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Abstract. Fourier Ptychographic Microscopy (FPM) is an imaging pro-
cedure that overcomes the traditional limit on Space-Bandwidth Prod-
uct (SBP) of conventional microscopes through computational means. It
utilizes multiple images captured using a low numerical aperture (NA)
objective and enables high-resolution phase imaging through frequency
domain stitching. Existing FPM reconstruction methods can be broadly
categorized into two approaches: iterative optimization based methods,
which are based on the physics of the forward imaging model, and data-
driven methods which commonly employ a feed-forward deep learning
framework. We propose a hybrid model-driven residual network that
combines the knowledge of the forward imaging system with a deep data-
driven network. Our proposed architecture, LWGNet, unrolls traditional
Wirtinger flow optimization algorithm into a novel neural network de-
sign that enhances the gradient images through complex convolutional
blocks. Unlike other conventional unrolling techniques, LWGNet uses
fewer stages while performing at par or even better than existing tra-
ditional and deep learning techniques, particularly, for low-cost and low
dynamic range CMOS sensors. This improvement in performance for
low-bit depth and low-cost sensors has the potential to bring down the
cost of FPM imaging setup significantly. Finally, we show consistently
improved performance on our collected real data1.

Keywords: Fourier ptychography, Physics-based network, Computa-
tional imaging

1 Introduction

One of the main challenges in medical computational imaging is to make imag-
ing technology accessible for point of care diagnostics in resource constrained
communities. One way to make these techniques accessible includes designing
cheaper and portable hardware. [6,18] have used smartphone cameras for mi-
croscopy, while [1] have used 3D printed microscopes for wide field of view high
resolution imaging. However, the use of cheaper and inefficient hardware intro-
duces limits on the imaging capabilities of these systems through various degra-
dations which can only be dealt by designing effective computational algorithms.

1 We have made the code avaiable at: https://github.com/at3e/LWGNet.git
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In this work, we will be focusing on a particular microscopy technique called
Fourier Ptychographic Microscopy (FPM) [23]. It is a computational microscopy
technique that allows us to perform high resolution and wide field of view (FOV)
imaging. It circumvents the limit on SBP of conventional microscope by relying
on multiple low-resolution captures of the sample under programmed illumina-
tion and reconstruction via phase retrieval algorithms. Development in FPM in
the recent years has included improving the temporal resolution through multi-
plexed illumination [20], designing better reconstruction algorithms [4,2,5], and
designing better illumination codes [9].

Despite the above-mentioned progress, there hasn’t been enough work done
to make these FPM systems accessible for point of care diagnostics.Some of the
works on making FPM accessible are [1,10,12]. However, the authors rely on
extensive hardware modifications without much changes to the algorithmic as-
pects. The following fundamental challenges have been the main reason behind
that. First, the existing FPM systems, like most low-light imaging modalities,
suffer from significant noise and dynamic range problems especially for darkfield
images. These FPM systems rely on expensive optics and scientific grade sCMOS
sensors to increase the SNR and dynamic range of the low-resolution darkfield
captures which increases the system cost significantly [20]. Second, existing re-
construction algorithms designed for FPM systems have shown results only for
these expensive systems and are unlikely to perform optimally when the qual-
ity of sensor degrades. Third, the existing reconstruction techniques are either
slow or are model-independent data-driven techniques that ignore the forward
imaging process completely.

Keeping the above challenges in mind, we propose ‘LWGNet’ for sequential
FPM reconstruction. LWGNet is a novel physics-driven unrolled neural net-
work that combines the expressiveness of data-driven techniques with the inter-
pretability of iterative Wirtinger flow based techniques [2]. Previous unrolling
works perform their operation in the image or object field space, while LWGNet
perform these operations in the gradient of the object fields. LWGNetlearns a
non-linear mapping from complex stochastic gradients to intermediate object
fields through complex-valued neural networks. Such a learned mapping helps
preserve the high frequency details in the peripheral darkfield images, espe-
cially for low dynamic range sensor. LWGNet outperforms both traditional and
deep-learning methods in terms of reconstruction quality, especially for low-cost
machine vision sensors with poor dynamic range. We show this by performing ex-
tensive evaluations on simulated and real histopathological data captured under
different bit depths. In summary, we make the following contributions:

– We propose LWGNet which is a physics-inspired complex valued feed-forward
network for FPM reconstructions that exploits the physics of the FPM model
and data-driven methods.

