
Realistic Blur Synthesis for Learning Image
Deblurring

Jaesung Rim, Geonung Kim, Jungeon Kim, Junyong Lee,
Seungyong Lee, and Sunghyun Cho

POSTECH, Pohang, Korea
{jsrim123,k2woong92,jungeonkim,junyonglee,leesy,s.cho}@postech.ac.kr

http://cg.postech.ac.kr/research/RSBlur

Abstract. Training learning-based deblurring methods demands a tre-
mendous amount of blurred and sharp image pairs. Unfortunately, ex-
isting synthetic datasets are not realistic enough, and deblurring models
trained on them cannot handle real blurred images effectively. While real
datasets have recently been proposed, they provide limited diversity of
scenes and camera settings, and capturing real datasets for diverse set-
tings is still challenging. To resolve this, this paper analyzes various fac-
tors that introduce differences between real and synthetic blurred images.
To this end, we present RSBlur, a novel dataset with real blurred images
and the corresponding sharp image sequences to enable a detailed anal-
ysis of the difference between real and synthetic blur. With the dataset,
we reveal the effects of different factors in the blur generation process.
Based on the analysis, we also present a novel blur synthesis pipeline to
synthesize more realistic blur. We show that our synthesis pipeline can
improve the deblurring performance on real blurred images.

Keywords: Realistic Blur Synthesis, Dataset and Analysis, Deblurring

1 Introduction

Motion blur is caused by camera shake or object motion during exposure, espe-
cially in a low-light environment that requires long exposure time. Image deblur-
ring is the task of enhancing image quality by removing blur. For the past several
years, numerous learning-based deblurring methods have been introduced and
significantly improved the performance [22, 30, 15, 16, 36, 35, 8, 31, 34].

Training learning-based deblurring methods demands a significant amount
of blurred and sharp image pairs. Since it is hard to obtain real-world blurred
and sharp image pairs, a number of synthetically generated datasets have been
proposed, whose blurred images are generated by blending sharp video frames
captured by high-speed cameras [22, 21, 28, 43, 27, 11, 20]. Unfortunately, such
synthetic images are not realistic enough, so deblurring methods trained on them
often fail to deblur real blurred images [25].

To overcome such a limitation, Rim et al. [25] and Zhong et al. [40, 41]
recently presented the RealBlur and BSD datasets, respectively. These datasets
consist of real blurred and sharp ground truth images captured using specially

http://cg.postech.ac.kr/research/RSBlur


2 J. Rim et al.

designed dual-camera systems. Nevertheless, coverage of such real datasets are
still limited. Specifically, both RealBlur and BSD datasets are captured using a
single camera model, Sony A7R3, and a machine vision camera, respectively [25,
40, 41]. As a result, deblurring models trained on each of them show significantly
low performance on the other dataset, as shown in Sec. 6. Moreover, it is not
easy to expand the coverage of real datasets as collecting such datasets require
specially designed cameras and a tremendous amount of time.

In this paper, we explore ways to synthesize more realistic blurred images
for training deblurring models so that we can improve deblurring quality on real
blurred images without the burden of collecting a broad range of real datasets.
To this end, we first present RSBlur, a novel dataset of real and synthetic blurred
images. Then, using the dataset, we analyze the difference between the gener-
ation process of real and synthetic blurred images and present a realistic blur
synthesis method based on the analysis.

Precise analysis of the difference between real and synthetic blurred images
requires pairs of synthetic and real blurred images to facilitate isolating factors
that cause the difference. However, there exist no datasets that provide both
synthetic and real blurred images of the same scenes so far. Thus, to facilitate
the analysis, the RSBlur dataset provides pairs of a real blurred image and
a sequence of sharp images captured by a specially-designed high-speed dual-
camera system. With the dataset, we can produce a synthetic blurred image
by averaging a sequence of sharp images and compare it with its corresponding
real blurred image. This allows us to analyze the difference between real and
synthetic blurred images focusing on their generation processes. In particular, we
investigate several factors that may degrade deblurring performance of synthetic
datasets on real blurred images, such as noise, saturated pixels, and camera
ISP. Based on the analysis, we present a method to synthesize more realistic
blurred images. Our experiments show that our method can synthesize more
realistic blurred images, and our synthesized training set can greatly improve the
deblurring performance on real blurred images compared to existing synthetic
datasets.

Our contributions are summarized as follows:

– We propose RSBlur, the first dataset that provides pairs of a real blurred
image and a sequence of sharp images, which enables accurate analysis of
the difference between real and synthetic blur.

– We provide a thorough analysis of the difference between the generation
processes of real and synthetic blurred images.

– We present a novel synthesis method to synthesize realistic blurred images
for learning image deblurring. While collecting large-scale real datasets for
different cameras is challenging, our method offers a convenient alternative.

2 Related Work

Deblurring Methods Traditional deblurring methods rely on restrictive blur
models, thus they often fail to deblur real-world images [26, 9, 33, 23, 29, 7,



Realistic Blur Synthesis for Learning Image Deblurring 3

18, 19]. To overcome such limitations, learning-based approaches that restore a
sharp image from a blurred image by learning from a large dataset have recently
been proposed [22, 30, 15, 16, 36, 35, 8, 31, 34]. However, they require a large
amount of training data.

Deblurring Datasets For evaluation of deblurring methods, Levin et al. [18]
and Köhler et al. [14] collected real blurred images by capturing images on the
wall while shaking the cameras. Sun et al. [29] generate 640 synthetic blurred
images by convolving 80 sharp images with eight blur kernels. Lai et al. [17]
generate spatially varying blurred images from 6D camera trajectories and con-
struct a dataset including 100 real blurred images. However, due to the small
number of images, these datasets cannot be used for learning-based methods.

