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A Overview

We provide additional details of data collection (Section B), hardware (Section
C), toolchain (Section D), action set (Section E), subjects (Section F), experi-
ments (Section G), and a more complete dataset comparison (Section H).

B Additional Details of Data Collection

The data collection has two stages for each subject. 1) each subject receives
two high-resolution scans, one with natural clothes on and the other with a
tight-fitting suit on, both captured by the Artex Eva 3D Scanner. To ensure
the high quality of the scans, the subjects are instructed to stand in a special
pose (the canonical pose) on a turntable, that allows for a 360-degree full-body
scanning with minimal self-occlusion. Each high-resolution scan includes an MTL
information file, an OBJ mesh file, and a BMP texture file. 2) After that static
body scanning, the subject enters the framework and follows instructions to
perform 40-60 actions, randomly sampled from the action set that contains 500
actions. Each action that a subject performs is a sequence, that consists of ten
Kinect RGB-D sequences and an iPhone RGB-D sequence. We show sample
frames collected with our hardware setup in Fig. 1. Each sequence takes 5-15
seconds and 150-450 frames at 30 FPS per view. We compress all sequential
data in a custom data format SMC that is developed based on HDF5 format.
The SMC file also contains additional information such as camera parameters,
subject ID, and action ID.
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Fig. 1: HuMMan deploys ten Azure Kinects and an iPhone 12 Pro Max for
multi-view sequential data collection. We show several synchronized RGB frames
captured with our hardware setup. The numbers are device IDs

C Additional Details of Hardware

C.1 Sensors

We provide more details on the RGB-D sensor (Azure Kinect). We set operating
mode to NFOV unbinned for the depth cameras, which results in the largest view
overlap with the color camera and the densest point clouds. The depth camera in
this mode has an FOV of 90◦ × 59◦. The operating range of the depth sensor in
this mode is between 0.5 m to 3.86 m. The typical systematic error of the depth
sensor is less than 11 mm + 0.1% of distance with a standard deviation of less
than 17 mm. In view of the limited FOV and depth error-distance relation, we
design our aluminum framework such that the subject is around 2 m away from
the Kinects: at that distance, the FOV can accommodate the subject’s whole
body, without incurring any extra depth error.

⋆ co-first authors; † co-corresponding authors
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a) Kinect (ID 0) b) iPhone

Fig. 2: The point clouds produced by the Kinect and the iPhone are different:
the latter is significantly sparser. Note that the point clouds shown here are raw
(not filtered or denoised). For visual comparison purpose, both point clouds are
downsampled by the same factor of 10

C.2 Synchronization

Our data sampling program runs on a workstation, and it 1) integrates the
Kinect SDK, and 2) communicates with the iPhone app developed based on
ARKit through TCP. Since there is no existing hardware approach to Kinect-
iPhone synchronization, we develop a method to compute the difference between
Kinect clock and iPhone ARKit clock tK→A. Hence, we first obtain the offset
from the workstation to the Kinects tK→W as

tK→W = tW − tK

where tK is the Kinect clock time and tW is the workstation’s system time,
obtained at the same moment. We also send a message to the iPhone app, which
records down the iPhone system clock tI upon receiving the message and sends
back a message to the workstation to complete a round trip. We compute the
offset from the iPhone system clock to the workstation system clock tW→I as

tW→I = tI − tW − tround
2

where tround is the round trip time taken. Note that there is an additional offset
between the ARKit clock and the iPhone system clock tI→A, computed as

tI→A = tA − tI

where tA is the ARKit clock. Finally, the required clock difference tK→A is

tK→A = tK→W + tW→I + tI→A
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C.3 Point Clouds

Both Kinect and iPhone produce depth maps that can be converted to point
clouds. However, iPhone’s point cloud is much sparser than Kinect’s. We show
unprocessed raw point clouds produced by the two types of sensors in Fig. 2. In
addition, iPhone does not report the LiDAR accuracy; we empirically find that
iPhone point clouds are noisier, especially at the object boundaries, than Kinect
point clouds.

