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Abstract. Reconstructing an object’s geometry and appearance from
multiple images, also known as inverse rendering, is a fundamental prob-
lem in computer graphics and vision. Inverse rendering is inherently ill-
posed because the captured image is an intricate function of unknown
lighting, material properties and scene geometry. Recent progress in rep-
resenting scene through coordinate-based neural networks has facilitated
inverse rendering resulting in impressive geometry reconstruction and
novel-view synthesis. Our key insight is that polarization is a useful cue
for neural inverse rendering as polarization strongly depends on surface
normals and is distinct for diffuse and specular reflectance. With the ad-
vent of commodity on-chip polarization sensors, capturing polarization
has become practical. We propose PANDORA, a polarimetric inverse
rendering approach based on implicit neural representations. From multi-
view polarization images of an object, PANDORA jointly extracts the
object’s 3D geometry, separates the outgoing radiance into diffuse and
specular and estimates the incident illumination. We show that PAN-
DORA outperforms state-of-the-art radiance decomposition techniques.
PANDORA outputs clean surface reconstructions free from texture arte-
facts, models strong specularities accurately and estimates illumination
under practical unstructured scenarios.

Keywords: Polarization, inverse rendering, multi-view reconstruction,
implicit neural representations

1 Introduction

Inverse rendering involves reconstructing an object’s appearance and geometry
from multiple images of the object captured under different viewpoints and/or
lighting conditions. It is important for many computer graphics and vision ap-
plications such as re-lighting, synthesising novel views and blending real objects
with virtual scenes. Inverse rendering is inherently challenging because the ob-
ject’s 3D shape, surface reflectance and incident illumination are intermixed in
the captured images. A diverse array of techniques have been proposed to alle-
viate this challenge by incorporating prior knowledge of the scene, optimizing
the scene parameters iteratively with differentiable rendering, and exploiting the
unique properties of light such as spectrum, polarization and time.
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𝜌: Degree of polarization

𝜙: Angle of polarization
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Fig. 1:PANDORA Overview: PANDORA utilizes multi-view polarization im-
ages with known poses (a) and outputs the object’s 3D geometry, separation
of radiance in to diffuse and specular along with incident illumination (b). The
learned PANDORA model can be applied to render the object under novel views
and edit the object’s appearance (c). Please refer to the supplementary video for
renderings of these outputs and applications under varying viewpoints.

Neural Inverse Rendering. Recent works demonstrate that modelling the
outgoing radiance and object shape as coordinate-based neural networks re-
sults in impressive novel-view synthesis (NeRF) [26] and surface reconstruction
(VolSDF) [47] from multi-view captures. The outgoing radiance from the object
is a combination of different components of surface reflectance and illumination
incident on the object. As a result, separation and modification of components
of the captured object’s reflectance is not possible with works such as NeRF and
VolSDF. Moreover, the diffuse and specular components of object reflectance
have different view dependence. Using the same network to model a combina-
tion of difuse and specular radiance results in inaccurate novel view synthesis.

Radiance Decomposition. Decomposition of the outgoing radiance into re-
flectance parameters and incident illumination is inherently ill-posed. Recent
works such as PhySG [52] and NeuralPIL [7] aim to address the ill-posed nature
of radiance decomposition by employing spherical Gaussians and data-driven
embeddings respectively to model the reflectance and lighting. While these ap-
proach provides plausible decomposition in simple settings under large number
of measurements, the decomposition is inaccurate in challenging scenarios such
as strong specularities and limited views (Fig. 4) leading to blurrier specular
reconstructions and artefacts in surface reconstruction.

Key idea: Polarization as a cue for reflectance decomposition. Our
key insight is that polarimetric cues aid in radiance decomposition. Polarization
has a strong dependence on surface normals. The diffuse and specular reflectance
components have different polarimetric properties: the specular is more polarized
than diffuse and the polarization angle for the two components are orthogonal.
The advent of snapshot polarimetric cameras has made it pratical to capture
this polarization information. In this work, we present our approach PANDORA
that exploits multi-view polarization images for jointly recovering the 3D surface,
separating the diffuse-specular radiance and estimating the incident illumination.

