As described in
the main paper, we convert the image from the saturation synthesis step into
the mosaiced camera RAW space. To this end, we apply inverse color correction,
mosaicing, and inverse white balance sequentially. Then, we apply the camera
ISP to reflect distortions introduced by the camera ISP. In the case of Sony
A7R3, we apply the ISP described in Sec. 7. In the following, we describe each
step of the conversion to RAW in more detail.

Lin2Cam This step performs inverse color correction. As color correction is a
simple linear operation, we can apply inverse color correction as follows:RCam

GCam

BCam

 = MXY Z2Lin · T−1 ·MLin2XY Z ·

RLin

GLin

BLin

 (7)

where (RLin, GLin, BLin) and (RCam, GCam, BCam) are RGB colors in the lin-
ear sRGB and RAW RGB spaces, respectively. MLin2XY Z and MXY Z2Lin are
matrices for color conversion between the linear sRGB and XYZ color spaces.
T−1 is the inverse of a color correction matrix T .

In the case of the Sony A7R3, the color correction matrix TA7R3 directly
maps colors in the RAW color space into the XYZ color space as mentioned in
Sec. 7. Thus, we perform inverse color correction as:RCam

GCam

BCam

 = T−1
A7R3 ·MLin2XY Z ·

RLin

GLin

BLin

 (8)

where (RLin, GLin, BLin) and (RCam, GCam, BCam) are RGB colors in the linear
sRGB and RAW RGB spaces, respectively.

Mosaic Following [9], we randomly sample a Bayer pattern from RGGB,
BGGR, GRBG, and GBRG to reflect distortions caused by various Bayer pat-
terns. Then, we perform mosaicing using the sampled pattern.

Inverse WB As we already know white balance gains for each image, in this
step, we simply apply their inverse g−1

c to each color channel of a mosaiced
image.

9 Additional Analysis Results

In this section, we also provide additional analysis results using MIMO-Unet [7].
For the experiments, we train MIMO-Unet model for 790K iterations, which is
half the number of iterations suggested in [7], with variants of our pipeline. Ta-
ble 3 shows that the method 2 performs worse than method 1, which uses real
blurred images for training. Methods 3 and 4 show that adding Gaussian noise
(σ = 0.0112) and our saturation synthesis significantly improves the deblurring
performance. The method 5, which corresponds to our full pipeline, achieves
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Table 3. Additional analysis using MIMO-Unet [7] on the RSBlur dataset. Interp.:
Frame interpolation. Sat.: Saturation synthesis. sRGB: Gamma correction of sRGB
space. G: Gaussian noise. G+P: Gaussian and Poisson noise.

Blur Synthesis Methods PSNR / SSIM

No. Real CRF Interp. Sat. Noise ISP All Saturated No Saturated

1 ✓ 32.73 / 0.8457 31.44 / 0.8385 33.93 / 0.8524
2 sRGB ✓ 28.83 / 0.7164 27.42 / 0.7052 30.16 / 0.7270
3 sRGB ✓ G 29.63 / 0.7552 28.28 / 0.7486 30.90 / 0.7614
4 sRGB ✓ Ours G 29.84 / 0.7658 28.49 / 0.7590 31.12 / 0.7723
5 sRGB ✓ Ours G+P ✓ 32.08 / 0.8362 30.68 / 0.8290 33.39 / 0.8429

(a) Blurred image
PSNR/SSIM

(c) Method 2
26.85/0.7209

(d) Method 3
28.11/0.7836

(e) Method 5
31.45/0.8600

Ours

(b) Method 1
32.41/0.8665

RSBlur

(f) Ground truth

(g) Blurred image
PSNR/SSIM

(i) Method 2
28.95/0.7362

(j) Method 3
30.52/0.7839

(k) Method 5
33.89/0.8691

Ours

(h) Method 1
34.09/0.8714

RSBlur

(l) Ground truth

Fig. 8. Qualitative comparison of deblurring results on the RSBlur test set produced
by MIMO-Unet [7] trained with different synthesis methods. (b)-(e) & (h)-(k) Methods
1, 2, 3 and 5 in Table 3. Best viewed in zoom in.

32.08 dB. The analysis shows that MIMO-Unet [7] also has significant perfor-
mance improvement with the proposed synthesis pipeline. Fig. 8 shows results of
MIMO-Unet [7] trained on the RSBlur dataset with different methods in Table
3.