– The proposed approach uses a learned complex-valued non-linear mapping
from gradients to object field that helps restore the finer details under a low
dynamic range scenario thereby reducing the gap in reconstruction quality
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between expensive HDR sCMOS cameras and low cost 8-bit CMOS sensors.
This enables reducing the cost of the experimental setup to a large extent.

– We collect a real dataset of 8, 12 and 16 bit low resolution measurements
using a CMOS sensor along with the corresponding aligned groundtruth for
finetuning our method. To the best of our knowledge, this is the only FPM
dataset captured with multiple bit depth settings using a low cost CMOS
sensor. This dataset will be made public upon acceptance.

– The proposed network outperforms existing traditional and learning based
algorithms in terms of reconstruction quality for both simulated and real data
as verified through extensive experiments on challenging histopathological
samples.

Fig. 1: Overview of FPM phase reconstruction. (a) The object is placed between
a planar LED array and objective of the inverted microscope. Low resolution
images corresponding to lth LED is captured. (b) Representation of the equiv-
alent forward model, comprises of down-sampling the object spectrum by the
system pupil function centred at (kxl, kyl). (c) Examples of input low resolution
measurements under different sensor quantization and corresponding reconstruc-
tions using F-cGAN and the proposed LWGNet.

2 Background

2.1 The nature of phase retrieval problem

We are interested in the case of phase recovery from intensity measurements only.
The experimental setup for FPM involves illuminating the object from multiple
angles and is described in detail in [23]. Mathematically, the phase retrieval
problem while using multiple structured illuminations for intensity measurement
is as follows:

Find O, subject to Il = |F−1{Pl⊙ F{O(k− kl)}}|2, for l= 1, 2, . . . , L,
(1)
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where F is the 2D spatial Fourier transform and F−1 is the corresponding inverse
transform. Pl ∈ CN is the pupil function for kl = (kxl, kyl), the unique spatial
frequency corresponding to the lth illumination source. It is assumed that O is an
optically thin sample, i.e. its transmittance is close to unity. Classical retrieval
algorithms seek to solve the following minimization problem,

min
O

L∑
l=1

∥Il− |Al{O}|2∥22, (2)

where A{.} ≜ F−1 ◦ Pl⊙ F{.}.
The objective is a non-convex, real-valued function of complex-valued object

field. Conventional approaches like gradient descent will converge to a stationary
point.

2.2 Related Works

There have been numerous works on FPM reconstruction. Ou et al.[15] success-
fully performed whole slide high-resolution phase and amplitude imaging using
a first-order technique based on alternate projections (AP). Song et al.[19] pro-
posed algorithms to overcome system aberration in FPM reconstruction. In [3],
the authors proposed sample motion correction for dynamic scenes. The work
by Tian et al. [20] extended the AP algorithm for multiplexed illumination in
FPM setup. Besides AP, Wirtinger flow based methods are shown to perform
well under low SNR [2]. The Wirtinger flow algorithm is also extended to the
multiplexed scheme by Bostan et al. [5].

Recently, deep learning techniques have also been explored to solve the FPM
reconsruction problem. Jiang et al. [7] show a novel approach by treating the
object as a learnable network parameter. However, as it requires optimization for
each patch, it has a large inference time. Kappeler et al. [8] have performed high-
resolution amplitude recovery using a CNN architecture. Nguyen et al. [14] have
performed time-lapse high-resolution phase imaging via adversarial training of a
U-Net architecture [13]. The authors performed phase imaging using a limited set
of low-resolution images. They train (transfer learn in the case of new biological
type of cells) U-Net on a subset of low resolution video measurements. While
testing, they predict phase of dynamic cell samples on the subsequent frames.
FPM phase reconstruction under various overlap conditions between adjacent
low-resolution images in the frequency domain has been studied by Boominathan
et al. [4]. However, they show results only on simulated samples. Kellman et al.[9]
have designed a Physics-based Neural Network (PbNN) that learns patterns for
multiplexed illumination by optimizing the weights of the LEDs.

An important line of work is the employment of high-resolution phase imag-
ing using low-cost components. To our best knowledge, the only attempt made
so far is by Aidukas et al. [1], who employed traditional reconstruction algorithm
accompanied with an elaborate calibration and pre-processing of low-resolution
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images taken from a commercial-grade camera. The authors performed ampli-
tude reconstruction, but their system has fundamental limitations due to sensor
size and optical aberrations.