Our approach. PANDORA models the geometry as an implicit neural surface
similar to VolSDF. Implicit coordinate based networks are used to model the
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reflectance properties. Incident lighting is modelled as an implicit network with
integrated directional embeddings [42]. We propose a differentiable rendering
framework that takes as input the surface, reflectance parameters and illumina-
tion and renders polarization images under novel views. Given a set of multi-view
polarization images, we jointly optimize parameters of the surface, reflectance
parameters and incident illumination to minimize rendering loss.

Contributions. Our contributions are as follows:

– Polarized neural rendering: We propose a framework to render polariza-
tion images from implicit representations of the object geometry, surface
reflectance and illumination.

– 3D surface reconstruction: Equipped with implicit surface representation and
polarization cues, PANDORA outputs high quality surface normal, signed
distance field and mesh representations of the scene.

– Diffuse-specular separation: We demonstrate accurate diffuse-specular radi-
ance decomposition on real world scenes under unknown illumination.

– Incident illumination estimation: We show that PANDORA can estimate the
illumination incident on the object with high fidelity.

Assumptions. In this work, we assume that the incident illumination is com-
pletely unpolarized. The object is assumed to be opaque and to be made up of
dielectric materials such as plastics, ceramics etc as our polarimetric reflectance
model doesn’t handle metals. We focus on direct illumination light paths. Indi-
rect illumination and self-occlusions are currently neglected.

2 Related Work

Inverse Rendering . The goal of inverse rendering is to recover scene param-
eters from a set of associated images. Inverse rendering approaches tradition-
ally rely on multi-view geometry [37,36], photometry [4] and structured lighting
[29,31] for 3D reconstruction [43], reflectance separation [29,22], material char-
acterization [15] and illumination estimation [35,11]. Due to the ill-posed nature
of inverse rendering, these approaches often require simplifying assumptions on
the scene such as textured surfaces, Lambertian reflectance, direct illumination
and simple geometry. Methods that aim to work in generalized scene settings
involve incorporating scene priors [17,50,8], iterative scene optimization using
differentiable rendering [21,51] and exploiting different properties of light such
as polarization [53], time-of-flight [49] and spectrum [20].

Neural Inverse Rendering . Recent emergence of neural implicit representa-
tions [45] has led to an explosion of interest in neural inverse rendering [41].
Neural implicit representations use a coordinate-based neural network to rep-
resent a visual signals such as images, videos, and 3D objects [38,32,25]. These
representations are powerful because the resolution of the underlying signal is
limited only by the network capacity, rather than the discretization of the sig-
nal. Interest from the vision community originated largely due to neural radiance
field (NeRF) [26], which showed that modelling radiance using implicit repre-
sentations leads to high-quality novel view synthesis.
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Since the advent of NeRF, several works have exploited neural implicit repre-
sentations for inverse rendering applications. IDR [48], UNISURF [30], NeuS [44]
and VolSDF [47] demonstrate state-of-the-art 3D surface reconstruction from
multi-view images by extending NeRF’s volume rendering framework to han-
dle implicit surface representations. Accurate surface normals are crucial for
modelling polarization and reflectance. Thus, we use ideas from one such work,
VolSDF [47], as a build block in PANDORA.

NeRF models the net outgoing radiance from a scene point in which both the
material properties and the lighting are mixed. Techniques such as NeRV [40],
NeRD [6], NeuralPIL [7], PhySG [52], RefNeRF [42] have looked at decomposing
this radiance into reflectance and illumination. PhySG and NeuralPIL employ
spherical Gaussian and data-driven embeddings to model the scene’s illumination
and reflectance. RefNeRF introduces integrated directional embeddings (IDEs)
to model radiance from specular reflections and illumination and demonstrates
improved novel view synthesis. Inspired from RefNeRF, we incorporate IDEs in
our framework. Equipped with IDEs, implicit surface representation and polari-
metric acquisition, PANDORA demonstrate better radiance decomposition than
the state-of-the-art, NeuralPIL and PhySG (Fig. 4,5, Table 1)