10 Experiments with Rough Camera Parameters

Estimating accurate camera-specific parameters can be easily done by taking
a few shots of images. Even if the camera is not available, rough parameters
can be easily obtained using images available on the internet in the case of most
consumer cameras. To show this, assuming that an A7R3 camera is not available,
we conducted additional experiments on the RealBlur J [19] dataset where we
estimated camera-specific parameters from images from the internet.

In the case of most consumer cameras, the characterization matrix is easily
obtained from the Libraw library1. As described in Sec. 7, we extract the char-
acterization matrix of the A7R3 camera and convert it into a color correction
matrix. The SIDD dataset [2] provides the noise parameters of four cameras on
different ISO settings. As the RealBlur J dataset is mostly captured with ISO

1 https://github.com/LibRaw/src/tables/colordata.cpp

https://github.com/LibRaw/LibRaw/blob/2a9a4de21ea7f5d15314da8ee5f27feebf239655/src/tables/colordata.cpp
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Table 4. Performance comparison of different blur synthesis methods on the Real-
Blur J [19] test sets. Interp.: Frame interpolation. Sat.: Saturation synthesis. sRGB:
Gamma correction of sRGB space. G: Gaussian noise. G+P: Gaussian and Poisson
noise. A7R3: Using camera ISP with accurate parameters estimated from a Sony A7R3
camera. A7R3*: Using camera ISP with rough parameters.

Blur Synthesis Methods PSNR / SSIM

No. Training set CRF Interp. Sat. Noise ISP RealBlur J

1 RealBlur J 30.79 / 0.8985
2 BSD All 28.66 / 0.8589
3 GoPro sRGB ✓ 28.92 / 0.8711
4 GoPro sRGB, A7R3 ✓ Ours G+P A7R3 30.32 / 0.8899
5 GoPro sRGB, A7R3* ✓ Ours G+P A7R3* 30.23 / 0.8864

6 GoPro U sRGB 29.28 / 0.8766
7 GoPro U sRGB, A7R3 Ours G+P A7R3 30.75 / 0.9019
8 GoPro U sRGB, A7R3* Ours G+P A7R3* 30.55 / 0.8956

(a) Blurred image
PSNR/SSIM

(b) Method 1
30.46/0.8756

RealBlur_J

(c) Method 3
26.43/0.8094

(d) Method 4
29.95/0.8515
A7R3 (GoPro)

(e) Method 5
29.82/0.8471
A7R3* (GoPro)

(f) Ground truth (g) Method 2
26.96/0.8034

BSD_All

(h) Method 6
26.66/0.8156

(i) Method 7
30.33/0.8604

A7R3 (GoPro_U)

(j) Method 8
30.27/0.8611

A7R3* (GoPro_U)

Fig. 9. Qualitative comparison of deblurring results on the RealBlur J test set pro-
duced by models trained with different synthesis methods. (b)-(e) Methods 1, 3, 4 and
5 in Table 4. (g)-(j) Methods 2, 6, 7 and 8 in Table 4. Best viewed in zoom in.

100, we sample the noise parameters of Google Pixel on the ISO 100 setting.
Following [3], we randomly sample gains for the red and blue channels from
U(1.9, 2.4) and U(1.5, 1.9) for the white balance.

In the case of the CRF, there is no dataset including the CRFs of the lat-
est consumer cameras, and it is difficult to estimate CRFs without cameras.
Instead, we utilize the camera profile of Sony A7R3 available on Adobe Light-
room. Specifically, we first download a RAW image captured by an A7R3 from
the internet. Then, we convert the RAW image into an sRGB image using the
camera profile of Adobe Lightroom. We also convert the RAW RGB image into
a linear sRGB image using the color correction matrix from the Libraw library
and white balance gains of the RAW RGB image. Then, using the pixel values of
the converted linear sRGB image and sRGB image, we estimate the coefficients
of Eq. (6) by solving a least-squares problem. Fig. 6(b) shows the estimated
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Table 5. Performance comparison of SRN-DeblurNet [21] trained on the Real-
Blur J [19], BSD All [25, 26], and RSBlur datasets.