3 Proposed Method: LWGNet

Fig. 2: Model architecture of LWGNet comprises of three stages of the LWG
update block.The inputs are object, pupil initialization and measurement images
for every stage. LWG block comprises of a Gradient computation block followed
by three stages of Conv+Tanh layers followed by a Fully Connected(FC) layer.
The adder block updates the input object field using the modified gradients.

The naive Wirtinger flow algorithm seeks to minimize the following objective[2],

f(O) =

L∑
l=1

∥Il− |Al{O}|2∥22 (3)

=

L∑
l=1

∥Il−Al{O} ⊙Al{Oi}∥22, (4)

where A{.} ≜ F−1 ◦ Pl ⊙ F{.}, F is the 2D spatial Fourier transform, F−1 is
the corresponding inverse transform, Pl is the pupil function corresponding to
the lth illumination source and Il is the capture lth measurement for the same
illumination source. Minimizing Eq.(4) with respect to O using gradient descent
leads to the following ith step update,

Oi+1 = Oi − η
1

L

L∑
l=1

∇Of
i
l, (5)

where η is the step-size and,

∇Of
i
l = AH

l {(|Al{Oi}|2 − Il)⊙Al{Oi}}. (6)
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A naive way to unroll the above gradient descent Wirtinger flow algorithm could
be to design a neural network with each stage performing the gradient update
step of Eq.(5) followed by convolutional block. However, we found that such a
naive unrolling doesn’t converge to any meaningful solution. To overcome this,
we design a K-stage unrolled network with the ith stage performing the following
operation

Oi+1 = Oi + Ψ i([gl]
i
l∈L), (7)

where

gi
l = AH

l {(|Al{ϕil−1}|2 − Il)⊙Al{ϕil−1}}, (8)

ϕil = ϕil−1 − ηgi
l−1, (9)

and Ψ(.) is a learned complex neural network. , ϕil is an intermediate object field
that is estimated at the i−th stage using the gradients obtained with respect
to the l−th LED measurement. We initialize ϕi1asO

i. gi
l in the above equations

can be interpreted as stochastic gradients corresponding to each illumination
source. Ψ(.) then learns to non-linearly combine these stochastic gradients and
update the object field as shown in Eq.(7). Experimentally, we found that such an
unrolled network converged faster with fewer K than naively unrolled wirtinger
flow. Ψ(.) consists of three 3×3 complex convolutions followed by complex Tanh
non-linearity, instance norm, and a fully connected layer. The learned non-linear
Ψ(.) helps combine the stochastic gradients in a more effective way especially for
peripheral darkfield images which are typically degraded due to lower bit depth
and noise.

We simulate complex arithmetic using real-valued entities [22] in Ψ(.). We
perform equivalent 2D complex-valued convolution using real-valued CNN blocks
as follows: let there beM input channels and N output channels for a given CNN
layer. Then, complex-valued filter matrix weight for mth input channel and nth

output channel is wmn = amn + jbmn that convolves with a 2D complex input
zm = xm + jym. Here, amn and bmn are real-valued kernels, and xm and ym

are also real.

wmn ∗ zm = amn ∗ xm + jbmn ∗ ym. (10)

We initialize filter weights as a uniform distribution. The CNN layer is followed
by an 2D instance normalization layer. An amplitude-phase type non-linear ac-
tivation function for and complex-valued z = x + jy is defined as follows

CTanh(z) = Tanh(|z|)eiθz (11)

acts on the normalised outputs.

Finally, after 3 convolutional and non-linearity blocks, we use a fully con-
nected block that acts on the channel dimension.
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3.1 Loss Functions

Let O be the ground truth object and Ô be the reconstruction. We use the
following weighted combination of loss functions to optimize our network,

L= λ1LMSE + λ2LFMAE + λ3LV GG (12)

where,

LMSE = ∥∠(Ô)− ∠(O)∥22 + ∥|Ô| − |O|∥22 (13)

LFMAE = ∥|F(Ô)| − |F(O)|∥1 (14)

LV GG/i,j = β1∥ψi,j(|Ô|)− ψi,j(|O|)∥22 + β2∥ψi,j(∠Ô)− ψi,j(∠O)∥22 (15)

∥ · ∥p represents the p-norm. Eq.(13) defines the pixel-wise Mean Squared Error
(MSE) loss over amplitude and phase components. The VGG loss function is
a perceptual loss function, as defined by [11]. It minimizes the MSE from the
output of the feature maps of the pre-trained VGG-19 network. ψi,j(.) is the
feature map obtained by the j-th convolution (after activation) before the i-
th max-pooling layer in the network, which we consider given. Here, we use
ReLU output ψ2,2 and ψ4,3 the VGG-19 network. The output feature maps
corresponding to the reconstruction and ground truth amplitudes are compared.
Eq.(14) minimizes the L1 -norm of the magnitude Fourier spectrum between
reconstruction and ground truth.