D Additional Details of Toolchain

D.1 Keypoint Annotation

The overall pipeline for keypoint annotation is summarized in Algorithm 1.

Algorithm 1 Keypoint Annotation

Input: Detected 2D Keypoints P̂2D, camera parameters set C, keypoint threshold
τk, reprojection minimal threshold τmin, reprojection maximum threshold τmax,
camera threshold step ∆c, best camera number Nc.

Output: 3D Keypoints P3D, 2D Keypoints P2D

1: τc = τmin, Ĉ = ∅
2: P̄2D = FilterKeypoints(P̂2D, τk)
3: while τc ≤ τmax do
4: P3D = Triangulate(P̄2D, C)
5: P2D = Reprojection(P3D)
6: while τc ≤ τmax and |Ĉ| < 3 do
7: Ĉ = SelectCam(P2D, P̄2D, τc, Nc)
8: τc = τc +∆c

9: end while
10: if C == Ĉ then
11: return P3D, P2D

12: else
13: C = Ĉ
14: end if
15: end while
16: return Fail

D.2 Full-body Angle Prior

It is surprisingly difficult to find literature that provides a complete analysis of
joint movement ranges, especially rotations in three degrees of freedom (DOF).
Hence, we take references from artists’ guidelines on human anatomy1 and 3D

1 https://design.tutsplus.com/articles/human-anatomy-fundamentals-
flexibility-and-joint-limitations--vector-25401

https://design.tutsplus.com/articles/human-anatomy-fundamentals-flexibility-and-joint-limitations--vector-25401
https://design.tutsplus.com/articles/human-anatomy-fundamentals-flexibility-and-joint-limitations--vector-25401
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Fig. 3: The registration accuracy on high-resolution mesh (minimally clothed).
The metric is mean uni-directional Chamfer distance (from SMPL vertices to
high-resolution mesh vertices). Our registration (and subsequently the body
shape obtained) is mostly accurate

modelers’ suggested practices2, to simplify the constraint such that the three
DOF movement range is bounded by the maximum ranges in each of the DOF.
Despite that this formulation is not perfect, it provides constraints that are
otherwise completely absent. To easily apply the per-axis ranges, we convert the
axis-angle representation into Euler angles and define the Z-axis to be aligned
with the child bone of the joint in the kinematic tree (for example, forearm
is the child bone of the joint elbow). To circumvent gimbal lock as much as
possible, we define the joint frame coordinate such that the second rotation axis
(Y-axis) always falls on the less flexible axis (for which the rotation is unlikely
to reach 90◦). Hence, we define the X-axis as the axis around which the largest
rotation is achieved. Y-axis is finally defined with X- and Z-axis fixed. All values
undergo manual inspection and are adjusted empirically. Note that the Euler
angle rotation is used to generate a loss only; the joint rotation is still in axis-
angle representation.

D.3 Annotation Quality of SMPL Parameters.

To evaluate the body shape, we compute the per-vertex error on the high-
resolution scan that is the uni-directional Chamfer distance from registered
SMPLmesh vertices to the high-resolution scan vertices. Note that high-resolution
scans have been scaled to the real height of scanned persons. The mean per-
vertex error is 0.16 mm. We also visualize the registration quality in Fig. 3. To
evaluate the body pose, we compute the per-joint error as the L2 Euclidean
distance between 3D keypoints and 3D joints of registered SMPL on the dy-
namic sequences. The mean per-joint error is 38.18 mm. Note that the error is
largely attributed to the difference in the joint definition of the keypoint detector
and the parametric model. As a reference, registration with an accurate optical
marker system [14,23] yields a per-joint error of 29.34 mm.