Train
Test PSNR / SSIM

RealBlur J BSD All RSBlur

RealBlur J 30.79 / 0.8985 29.67 / 0.8922 29.86 / 0.7895
BSD All 28.66 / 0.8589 33.35 / 0.9348 30.89 / 0.8049
RSBlur 29.86 / 0.8855 30.85 / 0.9069 32.53 / 0.8398

(a) Averaging (b) 𝐵௟௢௖௔௟
ሺ𝛼ଵ ൌ 1.5ሻ

(c) 𝐵௟௢௖௔௟
ሺ𝛼ଵ ൌ 2.5ሻ

(d) 𝐵௚௟௢௕௔௟
ሺ𝛼ଵ ൌ 1.5ሻ

(e) 𝐵௚௟௢௕௔௟
ሺ𝛼ଵ ൌ 2.5ሻ

(f) Real

Fig. 10. Generated images from saturation synthesis methods using global scaling and
local scaling.

CRF using the RAW image resembles the estimated CRF using a color chart
very closely.

To verify the effectiveness of the rough parameters estimated as described
above, we train SRN-DeblurNet [21] using the proposed synthesis pipeline with
the estimated parameters, and evaluate its performance. In Table 4, methods 5
and 8 that use the rough parameters perform worse than methods 4 and 7 that
use accurate camera parameters. Neverthelss, compared to the methods 3 and 6,
the methods 5 and 8 still perform significantly better, validating the effectiveness
of the rough parameters. Fig. 9 shows qualitative examples of using the proposed
pipeline with rough and accurate camera parameters and other näıve methods.

11 Limited Coverage of Real Datasets

In the main paper, we show the limited coverage of the existing real datasets in-
cluding RealBlur [19] and BSD All [25, 26]. Specifically, we train SRN-DeblurNet [21]
using one dataset, and evaluate its performance on the other dataset. In this sup-
plementary material, we report a full comparison result among the real datasets
including the RSBlur real dataset in Table 5. As the table shows, the deblurring
performance of one dataset significantly drops on the other datasets. This result
again verifies the limited coverage of the existing real datasets and the usefulness
of our synthesis pipeline.

12 Saturation Synthesis: Local vs. Global

One important component in our blur synthesis pipeline is the saturation synthe-
sis step, which locally scales intensity values of a blurred image before clipping
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as done in [10]. Another option that has been used in several previous works is
global scaling [16, 6, 18]. In this section, we discuss the global and local scaling
approaches and compare their performance.

Without considering noise and camera ISP for the brevity of the discussion,
we can model a blurred image B with clipped intensity values as B = clip[I ∗
K], where clip[·] is a clipping function, K is a convolution kernel, and I is a
sharp image. To obtain clipped intensity values in B, I should contain unclipped
intensity values larger than the upper limit of the dynamic range. However, as
sharp images also have the limited dynamic range, it is inevitable to synthesize
sharp images with large intensity values, which can be done by either global
scaling [16, 6, 18] or local scaling [10].

The global scaling approach generates saturated pixels by scaling all the
intensity values as clip[α1 · I ∗K], where α1 is a scaling factor. The local scaling
approach, on the other hand, scales only some intensity values as clip[(In sat +
α1 ·Isat)∗K], where In sat and Isat are images that have non-zero pixels on non-
saturated and saturated region of I, respectively. Due to the information loss
at clipped pixels, both methods randomly sample α1 to generate non-clipped
pixels. By replacing the convolution operation with K by averaging operation
over consecutive video frames, we can also model the blur synthesis based on
averaging video frames, on which our analysis in the main paper is based.

Fig. 10 shows real saturated images and synthesized images using global scal-
ing and local scaling. Both methods cannot exactly reproduce the real saturated
pixels (Fig. 10(c),(e), and (f)) due to the missing information in sharp images
caused by clipping. Nevertheless, the local scaling approach has a couple of ad-
vantages over the global scaling approach. First, global scaling affects all the
pixels, thus introduces a larger domain gap (brighter images) as shown in Fig.
10(e), and severe distortion of the distribution of signal-dependent noise. Sec-
ond, as global scaling increases the intensities of larger areas, it is usually more
difficult to mimic sharp light streaks often observed in real blurred images. This
difference can also affect the deblurring performance. We conducted an experi-
ment using the GoPro U training set with global scaling, and found that global
scaling performs worse than our saturation synthesis by 0.35 dB on the RealBlur
test set.

13 Direct Measurement of the Quality of Blur Synthesis

To evaluate the synthesis methods, we measure the deblurring performance
trained with them in the main paper. Another possible option would be to di-
rectly compare synthetic blurred images against real blurred images to quantify
the quality of the synthetic methods using the RSBlur dataset. In this section,
we discuss about the direct measurement of the quality of blur synthesis and
report additional evaluation results.