4 Experiments and Results

4.1 Simulated Dataset

Images in Iowa histology dataset [17] are used for simulating objects fields with
uncorrelated amplitude and phase. The FoV of the entire histology slide is di-
vided into 320× 320 pixels; the amplitude images are normalised, such that the
values lie in the range [0, 1]. The pixel values of the phase image are linearly
mapped to the range [−π, π]. These objects are further divided into training,
validation and test splits. Then the FPM forward model [23], is used to gen-
erates low resolution intensity images of 64 × 64 pixels from these object field
samples.

4.2 Our Captured Real Dataset

The experimental setup to capture real data consists of a Nikon Eclipse TE300
inverted microscope and a 10X/0.25 NA objective lens for imaging. An AdaFruit
programmable RGB LED array (32×32, planar) is used to illuminate the sample
from various angles using Red LED with a wavelength of 630nm. By using central
225 LEDs, we captured sequential low-resolution images using a High Dynamic
Range (HDR) scientific grade sCMOS camera (PCO Edge 5.5) and a low cost
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machine vision CMOS camera (FLIR FLEA3). The sCMOS camera allows us to
capture only 16-bit images while the CMOS allows to capture 8, 12 and 16-bit
images. The sCMOS camera has a resolution of 2560 × 2160 pixels and a pixel
pitch 6.5µm while the CMOS sensor has a resolution of 1552× 2080 pixels and
pixel pitch of 2.5µm. Both the sensors are monochromatic. The sCMOS camera
is used on the front port of the inverted microscope while the CMOS camera is
used on the side port of the same microscope.

The LEDs on the array have a grid spacing of 4mm and the array is placed at
a distance of 80 mm from the sample plane of the microscope. The illumination
from the LED array is controlled using an Arduino MEGA 2560 microcontroller,
and simultaneously sends a clock signal to external exposure start port of the
sCMOS camera for controlling the camera shutter speed with respect to LED
illumination.

Before testing our network on real data, we finetune our network on a small
set of real training data. To capture a training set, first low resolution images are
captured in a sequential manner using the sCMOS sensor and the CMOS sensor.
To generate the groundtruth data for training, FPM phase reconstructions using
the algorithm in [21] is used on the captured low resolution sCMOS images. To
compensate for the misalignment between sCMOS and CMOS images, image
registration is also performed. In total 8 slides of cervical, cerebral cortical, lung
carcinoma and osteosarcoma cells were used for real data. 4 slides were kept for
training and and 4 for testing. We show the capture setup and few real captured
data in the supplementary.

We implement our neural network using PyTorch [16], and train the same
on 2 GTX 1080Ti GPUs of 12GiB capacity, for 100 epochs. The loss function
parameters as described in Eq.(3.1) are (λ1, λ2, λ3) = (0.1, 0.05, 1) and (β1, β2) =
(0.5, 1). We use Adam optimizer with an initial learning rate (LR) of 10−4 and
a learning rate scheduler that reduces the LR by a factor of 0.1 when the overall
loss does not improve. On the simulated data, we use 3 stages of the update
block as described in Fig 2 for 16-bit and 12-bit depth images, and increase the
number of stages to 5 for 8-bit images.

4.3 Comparison on Simulated Data

We compare our simulated and experimental results against existing iterative
procedure and deep-learning techniques. Under iterative methods, we have com-
pared with the alternate projections (AP) algorithm proposed by Tian et al.
[20]. Another class of iterative method for phase retrieval is the Wirtinger Flow
Optimization proposed by [2]. Under data-driven techniques, we consider the
conditional deep image prior (cDIP) architecture proposed by Boominathan et
al. [4]. We also compare against Fourier-loss cGAN (F-cGAN) architecture pro-
vided by Nguyen et al. [14] and modify the input layer dimension of the U-Net
architecture to take into account the difference in number of illumination LEDs.