2 https://wiki.secondlife.com/wiki/Suggested BVH Joint Rotation Limits

https://wiki.secondlife.com/wiki/Suggested_BVH_Joint_Rotation_Limits
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Fig. 4: The complete set of 500 actions

E Additional Details of Action Set

Design Process. In HuMMan, we design a hierarchical structure for a sys-
tematic coverage of different body parts to collate a complete and unambiguous
action set. Specifically, we have body at the center as the first order. The second
order consists of whole body, upper extremity and lower limbs that categorize
actions by major body parts. After that, we propose a muscle-driven strategy
to further split each major body part into main muscle groups according to hu-
man anatomy as the third order. Finally, we involve domain experts to design
a series of action variants associated with each muscle in the fourth order. The
full action hierarchy is demonstrated in Fig. 4.

Motion Diversity. As HuMMan contains a large amount of data, we further
conduct a preliminary study on the motion diversity for further research on the
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Fig. 5: Statistics of HuMMan subjects

motion prior learning. Specifically, We compute the mean standard deviation of
joint angles of three datasets: 3DPW (0.159), AMASS (0.208), and HuMMan
(0.269). The higher mean standard deviation indicate higher diversity in mo-
tions. Although the AMASS dataset with a large-scale MoCap data is wildly
used in many recent works to pretrain models, HuMMan has more diversity in
joint angles, showing its potential for human motion-related tasks.

F Additional Details of Subjects

Statistics. HuMMan consists of 1000 subjects. To evaluate the diversity, we
include key statistics (gender, age, height and weight) of the subjects in Fig. 5.

Ethics. HuMMan involves a large number of human subjects so that we pay
special attention to address ethic concerns. The recruitment process is conducted
on an entirely voluntary basis. Actors and actresses who participate in HuMMan
are well-informed, with legal agreements signed to acknowledge that the data will
be made public for research purposes.

G Additional Details of Experiments

G.1 Splits and Protocols

HuMMan contains a massive scale of subjects (1000), actions (500), sequences
(400k) and frames (60M). To constrain training and testing within a reasonable
computation budget, we sample only 10% of the data. We then develop three
protocols to split iPhone and Kinect data into training and test sets. Protocol
1 (P1): split by subjects, the training and test set are mutually exclusive and
contain 70% and 30% of the subjects respectively. P1 is used for all experiments
in the main paper. Protocol 2 (P2): split by actions. We split actions into
three categories according to major body parts involved: upper extremity, lower
limbs, and whole body. Training is conducted on one category whereas the test is
conducted on the other two. Protocol 3 (P3): split by views. Model is trained
on only one view (the front view, or the view of the iPhone and the Kinect with
ID 0) and tested on all views.
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Table 2: 3D keypoint detection under Protocol 2 on Kinect splits. FCN is used
as the base model.

Training Testing MPJPE ↓ PA-MPJPE ↓

Lower Limbs Upper Extremity 70.3 55.7
Lower Limbs Whole Body 97.5 72.3
Upper Extremity Lower Limbs 75.8 55.1
Upper Extremity Whole Body 99.6 72.5
Whole Body Lower Limbs 77.4 56.2
Whole Body Upper Extremity 86.2 66.4

Mean Error 84.4 63.0

Table 3: 3D keypoint detection under Protocol 3 on Kinect splits. FCN is used
as the base model. The model is trained on View 0 and tested on all views.

View 0 1 2 3 4 5 6 7 8 9 Mean

MPJPE ↓ 66.4 97.2 167.1 172.0 247.2 268.4 245.1 175.3 165.4 95.9 170.0
PA-MPJPE ↓ 41.2 67.5 100.9 103.5 112.3 118.7 111.8 103.9 100.2 67.1 92.7

G.2 2D Keypoint Detection

Table 1: 2D Keypoint Detection un-
der Protocol 1. Input image is re-
sized to 384×288

Method AP50 ↑ AP75 ↑
CPN [6] 0.86 0.93
HRNet [35] 0.91 0.97
Lite-HRNet [39] 0.87 0.93