To measure the quality of different blur synthesis approaches, we measure the
PSNR and SSIM values of synthetic blurred images against real-blurred images.
However, the PSNR or SSIM values of synthetic images are not 100% reliable due
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Table 6. Comparison among different blur synthesis methods. We compute PSNR,
SSIM and KL-divergence (KLD) from synthesized and real blurred images.

Blur Synthesis Methods

No. Interp. Sat. Noise ISP PSNR / SSIM / KLD

1 35.74 / 0.8802 / 1.0064
2 ✓ 35.97 / 0.8888 / -
3 ✓ Ours 36.03 / 0.8888 / -
4 ✓ G 34.16 / 0.8075 / 0.4312
5 ✓ G+P ✓ 33.14 / 0.7928 / 0.3319
6 ✓ Ours G 34.21 / 0.8077 / 0.4313
7 ✓ Ours G+P ✓ 33.18 / 0.7928 / 0.3263

to noise. One possible option is to measure the KL-divergence of the distributions
of real and synthesized images as done in noise-synthesis approaches [1, 4, 11].
Specifically, we compute the KL-divergence between pixel-wise marginal distri-
butions (Breal −Binterp) and (Bsyn −Binterp) where Breal and Binterp is a real
blurred image and an averaging of interpolated images, respectively. Bsyn is a
synthesized blurred image using our pipeline. We use Binterp as rough noise-free
counterparts of real blurred images for computing the KL-divergence.

Table 6 shows PSNR, SSIM, and the KL-divergence of synthesized images
using variants of our synthesis methods. The table shows that frame interpo-
lation and saturation synthesis are effective in terms of PSNR (methods 2 and
3). The method 7 shows noise and saturation synthesis methods improve the
KL-divergence. We omit the KD-divergence values of methods 2 and 3 as the
synthetic images have no noise thus their noise distributions are not properly
defined. Note that, measuring the KL-divergence also has its own flaws as we
don’t have accurate noise-free counterparts of real blurred images. So, 100% ac-
curate estimation of real distribution is not feasible. Also, as our ultimate goal
is to improve the deblurring quality, the deblurring performance of the trained
network is a most reasonable measure.

14 Training with Both Real and Synthetic Datasets

Even if a real-world blur training set is available, an additional synthetic dataset
generated by our method could further improve the deblurring performance on
real blurred images. One important question when training with two datasets is
how to mix them. To verify the effect of using both real and synthetic datasets
and the mixing strategy, in this section, we compare the deblurring performance
obtained using one of real and synthetic datasets and using both of them. Specif-
ically, we compare four different training strategies: training 1) with only Real-
Blur J, 2) with only GoPro U, 3) with both RealBlur J and GoPro U together
half and half at each iteration, and 4) with RealBlur J and GoPro U one by one
at each iteration. We train SRN-DeblurNet using the four strategies and evalu-
ate their performances on the RealBlur test set. As the table shows, using both
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Table 7. Comparison of different training strategies using additional synthetic datasets
for further performance improvements.

No. Train dataset Strategy PSNR / SSIM

1 RealBlur J 30.79 / 0.8985
2 GoPro U 30.75 / 0.9019
3 RealBlur J + GoPro U Half & Half 31.17 / 0.9065
4 RealBlur J + GoPro U One × One 31.15 / 0.9059

RealBlur J and GoPro U clearly improves the deblurring performance regardless
of the training strategies.

15 Additional Results on Other Datasets

In the main manuscript, we evaluate the proposed pipeline on the RealBlur [19]
and BSD All [25, 26] datasets. Additionally, in this supplementary material,
we also report evaluation results on Köhler et al.’s dataset [12]. Table 8 shows
the performance of SRN-DeblurNet [21] trained with variants of the proposed
convolution-based synthesis pipeline. Note that the images in Köhler et al.’s
dataset are in the linear RGB space, and do not have saturated pixels. Thus, the
method 5 performs the best, while the other methods with wrong CRFs show
significant performance drops. Again, the poor performances of the existing real
datasets on Köhler et al.’s dataset prove their limited coverage, as discussed in
the main manuscript.

Table 8. Performance comparison of different blur synthesis methods on the Köhler
et al.’s [12] dataset. Sat.: Saturation synthesis. sRGB: Gamma correction of sRGB
space. G: Gaussian noise. G+P: Gaussian and Poisson noise. A7R3: Using camera ISP
parameters estimated from a Sony A7R3 camera, which was used for collecting the
RealBlur dataset.