Several synthetic datasets using high-speed videos have been proposed for
training learning-based methods. They capture high-speed videos and gener-
ate synthetic blurred images by averaging sharp frames. GoPro [22] is the most
widely used dataset for learning-based deblurring methods. REDS [21] and DVD
[28] provide synthetically blurred videos for learning video deblurring. Stereo
Blur [43] consists of stereo blurred videos generated by averaging high-speed
stereo video frames. HIDE [27] provides synthetic blurred images with bound-
ing box labels of humans. To expand deblurring into high-resolution images,
4KRD [11] is presented, which consists of synthetically blurred UHD video
frames. All the datasets discussed above, except for GoPro, use frame inter-
polation before averaging sharp images to synthesize more realistic blur [21, 28,
43, 27, 11]. HFR-DVD [20] uses high-speed video frames captured at 1000 FPS
to synthesize blur without frame interpolation. However, all the aforementioned
datasets are not realistic enough, thus deblurring networks trained with them
often fail to deblur real-world blurred images.

Recently, real-world blur datasets [25, 40, 41] have been proposed. They si-
multaneously capture a real blurred image and its corresponding sharp image
using a dual-camera system. Rim et al. [25] collected a real-world blur dataset in
low-light environments. Zhong et al. [40, 41] proposed the BSD dataset contain-
ing pairs of real blurred and sharp videos. However, their performances degrade
on other real images captured in different settings due to their limited coverage.

Synthesis of Realistic Degraded Images In the denoising field, synthesizing
more realistic noise for learning real-world denoising has been actively studied [1,
6, 13, 32, 12, 4]. Abdelhamed et al. [1], Chang et al. [6], and Jang et al. [13] use
generative models to learn a mapping from a latent distribution to a real noise
distribution. Zhang et al. [39] andWei et al. [32] propose realistic noise generation
methods based on the physical properties of digital sensors. Guo et al. [12] and
Brooks et al. [4] generate realistic noise by unprocessing arbitrary clean sRGB
images, adding Poisson noise, and processing them back to produce noisy sRGB
images. These methods show that more realistically synthesized noise datasets
greatly improve the denoising performance of real-world noisy images.

Synthesis of Blurred Images A few methods have been proposed to syn-
thesize blur without using high-speed videos [3, 38]. Brooks et al. [3] generate a
blurred image from two sharp images using a line prediction layer, which esti-



4 J. Rim et al.

Sensors

Beam Splitter

Ir
ra

di
an

ce

Synthetic

Real

Averaging

GT Sharp Image

Time

(a) Our dual-camera system (b) Image acquisition process
Fig. 1. The dual-camera system and the acquisition process for simultaneously cap-
turing a real blurred image and sharp images.

mates spatially-varying linear blur kernels. However, linear blur kernels cannot
express a wide variety of real-world blur. Zhang et al. [38] use real-world blurred
images without their ground-truth sharp images to train a GAN-based model
to generate a blurred image from a single sharp image. However, their results
are not realistic enough as their generative model cannot accurately reflect the
physical properties of real-world blur.

3 RSBlur Dataset

Our proposed RSBlur dataset provides real blurred images of various outdoor
scenes, each of which is paired with a sequence of nine sharp images to enable the
analysis of the difference between real and synthetic blur. The dataset includes
a total of 13,358 real blurred images of 697 scenes. For our analysis, we split
the dataset into training, validation, and test sets with 8,878, 1,120, and 3,360
blurred images of 465, 58, and 174 scenes, respectively. Below, we explain the
acquisition process and other details of the RSBlur dataset.

To collect the dataset, we built a dual camera system (Fig. 1(a)) as done
in [25, 40, 41, 42]. The system consists of one lens, one beam splitter, and two
camera modules with imaging sensors so that the camera modules can capture
the same scene while sharing one lens. The shutters of the camera modules are
carefully synchronized in order that the modules can capture images simultane-
ously (Fig. 1(b)). Specifically, one camera module captures a blurred image with
a long exposure time. During the exposure time of a blurred image, the other
module captures nine sharp images consecutively with a short exposure time.
The shutter for the first sharp image opens when the shutter for the blurred
image opens, and the shutter for the last sharp image closes when the shutter
for the blurred image closes. The exposure time of the fifth sharp image matches
with the center of the exposure time of the blurred image so that the fifth sharp
image can be used as a ground-truth sharp image for the blurred one.

The blurred images are captured with a 5% neutral density filter installed
in front of a camera module to secure a long exposure time as done in [40, 41].
The exposure times for the blurred and sharp images are 0.1 and 0.005 seconds,
respectively. We capture images holding our system in hand so that blurred im-
ages can be produced by hand shakes. The captured images are geometrically



Realistic Blur Synthesis for Learning Image Deblurring 5

and photometrically aligned to remove misalignment between the camera mod-
ules as done in [25]. We capture all images in the camera RAW format, and
convert them into the nonlinear sRGB space using a simple image signal pro-
cessing (ISP) pipeline similar to [2] consisting of four steps: 1) white balance, 2)
demosaicing, 3) color correction, and 4) conversion to the sRGB space using a
gamma correction of sRGB space as a camera response function (CRF). More
details on our dual-camera system and ISP are in the supplement.

4 Real vs Synthetic Blur

Using the RSBlur dataset, we analyze the difference between the generation
process of real and synthetic blur. Specifically, we first compare the overall gen-
eration process of real and synthetic blur, and discover factors that can introduce
the dominant difference between them. Then, we analyze each factor one by one
and discuss how to address them by building our blur synthesis pipeline.