Polarimetric Inverse Rendering . Polarization strongly depends on the sur-
face geometry leading to several single view depth and surface normal imaging
approaches [27,39,2,3,19]. Inclusion of polarization cues has also led to enhance-
ments in multi-view stereo [10,53,14,13], SLAM [46] and time-of-flight imaging
[16]. The diffuse and specular components of reflectance have distinct polar-
ization properties and this distinction has been utilized for reflectance sepera-
tion [24,10,18], reflection removal [23] and spatially varying BRDF estimation
[12]. PANDORA exploits these polarimetric cues for 3D reconstruction, diffuse-
specular separation and illumination estimation.

Traditionally acquiring polarization information required capturing multiple
measurements by rotating a polarizer infront of the camera, unfortunately pro-
hibiting fast acquisition. The advent of single-shot polarization sensors, such as
the Sony IMX250MZR (monochrome) and IMX250MYR (color) [1] in commercial-
grade off-the-shelf machine vision cameras has made polarimetric acquisition
faster and more practical. These sensors have a grid of polarizers oriented at
different angles attached on the CMOS sensor enabling the capture of polari-
metric cues at the expense of spatial resolution. Various techniques have been
proposed for polarization and color demosaicking of the raw sensor measure-
ments [28,34]. In PANDORA we use such a camera FLIR BFS-U3-51S5P-C to
capture polarization information for every view in a single shot.

3 Polarization as cue for radiance separation

Here we introduce our key insight on how polarimetric cues aid in decomposing
radiance into the diffuse and specular components. First we derive the polari-
metric properties of diffuse and specular reflectance. Then we demonstrate how
these cues can aid in separating the combined reflectance in a simple scene.
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Fig. 2: Polarization as a cue for radiance decomposition Left: Notations
for our polarized image formation model. Right: Polarimetric cues for different
radiance components. Diffuse radiance has a lower degree of polarization than
the specular radiance. The diffuse and specular components have orthogonal po-
larization angles. We utilize these polarization cues for radiance decomposition.

3.1 Theory of polarized reflectance

Stokes Vector. The polarization state of a light ray at x along direction ω is
modelled as Stokes vector containing four components, S(x, ω) = [S0, S1, S2, S3]
[9]. We assume there is no circular polarization and thus neglect S3. The Stokes
vector can be parametrized as a function of three polarimetric cues: the total
intensity, Lo = S0, degree of polarization (DoP), βo =

√
S2
1 + S2

2/S0 and angle
of polarization (AoP), ϕo = tan−1(S2/S1)/2.
Mueller Matrix. Upon interaction with a surface, the polarization of light
changes. The resulting Stokes vector is modelled as the matrix multiplication of
the input Stokes vector with a 4× 4 matrix, known as the Mueller matrix.
Polarimetric BRDF (pBRDF) model. The interaction of object for diffuse
and specular components of the reflectance are different. The diffuse reflectance
involves sub-surface scattering into the surface and then transmission out of the
surface. The specular component can be modelled as a direct reflection from
specular microfacets on the surface. The pBRDF model [3] model these inter-
actions as Mueller matrices for the diffuse and specular polarized reflectance,
which we denoted as Hd and Hs respectively.
Incident Stokes vector Considering illumination is from far away sources,
the dependance of Si on x can be dropped. Assuming the polarization to be
completely unpolarized:

Si(x, ωi) = Li(x, ωi)[1 0 0]T , (1)

Exitant Stokes vector From the pBRDF model, the output Stokes vector at
every point can be decomposed into the matrix multiplication of diffuse and
specular Mueller matrices, Hd and Hs, with the illumination Stokes vector Si,

So(x, ωi) =

∫
Ω

Hd · Si(x, ωi)dω +

∫
Ω

Hs · Si(x, ωi)dω (2)

