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A Prototype Sensor

The prototyping pipeline accepts a learned phase mask height map and cul-
minates with fine-tuning of UtilityNet and AttackNet with the calibrated
PSFs. The phase mask comprises of heights of individual pixels, which are dis-
cretized into steps of 200nm. The mask is then fabricated using a Photonic
Professional GT2, Nanoscribe GmbH (two-photon lithography 3D printer). We
print using Nanoscribe’s IP-Dip photoresist (n = 1.5) on a 700µm thick fused
silica substrate. The printing is done using a 63⇥ Objective working in Dip-in
Liquid Lithography mode (DiLL) mode. After printing, the substrate is laser
cut to fit inside optics assembly of our lens. We also laser cut a black cardboard
ring to act as our aperture and finally insert both the mask and aperture at the
aperture plane of our lens.

Our prototype consists of a modular imaging lens and a sensor as shown in
figure 1(B). To replicate the optics model of our simulation, we install the fabri-
cated phase mask at the aperture plane of this lens. Edmund Optics fixed focal
length modular lenses provide easy access to the aperture plane which makes it
an ideal choice for our prototype. We use a 16mm Cx Series Fixed Focal Length
Lens. To avoid fabricating a low resolution sensor, we use a high resolution sen-
sor and downsample it. We use Lumenera’s Lt545r camera which has a Sony
IMX250 color imaging sensor. The imaging sensor has a native resolution of
2464⇥ 2056 pixels, a pixel size of 3.45µm and a 2/3” optical format. The sensor
and lens combination achieves a field-of-view (FOV) of 30⇥25 degrees. Since our
sensor simulation (sensor H in figure 2) hypothesizes a sensor with 16⇥16 pixels
we intentionally down-sample our captured images from 2464 ⇥ 2056 pixels to
16 ⇥ 14 pixels and pad the vertical direction with reflective padding to end up
with images of 16 ⇥ 16 pixels. If an actual low resolution sensor for the same
imaging area, either the pixel pitch or the pixel size could be increased. Another
scheme could be to implement pixel binning in the analog domain. The choice of
a particular scheme would lead to di↵erent noise levels during capture but since
they can be influenced by other factors as well, we simply assume a Gaussian
noise level of � = 0.01 for our simulations.

The learned phase mask has 2048⇥2048 simulated pixels with a pixel size of
4.25µm. The full size of the phase mask is 8.7mm, so we laser-cut an aperture of
that size. We focus our sensor at 0.1m and calibrate our system by capturing a
series of images of a point light source at 21 discrete depth values ranging from
1 � 10m, which gives us the actual PSFs of our imaging system. These depths
are the same ones for which we generate the simulated PSFs for learning the
height map. At each depth, the exposure and gain on the camera for individual
channels are adjusted to capture the most variation in PSFs. The captured PSFs
are shown in figure 8. In order to account for non-idealities and misalignment in
our system we fine-tune all downstream models with the actual (real) PSFs on
the NYUv2 and VGGFace2 datasets. Further we collect a small dataset of 800
images and use 500 and 300 images for fine-tuning and testing of UtilityNet
respectively. We divide the images carefully into di↵erent scenes such that images
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Fig. 7. Method. (A) Our proposed adversarial framework for end-to-end learning
of sensor optics with respect to competing privacy and utility objectives. The optical
sensor layer is simulated as modular lens system with a learnable phase mask. The
sensor images generated by the sensor layer for the depth and face datasets are then
used by UtitlityNet and AttackNet respectively. The adversarial sensor loss is
back-propagated to update the phase mask height map. (B) Image formation model
of the sensor layer where an all-in-focus image and it’s corresponding depth map is
taken as an input and the final sensor image is generated using a depth-dependent
convolution.

from di↵erent labs, o�ce and conference rooms belong to the fine-tune dataset
while images from di↵erent lobbies belong to the test set to avoid over-fitting.

B Experimental Setup

B.1 Datasets

We utilize separate datasets for the utility and attack tasks. For the utility
tasks, we use NYUv2 [33] for monocular depth estimation and NTURGBD120
[28] for action recogntion. For the attack tasks, we use VGGFace2 [5] for face
identification and LFW [22] for face verification. Additionally, since our image
formation model requires ground-truth depth maps to perform depth-dependent
rendering of a scene, we generate pseudo-ground-truth depth maps for each image
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in VGGFace2 and LFW using the pre-trained monocular depth estimation model
from [43]. No such estimation was performed for NYUv2 and NTURGBD120 as
each color image in these datasets comes paired with a ground-truth depth map
captured by a Microsoft Kinect v1 and v2 respectively.

B.2 Evaluation Protocols

Depth prediction For depth estimation, all models output a predicted depth
map of size 256⇥256 and are evaluated against a ground-truth depth map of
size 256⇥256 regardless of the sensor resolution. We use threshold accuracy (�1)
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ground truth and predicted depth maps, and n denotes the number of pixels in
the depth maps.