In the case of real blur, camera sensors accumulate incoming light during the
exposure time to capture an image. During this process, blur and photon shot
noise are introduced due to camera and object motion, and due to the fluctuation
of photons, respectively. The limited dynamic range of sensors introduces satu-
rated pixels. The captured light is converted to analog electrical signals and then
to digital signals. During this conversion, additional noise such as dark current
noise and quantization noise is added. The image is then processed by a cam-
era ISP, which performs white balance, demosaicing, color space conversion, and
other nonlinear operation that distort the blur pattern and noise distribution.

During this process, an image is converted through multiple color spaces.
Before the camera ISP, an image is in the camera RAW space, which is device-
dependent. The image is then converted to the linear sRGB space, and then to
the nonlinear sRGB space. In the rest of the paper, we refer to the linear sRGB
space as the linear space, and the nonlinear sRGB space as the sRGB space.

On the other hand, the blurred image generation processes of the widely used
datasets, e.g., GoPro [22], DVD [28], and REDS [21], are much simpler. They use
sharp images in the sRGB space consecutively captured by a high-speed camera.
The sharp images are optionally interpolated to increase the frame rate [28, 21].
Then, they are converted to the linear space, and averaged together to produce a
blurred image. The blurred image is converted to the sRGB space. For conversion
between the linear to sRGB spaces, GoPro uses a gamma curve with γ = 2.2
while REDS uses a CRF estimated from a GOPRO6 camera.

Between the two processes described above, the main factors that cause the
gap between synthetic and real blur include 1) discontinuous blur trajectories
in synthetic blur, 2) saturated pixels, 3) noise, and 4) the camera ISP. In this
paper, we analyze the effect of these factors one by one. Below, we discuss these
factors in more detail.

Discontinuous Blur Trajectories The blur generation process of the GoPro
dataset [22], which is the most popular dataset, captures sharp video frames at
a high frame rate and averages them to synthesize blur. However, temporal gaps



6 J. Rim et al.

(a) Blurred image (b) Discontinuity (c) Saturation (d) Noise

Fig. 2. The top row shows real blurred images and the bottom row shows the corre-
sponding synthetic blurred images. Best viewed in zoom in.

between the exposure of consecutive frames cause unnatural discontinuous blur
(Fig. 2(b)). While DVD [28] and REDS [21] use frame interpolation to fill such
gaps, the effects of discontinuous blur and frame interpolation on the deblurring
performance have not been analyzed yet.

Saturated Pixels While real-world blurred images may have saturated pixels
(Fig. 2(c)) due to the limited dynamic range, previous synthetic datasets do not
have such saturated pixels as they simply average sharp images. As saturated
pixels in real blurred images form distinctive blur patterns from other pixels, it
is essential to reflect them to achieve high-quality deblurring results [10].

Noise Noise is inevitable in real-world images including blurred images, es-
pecially captured by a low-end camera at night (Fig. 2(d)). Even for high-end
sensors, noise cannot be avoided due to the statistical property of photons and
the circuit readout process. In the denoising field, it has been proven impor-
tant to model the realistic noise for high-quality denoising of real-world im-
ages [39, 32, 1, 6, 13, 4]. On the other hand, noise is ignored by the blur genera-
tion processes of the previous synthetic datasets [22, 21, 28, 43, 27, 11, 20], and
its effect on deblurring has not been investigated. Our experiments in Sec. 6 show
that accurate modeling of noise is essential even for the RealBlur dataset, which
consists of images mostly captured from a high-end camera with the lowest ISO.

Camera ISP ISPs perform various operations, including white balancing,
color correction, demosaicing, and nonlinear mapping using CRFs, which affect
the noise distribution and introduce distortions [4, 5]. However, they are ignored
by the previous synthetic datasets [22, 21, 28, 43, 27, 11, 20].

5 Realistic Blur Synthesis

To synthesize more realistic blur while addressing the factors discussed earlier,
we propose a novel blur synthesis pipeline. The proposed pipeline will also serve
as a basis for the experiments in Sec. 6 that study effect of each factor that
degrades the quality of synthetic blur. Fig. 3 shows an overview of our blur



Realistic Blur Synthesis for Learning Image Deblurring 7

Sharp 
Images

Frame 
Interpolation

sRGB2Lin 
& Averaging

Saturation
Synthesis Lin2Cam Mosaic Inverse

WB

Noise
SynthesisWBDemosaicCam2LinCRFRealistic

Blurred

Conversion to Raw

Camera ISP

Fig. 3. Overview of our realistic blur synthesis pipeline. Lin2Cam: Inverse color cor-
rection, i.e., color space conversion from the linear space to the camera RAW space.
WB: White balance. Cam2Lin: Color correction.

synthesis pipeline. Our pipeline takes sharp video frames captured by a high-
speed camera as done in [22, 21, 28], and produces a synthetic blurred image.
Both input and output of our pipeline are in the sRGB space. Below, we explain
each step in more detail.

Frame Interpolation To resolve the discontinuity of blur trajectory, our
pipeline adopts frame interpolation as done in [28, 21]. We increase nine sharp
images to 65 images using ABME [24], a state-of-the-art frame interpolation
method. In this step, we perform frame interpolation in the sRGB space to use
an off-the-shelf frame interpolation method without modification or fine-tuning.

sRGB2Lin & Averaging To synthesize blur using the interpolated frames,
we convert the images into the linear space, and average them to precisely mimic
the real blur generation process. While the actual accumulation of incoming light
happens in the camera RAW space, averaging in the camera RAW space and in
the linear space are equivalent to each other as the two spaces can be converted
using a linear transformation. Fig. 4(a) shows an example of the averaging of
interpolated frames.