Table 1 shows image quality with two metrics, namely Peak Signal to Noise
Ratio (PSNR) and Structural SIMilarity (SSIM) against existing FPM phase re-
trieval algorithms. The proposed LWGNet is shown to perform at par for the 16-
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Fig. 3: Phase reconstruction on simulated data using proposed LWGNet method
are perceptually superior at lower-bit depth depths compared to existing meth-
ods. Traditional algorithms WF and AP do not perform well under lower bit-
depths. Among deep methods, cDIP performs poorly at lower bit depths.

Method 16 12 8 Memory Inference time Parameters
PSNR SSIM PSNR SSIM PSNR SSIM (in GiB) (in ms) (in millions)

AP 24.346 0.835 21.764 0.728 20.500 0.594 NA NA NA
WF 23.172 0.769 22.706 0.744 21.621 0.730 NA NA NA
cDIP 25.654 0.815 22.563 0.718 20.951 0.712 3.24 5 54.9

F-cGAN 29.0210.907 26.325 0.797 25.715 0.765 3.52 29 7.88
LWGNet 28.745 0.829 27.7260.80726.0350.802 2.26 341 0.39

Table 1: Compared to previous works, the proposed LWGNet achieves a better
reconstruction quality at lower bit-depths using fewer trainable parameters.
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bit simulation results and outperforms the baseline methods at lower bit depths
of 12-bit and 8-bit in terms of both PSNR and SSIM.Although the F-cGAN
[14] baseline performs better on 16-bit simulated data, the proposed method
performs perceptually better on real data, as shown later in Section 4.4. Fig 3
shows a few phase reconstructions from simulated data at three bit depths. For
16-bit measurement images, both traditional and neural network based methods
perform competitively well. Fig 3(b) shows AP-based reconstruction method [20]
suffers the most from degradation of peripheral LED measurements at lower bit-
depths. Gradient-based methods [2] display poor contrast and blurring at the
edges as shown in Fig 3(c). Consequently, this is corrected for in the proposed
method as shown in 3(f). cDIP [4] shows checkerboard artifacts that become
more prominent with under lower bit depth. Similarly, F-cGAN [14] model suc-
cessfully preserves finer details at higher bit-depths, but shows blur artifacts
with increase in quantization. Additionally, LWGNet involves fewer trainable
parameters and requires about 100 epochs of training. LWGNet is shown to be
less memory intensive compared to the deep-learning based models, cDIP and
F-cGAN. However, the gradient computation block is computationally intensive
taking longer inference time, compared to matrix computations of fully convo-
lutional networks. The memory and inference time reported in Table 1 are for a
3 stage proposed network.

4.4 Comparison on Real Data

We test our model on real experimental data and compare the results against
two deep-learning techniques, cDIP and F-cGAN. Prior to evaluation, we fine-
tune all the methods on real dataset described in Section 4.2. Figure 4 show
the visual results for 16, 12 and 8 bit depths respectively. For our experiments,
we use histological sample slides, specifically Lung carcinoma and Osteosarcoma
(HE stained). Phase reconstruction obtained from cDIP show low contrast and
are prone to checkerboard artifacts. F-cGAN reconstructs the cellular structures
but performs relatively poor in reconstruction of finer background details. How-
ever, the proposed algorithm successfully preserves edges and background details
compared to the other approaches consistently for all bit depths. The computed
gradients of peripheral LED images contain high-frequency details. We hypoth-
esize that the learned complex-valued neural network parameters are optimized
to map these useful gradients to desired object field more effectively than neu-
ral networks that use just the intensity images as input. Moreover, due to the
extremely small parameter count of our proposed method, finetuning on a small
dataset of real data doesn’t lead to any overfitting.
4.5 Sensor Quantization Analysis

In this section, we experimentally verify that the proposed method shows little
perceptual variation over reconstruction with increasing quantization noise or
decrease in the bit depth of the input data. We finetune our proposed approach
using the dataset described in Section 4.2 prior to evaluation. Fig 5 shows re-
construction for Osteosarcoma (top) and Lung carcinoma (bottom) samples at
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Fig. 4: Phase reconstruction for real 16-bit Lung carcinoma (sCMOS and
CMOS), 12-bit Osteosarcoma, and 8-bit Osteosarcoma (CMOS). (a)FoV recon-
struction using LWGNet and inset shown in (b). (c) reconstruction obtained
from F-cGAN, (d) reconstruction obtained from cDIP, (e) reconstruction ob-
tained from AP, and (f) input brightfield image.

different bit-depth settings of the camera. The reconstructions obtained are per-
ceptually indistinguishable in the first case as shown in the inset. In the second
case, we observe minor changes at reconstructions of sharp edge features with
the bit-depth setting.
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Fig. 5: Comparison of phase reconstruction using the proposed LWGNet on Os-
teosarcoma (top) and Lung carcinoma (bottom) at various bit depth settings.
The reconstruction quality is consistent even under high quantization noise.