From Si and the pBRDF model, we derive that the outgoing Stokes vector at
every point depends on the diffuse radiance Ld, specular radiance Ls and the
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incident illumination Li as,

So(x, ωi) = Ld

 1
βd(θn) cos(2ϕn)
−βd(θn) sin(2ϕn)

+ Ls

 1
βs(θn) cos(2ϕn)
−βs(θn) sin(2ϕn)

 , (3)

where we terms βd/βs depend on Fresnel transmission/reflection coefficients for
the polarization components parallel and perpendicular to the plane of incidence,
T ∥/R∥ and T⊥/R⊥

βd =
T⊥ − T ∥

T⊥ + T ∥ , βs =
R⊥ −R∥

R⊥ +R∥ , (4)

The Fresnel coefficients, T/R solely depend on the elevation angle of the viewing
ray with respect to the surface normal, θn = cos−1(n·ωo). ϕo denotes the azimuth
angle of the viewing ray with respect to the surface normals, ϕn = cos−1(no,yo),
where no is the normal vector perpendicular to the viewing ray and yo is the
y axis of camera coordinate system. Please refer to the supplementary material
for the detailed derivation and functional forms for Fresnel coefficients.

Next we show how these polarimetric cues depend on the diffuse and specular
reflectance and aid in radiance decomposition.

3.2 Polarimetric properties of diffuse and specular radiance

From Eq. 3, the polarimetric cues of the captured Stokes vector are

Lo = Ld + Ls , βo = Ldβd + Lsβs , ϕo = tan−1(− tan(2ϕn))/2

Fig. 2 shows polarimetric cues for a sphere scene for different reflectance proper-
ties. For only diffuse case (left), the degree of polarization increases with eleva-
tion angle and the angle of polarization is equal to the azimuth angle. For only
specular case (middle), the degree of polarization increases with elevation angle
until the Brewster’s angle after which it reduces. The angle of polarization is
shifted from azimuth angle by 90◦. When both diffuse and specular reflectance
are present (right), the polarimetric cues indicate if a region is dominated by dif-
fuse or specular radiance. The specular areas have higher degree of polarization
than diffuse areas. The two components have orthogonal angle of polarization.

4 Our Approach

We aim to recover the object shape, diffuse and specular radiance along with the
incident illumination from multi-view images captured from a consumer-grade
snapshot polarization camera. Fig. 3 summarizes our pipeline.

4.1 Input

PANDORA relies on the following inputs to perform radiance decomposition:
1) Polarization Images. We capture multiple views around the object with a
4 MP snapshot polarization camera [1] (Fig. 3(a)). These cameras comprise of
polarization and Bayer filter arrays on the sensor to simultaneously capture
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Fig. 3: PANDORA Pipeline: Left: Our pipeline. We use coordinate-based net-
works to estimate surface normals, diffuse and specular radiance and incident
illumination. From these parameters, we render exitant Stokes vector that is
compared with captured Stokes vector and the loss is backpropagated to train
the networks. Right: Detailed schematic of the Illumination Net

color images for four different polarizer orientations at the expense of spatial
resolution. We employ the demosaicking and post-processing techniques utilized
in [53] to convert the raw sensor measurements into 4 MP RGB Stokes vector
images. 2) Camera poses. We use COLMAP Structure-from-motion technique
[37],[36] to calibrate the camera pose from the intensity measurements of the
polarization images. Thus for any pixel in the captured images, the camera
position o and camera ray direction d are known. An optional binary mask can
also be used to remove signal contamination from the background. To create
masks for real-world data, We use an existing object segmentation approach [33]
for creating the object masks. The binary mask values are denoted as, M(o,d).