Saturation Synthesis In this step, we synthesize saturated pixels. To this
end, we propose a simple approach. For a given synthetic blurred image Bsyn

from the previous step, our approach first calculates a mask Mi of the saturated
pixels in the i-th sharp source image Si of Bsyn as follows:

Mi(x, y, c) =

{
1, if Si(x, y, c) = 1

0, otherwise,
(1)

where (x, y) is a pixel position, and c ∈ {R,G,B} is a channel index. Si has a
normalized intensity range [0, 1]. Then, we compute a mask Msat of potential
saturated pixels in Bsyn by averaging Mi’s. Fig. 4(b) shows an example of Msat.
Using Msat, we generate a blurred image Bsat with saturated pixels as:

Bsat = clip(Bsyn + αMsat) (2)

where clip(·) is a clipping function that clips input values into [0, 1], and α is a
scaling factor randomly sampled from a uniform distribution U(0.25, 1.75).



8 J. Rim et al.

(d) 𝐵௢௥௔௖௟௘ (e) Poisson (f) Real(a) Averaging (b) 𝑀௦௔௧ (ൈ3) (c) 𝐵௦௔௧

Fig. 4. Generated images from our synthesis pipeline. (a) Averaging image of inter-
polated frames. (b) Msat scaled by three times. (c)-(d) Examples of saturated images.
(e)-(f) Synthetic noisy image and real image. The images except for (b) are converted
into the sRGB space for visualization.

For the sake of analysis, we also generate blurred images with oracle saturated
pixels. An oracle image Boracle is generated as:

Boracle(x, y, c) =

{
Breal(x, y, c), if Msat(x, y, c) > 0

Bsyn(x, y, c), otherwise.
(3)

Our approach is simple and heuristic, and cannot reproduce the saturated pixels
in real images due to missing information in sharp images. Specifically, while we
resort to a randomly-sampled uniform scaling factor α, for accurate reconstruc-
tion of saturated pixels, we need pixel-wise scaling factors, which are impossible
to estimate. Fig. 4(c) and (d) show examples of Bsat and Boracle where the image
in (c) looks different from the one in (d). Nevertheless, our experiments in Sec.
6 show that our approach still noticeably improves the deblurring performance
on real blurred images.

Conversion to RAW In the next step, we convert the blurred image from the
previous step, which is in the linear space, into the camera RAW space to reflect
the distortion introduced by the camera ISP. In this step, we apply the inverse
of each step of our ISP except for the CRF step in the reverse order. Specifically,
we apply the inverse color correction transformation, mosaicing, and inverse
white balance sequentially. As the color correction and white balance operations
are invertible linear operations, they can be easily inverted. More details are
provided in the supplement.

Noise Synthesis After the conversion to the camera RAW space, we add noise
to the image. Motivated by [32, 39], we model noise in the camera RAW space
as a mixture of Gaussian and Poisson noise as:

Bnoisy = β1(I +Nshot) +Nread (4)

where Bnoisy is a noisy image, and I is the number of incident photons. β1 is
the overall system gain determined by digital and analog gains. Nshot and Nread

are photon shot and read noise, respectively. We model (I +Nshot) as a Poisson
distribution, and Nread as a Gaussian distribution with standard deviation β2.
Mathematically, (I +Nshot) and Nread are modeled as:

(I +Nshot) ∼ P
(
Braw

β1

)
β1, and (5)

Nread ∼ N (0, β2) (6)



Realistic Blur Synthesis for Learning Image Deblurring 9

where P and N denote Poisson and Gaussian distributions, respectively. Braw

is a blurred image in the camera RAW space from the previous step.

To reflect the noise distribution in the blurred images in the RSBlur dataset,
we estimate the parameters β1 and β2 of our camera system as done in [39], where
β1 and β2 are estimated using flat-field and dark-frame images, respectively.
Refer to [39] for more details. The estimated values of β1 and β2 are 0.0001 and
0.0009, respectively. To cover a wider range of noise in our synthetic blurred
images, we sample random parameter values β′

1 and β′
2 from U(0.5β1, 1.5β1) and

U(0.5β2, 1.5β2), respectively. Then, using Eq. (5) and Eq. (6) with β′
1 and β′

2,
we generate a noisy blurred image in the camera RAW space.

For the analysis in Sec. 6, we also consider Gaussian noise, which is the most
widely used noise model. We obtain a noisy image with Gaussian noise as:

Bnoisy = B +Ngauss (7)

where B is an input blurred image and Ngauss is Gaussian noise sampled from
N (0, σ), and σ is the standard deviation. As we include Gaussian noise in our
analysis to represent the conventional noise synthesis, we skip the ISP-related
steps (conversion to RAW, and applying camera ISP), but directly add noise to
a blurred image in the sRGB space, i.e., we apply gamma correction to Bsat from
the previous step, and add Gaussian noise to produce the final results. In our
experiments, we randomly sample standard deviations of Gaussian noise from
U(0.5σ′, 1.5σ′) where σ′ = 0.0112 is estimated using a color chart image.

Applying Camera ISP Finally, after adding noise, we apply the camera ISP
to the noisy image to obtain a blurred image in the sRGB space. We apply the
same ISP described in Sec. 3, which consists of white balance, demosaicing, color
correction, and CRF steps. Fig. 4(e) shows our synthesis result with Poisson noise
and ISP distortions. As the example shows, our synthesis pipeline can synthesize
a realistic-looking blurred image.