Blur Synthesis Methods PSNR / MSSIM

No. Training set CRF Sat. Noise ISP Köhler et al.

1 RealBlur J 26.79 / 0.8401
2 BSD All 25.24 / 0.7920
3 RSBlur 26.29 / 0.8285
4 GoPro U Linear 28.28 / 0.8599
5 GoPro U Linear G 28.41 / 0.8624
6 GoPro U sRGB 26.86 / 0.8430
7 GoPro U sRGB G 27.23 / 0.8529
8 GoPro U sRGB Ours G 27.10 / 0.8500
9 GoPro U sRGB, A7R3 Ours G+P A7R3 27.41 / 0.8516

We also compare variants of the convolution-based synthesis pipeline in Ta-
ble 8 on Lai et al.’s dataset [13], which provides 100 real blurred images without
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ground-truth sharp images for qualitative comparison. In Figs. 11 and 12, meth-
ods 1, 2, and 3 show that the models trained on real datasets do not success-
fully deblur real blurred images of Lai et al.’s dataset. On the other hand, the
method 9 shows that the deblurring results produced by the model trained with
our pipeline performs better. This again shows the limited coverage of the real
datasets and the practicality of the proposed pipeline. The proposed pipeline
can generate a huge number of images with various contents, and blur shapes
and sizes effortlessly compared to collecting real datasets, leading to better de-
blurring performance.

16 Additional Qualitative Examples

Figs. 13, 14 and 15 show additional qualitative examples on the RSBlur, Re-
alBlur J [19], and BSD All [25, 26] datasets, respectively. The figures show de-
blurring results of SRN-DeblurNet [21] trained with training images synthesized
by different methods in order to compare different blur synthesis methods.
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Blurred image Method 1
RealBlur_J

Method 2
BSD_All

Method 3
RSBlur

Method 6 Method 7 Method 8 Method 9
Ours (GoPro_U)

Blurred image Method 1
RealBlur_J

Method 2
BSD_All

Method 3
RSBlur

Method 6 Method 7 Method 8 Method 9
Ours (GoPro_U)

Blurred image Method 1
RealBlur_J

Method 2
BSD_All

Method 3
RSBlur

Method 6 Method 7 Method 8 Method 9
Ours (GoPro_U)

Fig. 11. Qualitative comparison of deblurring results on the Lai et al.’s dataset [13]
produced by models trained with different synthesis methods in Table 8. Best viewed
in zoom in.
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Blurred image Method 1
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Method 6 Method 7 Method 8 Method 9
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Blurred image Method 1
RealBlur_J
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BSD_All

Method 3
RSBlur

Method 6 Method 7 Method 8 Method 9
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Fig. 12. Qualitative comparison of deblurring results on the Lai et al.’s dataset [13]
produced by models trained with different synthesis methods in Table 8. Best viewed
in zoom in.
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Blurred image
PSNR/SSIM
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34.05/0.8410

Ground truth
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Interp.
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Fig. 13. Qualitative comparison on the RSBlur dataset. Green: Trained on real blurred
images. Red: Trained on synthetic blurred images. Avg.: Näıve averaging-based blur
synthesis. Interp.: Averaging-based blur synthesis using frame interpolation. G: Gaus-
sian noise. Oracle: Using oracle saturated images. Sat: Our saturation synthesis. All of
synthesis methods consider gamma decoding and encoding.
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Fig. 14. Qualitative comparison on the RealBlur J dataset [19]. Green: Trained on
real blurred images. Red: Trained on synthetic blurred images. Interp.: Averaging-
based blur synthesis using frame interpolation. G: Gaussian noise. GP: Gaussian and
Poisson noise with a camera ISP of Sony A7R3. Sat: Our saturation synthesis. Conv.:
Convolution-based blur synthesis. All of synthesis methods consider gamma decoding
and encoding.
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Fig. 15. Qualitative comparison on the BSD All dataset [25, 26]. Green: Trained on
real blurred images. Red: Trained on synthetic blurred images. Linear: Näıve averaging-
based blur synthesis with linear CRF. Avg.: Näıve averaging-based blur synthesis.
Interp.: Averaging-based blur synthesis using frame interpolation. G: Gaussian noise.
Sat: Our saturation synthesis. All of synthesis methods except Linear consider gamma
decoding and encoding.
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