4.2 Implicit Surface estimation

The Stokes vector measured by camera ray given by o and d, the ray is sampled
at T points. For a sample on the ray with travel distance t, its location is denoted
at r(t) = o+ td. The Stokes vector contribution of this sample depends on the
scene opacity, σ(r(t)) and exitant Stokes vector So(r(t),d). The observed Stokes
vector, S(o,d) is denoted by the integral,

S(o,d) =

∫ ∞

0

T (t)σ(r(t))So(r(t),d)dt , (5)

where T (t) = exp
(
−
∫∞
0
σ(r(t))

)
is the probablity that the ray travels to t

without getting occluded.
For rendering surfaces, the ideal opacity should have a sharp discontinuity at

the ray surface intersection. Thus accurately sampling T points for reconstruct-
ing sharp surfaces is challenging. High quality surface estimation is crucial for
our approach as the polarization cues depend on the surface normals, (Eq. 3).

VolSDF [47] has demonstrated significant improvements in surface estimation
by modelling the signed distance field d with a coordinate-based neural network.
The opacity is then estimated as σ(x) = αψβ(−d(x)) where α, β are learn-
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able parameters and Ψ is the Cumulative Distribution Function of the Laplace
distribution with zero mean and scale β. They also propose a better sampling
algorithm for T points utilizing the SDF representation. We follow the same
algorithm as VolSDF for opacity generation. Similar to VolSDF, our pipeline
comprises of an MLP, which we term SDFNet, that takes as input the position
x and outputs the signed distance field at that position x along with geometry
feature vectors f useful for radiance estimation. The SDF model also provides
surface normals that we use to estimate specular radiance and polarimetric cues.

4.3 Neural Rendering Architecture

Diffuse Radiance Estimation. Diffuse radiance is invariant of the viewing
direction and only depends on the spatial location. The geometry features from
SDFNet and the position are passed through another coordinate-based MLP,
denoted as DiffuseNet, to output the diffuse radiance at that position LD(x).
Specular Radiance Estimation. Unlike the diffuse radiance, the specular ra-
diance depends on the viewing angle d and the object roughness αx. First we
estimate the object roughness using an coordinate-based MLP, RoughNet, simi-
lar in architecture to the DiffuseNet. For a certain object roughness, the obtained
specular radiance involves integrating the specular BRDF along an incident di-
rection factored by the incident illumination [5], which is a computationally
expensive procedure that generally requires Monte Carlo. Inspired by [42], we
instead use an IDE-based neural network to output the specular radiance, LD

from the estimated roughness, α and surface normals, n. Moreover, on setting
roughness close to zero, IllumNet also provides us the incident illumination, Li.
Volumetric Masking We exploit object masks to ensure only the regions in the
scene corresponding to the target object are used for radiance decomposition.
Even when the background is zero, VolSDF estimates surface normals which
have to be masked out to avoid incorrect quering of the IllumNet. Rather than
using the 2D masks on the rendered images, we found that learning a 3D mask of
the target object helps in training, especially in the initial interations. This 3D
mask m(x) is 1 only for the positions x that the object occupies and represent’s
the object’s visual hull. We use this 3D mask to obtain the diffuse and specular
radiance that is clipped to zero at background values,

Lm
D(x) = m(x) · LD(x) Lm

S (x,d) = m(x) · LS(x,d) (6)

The 3D mask is estimated using a coordinate-based MLP that we term MaskNet.
This network is trained with the supervision of the input 2D object masks under
different views. Similar to Eq. 5, the 3D mask values are accumulated along the
ray and compared to the provided mask M using the binary cross entropy loss:

Lmask = Eo,lBCE
(
M(o,d), M̂(o,d)

)
, (7)

where M̂(o,d) =
∫∞
0
T (t)σ(r(t))m(r(t))dt .

Neural Polarimetric Rendering Using the masked diffuse Lm
D , masked spec-

ular Lm
S and the estimated surface normals n, we can render the outgoing Stokes
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Fig. 4: Comparison of reflectance separation and surface normals with
baselines on rendered dataset: NeuralPIL fails to estimate correct normals
and illumination on this challenging scene with strong specularities and 45 views.
PhySG exhibits blurrier speculars and illumination along with artifacts in the
reconstructed normals. PANDORA outputs sharp specularities, cleaner surface
and more accurate illumination.

vector, So(x,d) from Eq. 3. On integrating outgoing Stokes vectors for points
along the ray according to Eq. 5, we obtain the rendered Stokes vector Ŝ(x,d).