6 Experiments

In this section, we evaluate the performance of our blur synthesis pipeline, and
the effect of its components on the RSBlur and other datasets. To this end, we
synthesize blurred images using variants of our pipeline, and train a learning-
based deblurring method using them. We then evaluate its performance on real
blur datasets. In our analysis, we use SRN-DeblurNet [30] as it is a strong base-
line [25], and requires a relatively short training time. We train the model for
262,000 iterations, which is half the iterations suggested in [30], with additional
augmentations including random horizontal and vertical flip, and random rota-
tion, which we found improve the performance. We also provide additional anal-
ysis results using another state-of-the-art deblurring method, MIMO-UNet [8],
in the supplement.



10 J. Rim et al.

6.1 Analysis using the RSBlur Dataset

We first evaluate the performance of the blur synthesis pipeline, and analyze
the effect of our pipeline using the RSBlur dataset. Table 1 compares different
variants of our blur synthesis pipeline. The method 1 uses real blurred images
for training SRN-DeblurNet model [30], while the others use synthetic images
for training. To study the effect of saturated pixels, we divide the RSBlur test
set into two sets, one of which consists of images with saturated pixels, and the
other does not, based on whether a blurred image has more than 1,000 non-
zero pixels in Msat computed from its corresponding sharp image sequence. The
numbers of images in the sets with and without saturated pixels are 1,626 and
1,734, respectively. Below, we analyze the effects of different methods and com-
ponents based on Table 1. As the table includes a large number of combinations
of different components, we include the indices of methods that each analysis
compares in the title of each paragraph.

Näıve Averaging (2 & 3) We first evaluate the performance of the näıve
averaging approach, which is used in the GoPro dataset [22]. The GoPro dataset
provides two sub-datasets: one of which applies gamma-decoding and encoding
before and after averaging, and the other performs averaging without gamma-
decoding and encoding. Thus, in this analysis, we also include two versions of
näıve averaging. The method 2 in Table 1 is the most näıve approach, which
uses näıve averaging and ignores CRFs. The method 3 also uses näıve averaging,
but it uses a gamma correction of sRGB space as a CRF. The table shows that
both methods perform significantly worse than the real dataset. This proves
that there is a significant gap between real blur and synthetic blur generated by
the näıve averaging approach of the previous synthetic dataset. The table also
shows that considering CRF is important for the deblurring performance of real
blurred images.

Frame Interpolation (3, 4, 5 & 6) We then study the effect of frame
interpolation, which is used to fill the temporal gap between consecutive sharp
frames by the REDS [21] and DVD [28] datasets. Methods 5 and 6 in Table
1 use frame interpolation. The method 6 adds synthetic Gaussian noise to its
images as described in Sec. 5. Interestingly, the table shows that the method 5
performs worse than the method 3 without frame interpolation. This is because
of the different amounts of noise in blurred images of methods 3 and 5. As
frame interpolation increases the number of frames, more frames are averaged to
produce a blurred image. Thus, a resulting blurred image has much less noise.
The results of methods 6 and 4, both of which add Gaussian noise, verify this.
The results show that frame interpolation performs better than näıve averaging
when Gaussian noise is added.

Saturation (6, 7, 8, 9 & 10) To analyze the effect of saturated pixels, we first
compare the method 6, which does not include saturated pixels whose values are
clipped, and the method 7, which uses oracle saturated pixels. As shown by the
results, including saturated pixels improves the deblurring quality by 0.12 dB.
Especially, the improvement is large for the test images with saturated pixels
(0.30 dB). Methods 8 and 10 use our saturation synthesis approach. The result



Realistic Blur Synthesis for Learning Image Deblurring 11

Table 1. Performance comparison among different blur synthesis methods on the RS-
Blur test set. Interp.: Frame interpolation. Sat.: Saturation synthesis. sRGB: Gamma
correction of sRGB space. G: Gaussian noise. G+P: Gaussian and Poisson noise.

Blur Synthesis Methods PSNR / SSIM

No. Real CRF Interp. Sat. Noise ISP All Saturated No Saturated

1 ✓ 32.53 / 0.8398 31.20 / 0.8313 33.78 / 0.8478
2 Linear 30.12 / 0.7727 28.67 / 0.7657 31.47 / 0.7793
3 sRGB 30.90 / 0.7805 29.60 / 0.7745 32.13 / 0.7861
4 sRGB G 31.69 / 0.8258 30.18 / 0.8174 33.11 / 0.8336
5 sRGB ✓ 30.20 / 0.7468 29.06 / 0.7423 31.27 / 0.7511
6 sRGB ✓ G 31.77 / 0.8275 30.28 / 0.8194 33.17 / 0.8352
7 sRGB ✓ Oracle G 31.89 / 0.8267 30.58 / 0.8191 33.12 / 0.8338
8 sRGB ✓ Ours G 31.83 / 0.8265 30.47 / 0.8187 33.12 / 0.8339
9 sRGB ✓ Oracle G+P ✓ 32.06 / 0.8315 30.79 / 0.8243 33.25 / 0.8384
10 sRGB ✓ Ours G+P ✓ 32.06 / 0.8322 30.74 / 0.8248 33.30 / 0.8391

(a) Blurred image
PSNR/SSIM

(c) Method 5
26.87/0.7129

(d) Method 6
27.45/0.7938

(e) Method 10
29.38/0.8027

Ours

(b) Method 1
29.81/0.8066

RSBlur

(f) Ground truth

Fig. 5. Qualitative comparison of deblurring results on the RSBlur test set produced
by models trained with different synthesis methods. (b)-(e) Methods 1, 5, 6 and 10 in
Table 1. Best viewed in zoom in.

of the method 8 shows that, while it is worse than the method 7 (the oracle
method), it still performs better the method 6, which does not perform saturation
synthesis, especially for the test images with saturated pixels. Also, our final
method (method 10) performs comparably to the oracle method (method 9).
Both methods 9 and 10 achieve 32.06 dB for all the test images. This confirms
the effectiveness of our saturation synthesis approach despite its simplicity.