Face identification and verification When evaluating face identification per-
formance on VGGFace2, we follow the protocol described in [5]. That is, we first
train a model for face recognition using the VGGFace2 training set consisting
of face images of 8631 di↵erent subjects. Once training is complete, the classi-
fication layer of the model is removed and the remaining model is treated as a
fixed feature extractor. The fixed feature extractor is then applied to the entire
VGGFace2 evaluation set, which consists of 25,000 face images of 500 subjects,
and a subset of the extracted features are used to train 1-vs-rest SVM classifiers
for each subject. Finally, face identification performance is evaluated by applying
the SVM on the remaining subset of the evaluation set.

When evaluating face verification performance on LFW, we follow the proto-
col described in [22]. Face verification di↵ers from face identification in that the
objective is not to identify a subject from a face image, but rather to determine
whether two face images are of the same subject. As described in [22], we test our
approach on 10 sets of 600 pairs of face images for 10-fold cross-validation. The
feature extractor models used for face verification are trained on VGGFace2.

Our cropping protocol for face identification and verification di↵ers slightly
from convention in that bounding boxes are enlarged to enable deconvolution
of encoded sensor images by AttackNet. Specifically, our cropping protocol con-
sists of four steps: (i) Face bounding boxes (x1, y1, x2, y2) are estimated from the
original uncropped face images using [65]; (ii) Uncropped face images are con-
volved with sensor PSFs to generate uncropped sensor images; (iii) Extended face
bounding boxes (x1 � r

2 , y1 �
r

2 , x2 +
r

2 , y2 +
r

2 ), where r denotes the receptive
field of the PSFs are calculated; (iv) Uncropped sensor images are cropped using
the extended bounding boxes and fed to the respective downstream models.

B.3 Image Formation

For all simulations, we discretize depth maps using 21 depth values between 1m
and 10m. Correspondingly, for each sensor, we generate 21 PSFs to convolve with
scene points at the respective depths. For NYUv2 and NTURGD120 datasets we
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Fig. 8. Real PSFs from Prototype Sensor. Depth dependent calibration of the
PSFs of our prototype sensor is performed by imaging a point light source at 21 di↵erent
depths from 1 � 10m. Here we show 5 of those PSFs. They vary significantly over
di↵erent depths, which results in better depth estimation performance. Note, we show
the PSFs here using our prototype sensor’s native resolution of 2056 ⇥ 2464. When
evaluating our prototype sensor, images are downsampled to 14 ⇥ 16 to match our
simulations.

directly use the discretized versions of the provided depth maps for rendering. For
the face images from VGGFace2 and LFW we perform additional pre-processing
to render the face images at a range of distances from the sensor. This step is
critical as a robust pre-capture privacy sensor should inhibit face identification
for faces at any depth. The pre-processing consists of three steps. First, [65] is
used to estimate a face bounding box and the larger side of the bounding box
is taken as the face size. Second, a distance between 1m to 10m is randomly
selected to position the face. Third, the image is resized such that the larger side
of the face bounding box is the “right size” given the randomly selected depth
and the specific sensor design. Since the actual sizes of the faces in VGGFace2
and LFW are not known, all faces are assumed to be 18.2cm, the average face
size for American adults [66], when estimating what the “right size” should be.

B.4 Attack Models

We assess the e�cacy of our learned sensor design at inhibiting facial identifica-
tion attacks by four di↵erent attack models. For both the simulated and real pri-
vacy evaluations, we assume a white-box attack model, so attackers have access
to the sensor design and can thus generate a large dataset consisting of triplets
of source face images, corresponding simulated sensor images and ground-truth
labels denoting the face ID. We generate such a dataset using the samples in VG-
GFace2 as the source face images and use this dataset to train four deep-learning-
based attack models. For the first three attacks, we directly train classifier neural
networks, E�cientNet-b0 [50], DenseNet121 [21], and ResNext101-32x8d [62], to
recognize subjects in the gallery set of VGGFace2 from simulated sensor images.
For the fourth attack, we train a U-Net [29] style neural network to reconstruct
the original source images from the simulated sensor images and then train a
classifier neural network (E�cientNet-b0) to recognize subjects in the gallery
set of VGGFace2 from the reconstructions. Once trained, the final layer of the
four classifiers is removed and the networks are used as feature extractors for
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face verification on the LFW and prototype datasets for the simulated and real
privacy evaluations respectively.

The UNet was trained using a combination of an L1 pixel loss and an L2
perceptual loss (as in [27, 13]) over the outputs of layers relu1 1, relu2 2, and
relu3 2 of VGG16 [46] pre-trained for image classification on the ImageNet [12]
dataset:
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where I 2 RH⇥W⇥3 denotes an all-in-focus image, I 0 2 RH⇥W⇥3 denotes an
encoded sensor image, D : RH⇥W⇥3 ! RH⇥W⇥3 denotes a di↵erentiable func-
tion representing the UNet, with learnable parameters, and �1 : RH⇥W⇥3 !
RH
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denote the layers relu1 1, relu2 2, and relu3 2, respectively, of the pre-trained
VGG16 network. For optimization, we used the Adam optimizer [26] with �1 =
0.9, �2 = 0.999, ✏ = 1e-8 and a learning rate of 1e-5, and trained the network
until saturation.