4.4 Loss Function

We compare the rendered Stokes vector Ŝ = [ŝ0, ŝ1, ŝ2]
T with the captured

Stokes vector S = [s0, s1, s2]
T (§4.1) using an L1 loss. The loss is masked to

remove the effect of background values. The s1 and s2 could have low values in
regions having low degree of polarization (Fig. 2). We apply a weightage factor
ws on the loss for s1 and s2 outputs to further encourage the network to consider
polarimetric cues in the training. The Stokes loss is modelled as:

Lstokes = Eo,l [M · ∥ŝ0 − s0∥+ ws ·M · (∥ŝ1 − s1∥+ ∥ŝ2 − s2∥)] (8)

Additionally, similar to VolSDF [47], we have the Eikonal loss, LSDF to encourage
the SDFNet to approximate a signed distance field.

LSDF = Eo,l (∥n∥ − 1)
2

(9)

The net loss used to train all the networks described in the pipeline:

Lnet = Lstokes + 0.1LSDF + Lmask (10)
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4.5 Implementation Details

All the networks are standard MLPs with 4 layers each. SDFNet has 256 hidden
units per layer and the other networks have 512 hidden units. ReLU activations
are used in intermediate layers. Final activation in DiffNet and MaskNet and
the final activation in IllumNet and RoughNet is softplus. Please refer to the
supplementary material for additional implementation details of our framework.

5 Results and Evaluation

5.1 Datasets

We generate the following datasets for evaluating radiance decomposition.
1. Rendered Polarimetric Dataset (Fig. 4): Using Mitsuba2, we apply pBRDF

on objects with complicated geometry and perform polarimetric rendering of
multiple camera views under realistic environment lighting.

2. Real Polarimetric Dataset (Fig. 5,6,7): Using a snapshot polarimetric cam-
era, we acquire multi-view polarized images of complex objects composed of
materials with varying roughness, such as ceramics, glass, resin and plastic,
under unstructured lighting conditions such as an office hallway. We also
acquire the ground truth lighting using a chrome ball.

Please refer to supplementary material for additional details on the generation
of these datasets and more examples from the datasets.

Scene Approach
Diffuse Specular Mixed Normals Mesh

PSNR SSIM PSNR SSIM PSNR SSIM MAE HD
↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (◦) ↓

B
u
st

NeuralPIL 23.90 0.87 18.04 0.87 26.71 0.87 15.36 N/A
PhySG 22.64 0.94 23.00 0.94 19.94 0.72 9.81 0.012
Ours 25.82 0.81 22.96 0.75 22.79 0.79 3.91 0.003

S
p
h
e
re NeuralPIL 13.09 0.55 12.92 0.55 20.04 0.66 38.73 N/A

PhySG 21.76 0.76 18.90 0.76 17.93 0.70 8.42 0.011
Ours 24.33 0.77 22.70 0.89 21.76 0.81 1.41 0.003

Table 1: Quantiative evaluation on rendered scenes We evaluate PAN-
DORA and state-of-the-art methods on held-out testsets of 45 images for two
rendered scenes. We report the peak average signal-to-noise ratio (PSNR) and
structured similarity (SSIM) of diffuse, specular and net radiance, mean angular
error (MAE) of surface normals and the Hausdorff distance (HD) of the recon-
structed mesh. PANDORA outperforms state-of-the-art in radiance separation
and geometry estimation.