Noise & ISP (5, 6, 7, 8, 9 & 10) We study the effect of noise and the ISP.
To this end, we compare three different approaches: 1) ignoring noise, 2) adding
Gaussian noise, and 3) adding Gaussian and Poisson noise with an ISP. The
first approach corresponds to previous synthetic datasets that do not consider
noise, such as GoPro [22], REDS [21] and DVD [28]. The second is the most
widely used approach for generating synthetic noise in many image restoration
tasks [37]. The third one reflects real noise and distortion caused by an ISP.

The table shows that, compared to the method 5 (No noise), the method 6
(Gaussian noise) performs significantly better by 1.57 dB. Moreover, a compar-
ison between methods 7 and 8 (Gaussian noise) and methods 9 and 10 (Gaus-
sian+Poisson noise with an ISP) shows that adding more realistic noise and
distortion further improves the deblurring performance consistently.

Finally, our final method (method 10) achieves 32.06 dB, which is more than
1 dB higher than those of the näıve methods 2, 3, and 5. In terms of SSIM, our
final method outperforms the näıve methods by more than 0.05. Compared to
all the other methods, our final method achieves the smallest difference against



12 J. Rim et al.

the method 1 which uses real blurred images. In terms of SSIM, our final method
achieves 0.8332, which is only 0.0076 lower than that of the method 1. This proves
the effectiveness of our method, and the importance of realistic blur synthesis.

Qualitative Examples Fig. 5(b)-(e) show qualitative deblurring results pro-
duced by models trained with different methods in Table 1. As Fig. 5(c) shows,
a deblurring model trained with images synthesized using frame interpolation
without noise synthesis fails to remove blur in the input blurred image. Adding
Gaussian noise improves the quality (Fig. 5(d)), but blur still remains around the
lights. Meanwhile, the method trained with our full pipeline (Fig. 5(e)) produces
a comparable result to the method trained with real blurred images.

6.2 Application to Other Datasets

We evaluate the proposed pipeline on other datasets. Specifically, we apply sev-
eral variants of our pipeline to the sharp source images of the GoPro dataset [22]
to synthesize more realistic blurred images. Then, we train a deblurring model
on synthesized images, and evaluate its performance on the RealBlur J [25] and
BSD [40, 41] datasets. The BSD dataset consists of three subsets with different
shutter speeds. We use all of them as a single set, which we denote by BSD All.

Limited Coverage of Real Datasets We examine the performance of real
datasets on other real datasets to study the coverage of real datasets. To this end,
we compare methods 1 and 2 in Table 2. The comparison shows that the per-
formance of a deblurring model on one dataset significantly drops when trained
on the other dataset. This proves the limitation of the existing real datasets and
the need for a blur synthesis approach that can generate realistic datasets for
different camera settings.

Improving GoPro The method 3 in Table 2 performs näıve averaging to
the sharp source images in the GoPro dataset [22] without gamma correction.
The method 4 performs gamma decoding, näıve averaging, and then gamma
encoding. These two methods correspond to the original generation processes
of GoPro. As the images in both RealBlur J [25] and BSD [40, 41] datasets
have blur distorted by the CRFs, the method 4 performs better. However, both
of them perform much worse than the real-world blur training sets for both
RealBlur J and BSD All.

The method 5 performs 0.01 dB worse than the method 4 on RealBlur J. This
again shows that frame interpolation without considering noise may degrade
the deblurring performance as it reduces noise as discussed in Sec. 6.1. Adding
Gaussian noise (method 6), and saturated pixels (method 7) further improves
the deblurring performance on both test sets. For Gaussian noise, we simply add
Gaussian noise with standard deviation σ = 0.0112.

The method 8 uses the noise and ISP parameters estimated for the RealBlur J
dataset [25]. The RealBlur J dataset was captured using a Sony A7R3 camera,
of which we can estimate the noise distribution, color correction matrix, and
CRF. We use the method described in Sec. 5 for noise estimation. For the color
correction matrix and CRF estimation, we refer the readers to our supplementary
material. As the CRFs of the training set and RealBlur J are different, the



Realistic Blur Synthesis for Learning Image Deblurring 13

Table 2. Performance comparison of different blur synthesis methods on the Real-
Blur J [25] and BSD All [40, 41] test sets. Interp.: Frame interpolation. Sat.: Saturation
synthesis. sRGB: Gamma correction of sRGB space. G: Gaussian noise. G+P: Gaus-
sian and Poisson noise. A7R3: Using camera ISP parameters estimated from a Sony
A7R3 camera, which was used for collecting the RealBlur dataset.