4.6 Ablation Study

In this subsection, we analyse the impact of different components of our proposed
network on simulated data.

Effect of Complex-valued Operations Here we verify the necessity of the
complex-valued operations described in Section 3. To do that, we replace the
complex-valued operation of our proposed network with real-valued operations
acting individually on the real and imaginary channels of the complex gradient.
We keep the rest of the architecture and loss functions the same. Top row of Fig 6
presents the visual comparison between reconstructions obtained from complex-
valued and real-valued networks. Our experiments show that the use of complex
valued operations increases the average PSNR by 5dB.

Effect of Processing Gradients To verify that processing gradients through
a learned network actually helps, we train a variant of the proposed architecture
with the following update stage where the learned neural network acts on the
estimated object field,

Of = Ψ̂(OK) (16)

where,

Oi+1 = (Oi +
1

L

L∑
l=1

gi
l), i ∈ {0, 1, ..,K − 1} (17)
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Fig. 6: Ablation experiments: First row shows the using complex-valued opera-
tions leads to improved reconstruction . Second row shows that the proposed
method of learning the network on gradient leads to effective utilization of gra-
dient information than learning a network on estimated object field. Third row
shows that using stochastic gradient improves our results compared to regular
gradients.

and ˆΨ(.) is N numbers of Ψ i(.) (described in Section 3) stacked together. We
used K = 5 iterations of Wirtinger flow and stack N = 3 numbers of Ψ(.) for
this purpose to compare against 3 stages of proposed approach. The rest of the
architecture and loss functions are kept the same as proposed method. Second
row in Fig 6 shows the visual results highlighting the effect of processing the
gradients. The proposed way of learning a mapping from the stochastic gradients
to object fields leads to more effective use of the gradient information compared
to a enhancing an object field using a neural network after wirtinger updates.

Effect of Stochastic Gradients In this experiment, we verify the efficacy of
the stochastic gradients estimated in Eq.(8). To do that, we train a variant of
the proposed network where regular gradients are used instead of the stochastic
gradients and each stage is given by,

Oi+1 = Oi + Ψ i([∇Of
i
l]l∈L). (18)

where ∇Of
i
l is given by Eq.(6). The rest of the network and loss functions are

kept the same as the proposed LWGNet. The third row of Fig 6 shows visual
results for this experiment. The use of stochastic gradient clearly outperforms
the use of regular gradients.
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Fig. 7: Left: PSNR vs Number of unrolled stages. Right: corresponding recon-
structions for 3 and 5 stage LWGNet under different bit depths. For 16 and 12
bit data, after just 3 stages the performance saturates while 5 stages are needed
for 8 bit data.

Effect of Number of Unrolled Stages In this section, we analyse the effect
of the number of unrolled iterative stages (K in Section 3). Fig ?? represents the
variation of PSNR with the number of update blocks in the proposed architecture
varied between 2 to 10 blocks. We found that the PSNR saturates after 3 stages
for 16-bit and 12-bit data, while it takes at least 5 stages to achieve a similar
performance for 8 bit data.

5 Discussion and Conclusion

We propose a novel physics based neural network for FPM reconstructions. Our
network derives inspiration from conventional wirtinger flow phase retrieval and
combines it with data-driven neural networks. Unlike naive wirtinger flow, our
network learns a non-linear mapping from stochastic gradients to object field
intermediates. We use complex-valued neural networks to learn this non-linear
mapping. We perform extensive experiments on simulated and real data to val-
idate the proposed architecture’s efficacy. Our method performs at par or even
better than existing FPM reconstruction techniques especially for difficult sce-
narios like low dynamic range. We attribute the success of our network on such
challenging conditions to the novel non-linear physics-based mapping. Moroever,
we also collect a dataset of real samples using a low cost sensor under different
sensor bit depths which will be made public upon acceptance of the paper. The
ability to perform high-resolution wide-field of view microscopy using low-cost
sensor through physics inspired data-driven techniques can significantly bring
down the system cost and is a step towards making point of care diagnostics
more accessible.
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