5.2 Comparisons with Baselines

We demonstrate that PANDORA excels in 3D reconstruction, diffuse-specular
separation and illumination estimation compared to two existing state-of-the-art
radiance decomposition baselines, NeuralPIL[7] and PhySG [52]. These baselines
cannot exploit polarization and are run on radiance-only images using the public
code implementations provided by the authors. Note that NeuralPIL achieves
higher PSNR than PhySG and PANDORA for the mixed-radiance on the bust
images. However, this is likely due to overfitting since the baseline comparisons
are all trained on the mixed-radiance images. As a result, NeuralPIL performs
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Fig. 5: Reflectance separation and surface normal estimation on real
data Left: Raw muli-view captures from the polarization camera. Right: Re-
flectance separation and surface normal estimation using baselines and our tech-
nique. The decomposition using PhySG and NeuralPIL on intensity-only images
has artifacts such as the specular highlights bleeding into the diffuse component
and surface normals. PANDORA on polarized images produces accurate diffuse
radiance, and accurately reconstructs the specular components and geometry.

very poorly for the diffuse-specular separation, achieving worse performance than
PANDORA in estimating both the diffuse and specular components. We then
show additional applications of PANDORA and an ablation study to analyse
the crucial aspects of our algorithm.

3D Reconstruction The polarization cues directly depend on the surface nor-
mals (§3.2). Thus, inclusion of polarization cues, enhances multi-view 3D recon-
struction. PANDORA reconstructs cleaner and more accurate surfaces such as
jaw of the bust in Fig. 4 and the glass ball in Fig. 5. In table 1, we show that the
mesh reconstructed by PANDORA has much lower Hausdorff distance with the
ground truth mesh as compared to state-of-the-art. PANDORA also estimates
more accurate surface normals as evaluated on a held-out test set.

Diffuse-Specular Separation The inherent ambiguity in separating diffuse
and specular radiance components from intensity-only measurements leads to
artefacts in existing techniques. For example, the black sphere in diffuse radi-
ance reconstructed by NeuralPIL and PhySG contain faint specular highlights.
Difference in polarization of diffuse and specular components enables PANDORA
to obtain more accurate separation along with better combined radiance Fig. 4,5.
In table 1, we show that PANDORA consistent outperforms state-of-the-art in
peak signal-to-noise ratio (PSNR) and the structural similarity index measure
(SSIM) of diffuse, specular and the net radiance images. We also provide the
video of multi-view renderings from these diffuse, specular and mixed radiance
fields that highlight the high quality of PANDORA’s separation.
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Fig. 6: Polarimetric diffuse-specular separation on real-world objects.
PANDORA can separate out diffuse and specular polarimetric properties from
captured polarized images. As expected, rendered specular component has higher
DoP and AoP is orthogonal to the diffuse component. Polarization properties of
the PANDORA rendered image match the captured image.

Apart from the radiance, PANDORA can also separate polarization prop-
erties of the object’s diffuse and specular components (Fig. 6). Here, we see
predicted cues match with our physical intuition: AoP is orthogonal for the dif-
fuse and specular components, while DoP is higher for the specular component.

Illumination estimation In addition to reflectance separation, our method
can also estimate the illumination incident on the object. The rendered bust
in Fig. 4 has blurry specular highlights that make illumination estimation chal-
lenging. Here, NeuralPIL fails to estimate the correct lighting. PhySG employs
spherical Gaussians that result in blurrier and more sparse reconstruction. PAN-
DORA provides the best reconstruction with sharper walls and window edges.

There are still limitations to illumination estimation. For example, our method
may have difficulties distinguishing between point diffuse illumination versus
sharp illumination with a rough surface. However, this is also challenging for
prior work. For example Miyazaki et al [27] resolved this by assuming light
sources were point sources; as another example, in PhySG increased roughness
led to a blurred illumination map [52]. In future work, our method could resolve
this ambiguity by incorporating priors about the environment.

Similarly, we also perform illumination estimation on real-world data (Fig.
7). We show results on data captured in two different environments. Fig. 7(left)
is captured on a lab table with a long bright linear LED with dim ambient
light. Fig. 7(right) is captured in a office hallway with many small tube-lights
and bright walls. PhySG reconstruction is blurrier especially for the walls and
comprises of color artifacts. PANDORA can recover high quality illumination
that accurately matches the ground truth illumination as captured by replacing
the object with a chrome ball.
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Fig. 7: Incident illumination estimated from real object We visualize the
illumination estimated on a mirror ball viewed from two train viewpoints. We
also capture a mirror ball placed at a similar viewpoints. PhySG models the
illumination using spherical Gaussians and leads to blurrier reconstruction with
artefacts. PANDORA’s estimation has higher sharpness and accuracy.