Blur Synthesis Methods PSNR / SSIM

No. Training set CRF Interp. Sat. Noise ISP RealBlur J BSD All

1 RealBlur J 30.79 / 0.8985 29.67 / 0.8922
2 BSD All 28.66 / 0.8589 33.35 / 0.9348
3 GoPro Linear 28.79 / 0.8741 29.17 / 0.8824
4 GoPro sRGB 28.93 / 0.8738 29.65 / 0.8862
5 GoPro sRGB ✓ 28.92 / 0.8711 30.09 / 0.8858
6 GoPro sRGB ✓ G 29.17 / 0.8795 31.19 / 0.9147
7 GoPro sRGB ✓ Ours G 29.95 / 0.8865 31.41 / 0.9154
8 GoPro sRGB, A7R3 ✓ Ours G+P A7R3 30.32 / 0.8899 30.48 / 0.9060

9 GoPro U Linear 29.09 / 0.8810 29.22 / 0.8729
10 GoPro U sRGB 29.28 / 0.8766 29.72 / 0.8773
11 GoPro U sRGB G 29.50 / 0.8865 30.22 / 0.8973
12 GoPro U sRGB Ours G 30.40 / 0.8970 30.31 / 0.8995
13 GoPro U sRGB, A7R3 Ours G+P A7R3 30.75 / 0.9019 29.72 / 0.8925

(a) Blurred image
PSNR/SSIM

(b) Method 1
28.27/0.8562

RealBlur_J

(c) Method 5
26.00/0.8218

(d) Method 6
26.69/0.8430

(e) Method 8
28.16/0.8562
Ours (GoPro)

(f) Ground truth (g) Method 2
24.68/0.7471

BSD_All

(h) Method 10
26.27/0.8191

(i) Method 11
26.50/0.8534

(j) Method 13
28.67/0.8870

Ours (GoPro_U)

Fig. 6. Qualitative comparison of deblurring results on the RealBlur J test set pro-
duced by models trained with different synthesis methods. (b)-(e) Methods 1, 5, 6 and
8 in Table 2. (g)-(j) Methods 2, 10, 11 and 13 in Table 2. Best viewed in zoom in.

method 8 uses different CRFs in different steps. Specifically, it uses gamma
decoding with sharp source images of the GoPro dataset into the linear space,
and in the last step of our pipeline, it applies the estimated CRF of Sony A7R3.
The method 8 achieves 30.32 dB for the RealBlur J dataset, which is much higher
than 28.93 dB of the method 4. This proves that our blur synthesis pipeline
reflecting the noise distribution and distortion caused by the ISP improves the
quality of synthetic blur. It is also worth mentioning that the method 8 performs
worse than the method 7 on the BSD All dataset because the camera ISP of
BSD All is different from that of RealBlur J. This also shows the importance of
correct camera ISP parameters including CRFs, and explains why real datasets



14 J. Rim et al.

perform poorly on other real datasets. Fig. 6(c)-(e) show results of deblurring
methods trained on the GoPro dataset with different methods in Table 2.

Convolution-Based Blur Synthesis Our pipeline also applies to convolution-
based blur synthesis and improves its performance as well. To verify this, we
build a dataset with synthetic blur kernels as follows. For each sharp image in
the GoPro dataset, we randomly generate ten synthetic blur kernels following
[25] in order that we can convolve them with sharp images to synthesize blurred
images instead of frame interpolation and averaging. We also compute satura-
tion masks Msat by convolving the masks of saturated pixels in each sharp image
with the synthetic blur kernels. We denote this dataset as GoPro U. Methods 9
to 13 in Table 2 show different variants of our pipeline using GoPro U. For these
methods, except for the frame interpolation and averaging, all the other steps
in our pipeline are applied in the same manner.

In Table 2, methods 9 and 10 perform much worse than methods 1 and
2, which use real blurred images. Methods 11 and 12 show that considering
Gaussian noise (σ = 0.0112) and saturated pixels significantly improves the
performance. Finally, the method 13 that uses our full pipeline, achieves 30.75
dB in PSNR, which is only 0.04 dB lower than that of the method 1, and achieves
0.9019 in SSIM, which is 0.003 higher than that of the method 1. This shows
that our pipeline is also effective for the convolution-based blur model. Fig.
6(h)-(j) show results of deblurring methods trained on the GoPro U dataset
with different methods in Table 2.

7 Conclusion

In this paper, we presented the RSBlur dataset, which is the first dataset that
provides pairs of a real-blurred image and a sequence of sharp images. Our
dataset enables accurate analysis of the difference between real and synthetic
blur. We analyzed several factors that introduce the difference between them
with the dataset and presented a novel blur synthesis pipeline, which is simple
but effective. Using our pipeline, we quantitatively and qualitatively analyzed
the effect of each factor that degrades the deblurring performance on real-world
blurred images. We also showed that our blur synthesis pipeline could greatly
improve the deblurring performance on real-world blurred images.

Limitations and Future Work Our method consists of simple and heuristic
steps including a simple ISP and a mask-based saturation synthesis. While they
improve the deblurring performance, further gains could be obtained by adopting
sophisticated methods for each step. Also, there is still the performance gap
between real blur datasets and our synthesized datasets, and some other factors
may exist that cause the gap. Investigating that is an interesting future direction.
Acknowledgements This work was supported by Samsung Research Funding & In-

cubation Center of Samsung Electronics under Project Number SRFC-IT1801-05 and

Institute of Information & communications Technology Planning & Evaluation (IITP)

grants (2019-0-01906, Artificial Intelligence Graduate School Program (POSTECH))

funded by the Korea government (MSIT) and the National Research Foundation of

Korea (NRF) grants (2020R1C1C1014863) funded by the Korea government (MSIT).



Realistic Blur Synthesis for Learning Image Deblurring 15

References

1. Abdelhamed, A., Brubaker, M.A., Brown, M.S.: Noise flow: Noise modeling with
conditional normalizing flows. In: ICCV (October 2019) 3, 6

2. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smart-
phone cameras. In: CVPR (June 2018) 5

3. Brooks, T., Barron, J.T.: Learning to synthesize motion blur. In: CVPR (June
2019) 3

4. Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unpro-
cessing images for learned raw denoising. In: CVPR (June 2019) 3, 6

5. Cao, Y., Wu, X., Qi, S., Liu, X., Wu, Z., Zuo, W.: Pseudo-isp: Learning pseudo
in-camera signal processing pipeline from A color image denoiser. arXiv preprint
arXiv:2103.10234 (2021) 6

6. Chang, K.C., Wang, R., Lin, H.J., Liu, Y.L., Chen, C.P., Chang, Y.L., Chen, H.T.:
Learning camera-aware noise models. In: ECCV. pp. 343–358 (2020) 3, 6

7. Cho, S., Lee, S.: Convergence analysis of map based blur kernel estimation. In:
ICCV. pp. 4818–4826 (Oct 2017) 3

8. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine
approach in single image deblurring. In: ICCV. pp. 4641–4650 (October 2021) 1,
3, 9

9. Cho, S., Lee, S.: Fast motion deblurring. ACM TOG 28(5), 145:1–145:8 (Dec 2009)
3

10. Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In:
ICCV (2011) 6

11. Deng, S., Ren, W., Yan, Y., Wang, T., Song, F., Cao, X.: Multi-scale separa-
ble network for ultra-high-definition video deblurring. In: ICCV. pp. 14030–14039
(October 2021) 1, 3, 6

12. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind
denoising of real photographs. In: CVPR (June 2019) 3

13. Jang, G., Lee, W., Son, S., Lee, K.M.: C2n: Practical generative noise modeling
for real-world denoising. In: ICCV. pp. 2350–2359 (October 2021) 3, 6

14. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and
playback of camera shake: benchmarking blind deconvolution with a real-world
database. In: ECCV. pp. 27–40 (2012) 3

15. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind
motion deblurring using conditional adversarial networks. In: CVPR. pp. 8183–
8192 (June 2018) 1, 3

16. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: Deblurring (orders-
of-magnitude) faster and better. In: ICCV (Oct 2019) 1, 3

17. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.: A comparative study for
single image blind deblurring. In: CVPR (June 2016) 3

18. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating
blind deconvolution algorithms. In: CVPR. pp. 1964–1971 (2009) 3

19. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood
optimization in blind deconvolution. In: CVPR. pp. 2657–2664 (2011) 3

20. Li, D., Xu, C., Zhang, K., Yu, X., Zhong, Y., Ren, W., Suominen, H., Li, H.: Arvo:
Learning all-range volumetric correspondence for video deblurring. In: CVPR. pp.
7721–7731 (June 2021) 1, 3, 6

21. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Mu Lee, K.: Ntire
2019 challenge on video deblurring and super-resolution: Dataset and study. In:
CVPRW (June 2019) 1, 3, 5, 6, 7, 10, 11



16 J. Rim et al.

22. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for
dynamic scene deblurring. In: CVPR (July 2017) 1, 3, 5, 6, 7, 10, 11, 12

23. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel
prior. In: CVPR. pp. 1628–1636 (2016) 3

24. Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video
frame interpolation. In: ICCV. pp. 14539–14548 (October 2021) 7

25. Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur dataset for learning and bench-
marking deblurring algorithms. In: ECCV. pp. 184–201 (2020) 1, 2, 3, 4, 5, 9, 12,
13, 14

26. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image.
ACM TOG 27(3), 73:1–73:10 (Aug 2008) 3

27. Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., Shao, L.: Human-aware
motion deblurring. In: ICCV (October 2019) 1, 3, 6

28. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video
deblurring for hand-held cameras. In: CVPR. pp. 237–246 (July 2017) 1, 3, 5, 6,
7, 10, 11

29. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch
priors. In: ICCP (2013) 3

30. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep
image deblurring. In: CVPR (June 2018) 1, 3, 9, 10

31. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: A general u-shaped
transformer for image restoration. In: CVPR (June 2022) 1, 3

32. Wei, K., Fu, Y., Yang, J., Huang, H.: A physics-based noise formation model for
extreme low-light raw denoising. In: CVPR (June 2020) 3, 6, 8

33. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In:
ECCV (2010) 3

34. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer:
Efficient transformer for high-resolution image restoration. In: CVPR (June 2022)
1, 3

35. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.:
Multi-stage progressive image restoration. In: CVPR. pp. 14821–14831 (June 2021)
1, 3

36. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch
network for image deblurring. In: CVPR (June 2019) 1, 3

37. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE TIP 26(7), 3142–3155
(2017) 11

38. Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., Li, H.: Deblurring
by realistic blurring. In: CVPR (June 2020) 3, 4

39. Zhang, Y., Qin, H., Wang, X., Li, H.: Rethinking noise synthesis and modeling in
raw denoising. In: ICCV. pp. 4593–4601 (October 2021) 3, 6, 8, 9

40. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural
network for video deblurring. In: ECCV. pp. 191–207 (2020) 1, 2, 3, 4, 12, 13

41. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B., Sato, I.: Efficient spatio-temporal recur-
rent neural network for video deblurring. arXiv preprint arXiv:2106.16028 (2021)
1, 2, 3, 4, 12, 13

42. Zhong, Z., Zheng, Y., Sato, I.: Towards rolling shutter correction and deblurring
in dynamic scenes. In: CVPR. pp. 9219–9228 (June 2021) 4

43. Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., Ren, J.S.: Davanet: Stereo deblurring
with view aggregation. In: CVPR (June 2019) 1, 3, 6