5.3 Additional applications

The decomposed radiance field from PANDORA enables not only to render the
object under novel views but also to change the object’s appearance under novel
views by altering the separated diffuse and specular radiance fields. We demon-
strate this application under Fig. 1(c). We perform polarimetric rendering from
the learned PANDORA model under a novel view. The rendered polarization
(Fig. 1(c) bottom left) is consistent with the captured polarization. As PAN-
DORA decomposes radiances, we can alter the diffuse component without af-
fecting the specular reflections. For example, we assign pink albedo to the object
by removing the G component of radiance without altering the specularities in
(Fig. 1(c) top left). To create a metallic appearance, we render only the specu-
lar component with the Fresnel reflectance R+ set to 1 (Fig 1(c) top right). To
obtain rougher appearance (Fig 1(c) bottom right), we multiply the roughness
parameter with a factor 3 before passing to the IllumNet. Please refer to the
supplementary video for multi-view renderings of the changed appearance.

5.4 Ablation study: Role of polarization and IllumNet

Polarization and illumination modelling are key aspects of PANDORA. Here we
analyse the role of these components by devising the following experiments

Ours w\o IllumNet w\o pol: We set Stokes loss weightage factor ws (Eq.
8) as 0 to constrain PANDORA to just use So component, i.e., intensities for
radiance decomposition. Also, instead of modelling illumination and roughness
with neural networks, we directly model the specular radiance with a neural
network same as the conventional RadianceNet in VolSDF.

Ours w\o pol: We set ws as 0. But keep the IllumNet. So, this model has
the same architecture as PANDORA. But it is trained on only the intensity. We
then train these two models and PANDORA on the same data with the same
training scheme. As shown in Fig. 8, inclusion of the illumination modelling and
polarization information significantly improves PANDORA’s performance. The
model without IllumNet and polarization, exhibits strong artefacts of specular
highlights in the diffuse and fails to capture the smaller specularites. Remov-
ing just polarization leads to worse illumination estimation, bleeding of diffuse



14 A. Dave et al.

Diffuse Radiance Specular Radiance Surface Normals Illumination Map

N/A

O
u
rs

 w
/o

 p
o

l,
 

w
/o

 I
ll

u
m

N
et

O
u
rs

 w
/o

 p
o

l
O
u
rs

Fig. 8: Ablation study: Role of polarization and IllumNet We devise two
ablation experiments by training on intensity-only images without IllumNet(top
row) and with IllumNet(middle row). Without polarization and correct illumina-
tion modelling, there are texture artefacts in specular and surface normals due
to ambiguities in texture decomposition. Polarimetric cues and IllumNet help
resolve such ambiguities resulting in higher quality reconstructions, sharper dif-
fuse texture, and more accurate surface normals and lighting estimation.

into the specular and texture artefacts in the normals. These artefacts are more
prominent at sharp specular highlights and can be problematic in critical ap-
plications such as 3D scanning objects for quality inspection. Equipped with
polarization information and correct illumination modelling, PANDORA out-
puts sharper diffuse texture, accurately handles the small specularities and even
captures the subtle bumps on the object’s back.

6 Conclusion and Discussion

We have proposed PANDORA a novel neural inverse rendering algorithm that
achieves state-of-the-art performance in reflectance separation and illumination
estimation. PANDORA achieves this by using polarimetric cues and an SDF-
based implicit surface representation. We have demonstrated the success of our
approach on both simulated data that was generated by a physics based renderer,
and real-world data captured with a polarization camera. Finally, we compared
against similar approaches and demonstrated superior surface geometry recon-
struction and illumination estimation. We believe PANDORA would pave the
way for exciting ideas in the space of polarimetric and neural inverse rendering.
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