We study 2D keypoint detection base-
lines on HuMMan primarily for 2D-to-3D
keypoint lifting. CPN [6] is a cascaded
pyramid network to improve hard key-
points detection. HRNet [35] is a novel
high-resolution network that obtains high
performance on COCO dataset [21], and
LiteHRNet is an efficient version of HR-
Net. The comparison results are listed in
Table 1. Because 2D keypoints are often used as an intermediate representation
of 3D keypoints in a two-stage manner [27, 30], the good performance in this
task can be helpful to the estimation of subsequent 3D.

G.3 3D Keypoint Detection

3D keypoint detection benchmarks under P1 setting are presented in the main
paper and additional benchmarks under P2 and P3 are provided here. In Table 2,
we show results on the cross-action (P2) performance of the FCN method [27].
Compared with Protocol 1, we observe that training with fewer actions and
testing on unseen actions degrade the precision significantly, especially for cross-
evaluation on the whole body category which seems to have a large action dis-
tribution misalignment with the other two categories. Furthermore, we report
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Table 4: 3D parametric human recovery under Protocol 2 on Kinect splits. HMR
is used as the base model.

Training Testing MPJPE ↓ PA-MPJPE ↓

Lower Limbs Upper Extremity 77.2 57.0
Lower Limbs Whole Body 109.8 77.9
Upper Extremity Lower Limbs 80.6 56.5
Upper Extremity Whole Body 114.2 73.3
Whole Body Lower Limbs 85.4 61.9
Whole Body Upper Extremity 98.3 72.6

Mean Error 94.2 66.5

Table 5: 3D parametric human recovery under Protocol 3 on Kinect splits. HMR
is used as the base model. The model is trained on View 0 and tested on all views.

View 0 1 2 3 4 5 6 7 8 9 Mean

MPJPE ↓ 61.9 122.9 223.9 206.2 343.9 421.0 334.0 208.0 199.0 123.5 224.4
PA-MPJPE ↓ 40.2 71.9 123.7 115.0 124.4 133.1 127.2 123.1 118.0 73.3 105.0

results of cross-view (P3) in Table 3. When the model is only trained on one
view (i.e., View 0), we observe a considerable domain gap across different views
as the errors increase as the deviation from the test view from the training view
increases. The experiment results indicate that cross-view 3D keypoint detection
is challenging.

G.4 3D Parametric Human Recovery

In addition to P1 benchmarks for 3D parametric human recovery presented in
the main paper, we also provide more benchmarks under P2 and P3. In Table
4, we evaluate the cross-action (P2) performance of the HMR baseline. We find
that testing on unseen poses is challenging (compared to P1 benchmark results).
Moreover, whole body actions seem to have a distribution that is further away
from lower limbs and upper extremity actions. In Table 5, we study the cross-
view setting (P3), which is even worse than the cross-action setting. The HMR
baseline is trained on View 0, and gives a clear trend that the greater the viewing
angle difference, the larger the errors. View 5 is directly opposite View 0 and
yields the largest error.
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Fig. 6: We compare Function4D with HuMMan in textured mesh reconstruction

G.5 Textured Mesh Reconstruction

To fully demonstrate the capacity of HuMMan, we also provide the results of
Function4D [40] as a baseline for textured mesh reconstruction since it combines
both volumetric fusion and implicit surface reconstruction for volumetric capture
in real-time. The results of Function4D, using 4 (ID: 0,3,6,9) views, are shown
in Fig. 6.

H A More Complete Dataset Comparison

In Table 6, we provide a more thorough comparison of HuMMan with simi-
lar datasets for 1) action recognition, 2) 2D and 3D keypoint detection, 3) 3D
parametric human recovery, and 4) mesh reconstruction.
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Table 6: A more complete comparison of HuMMan with published datasets. Subj:
subjects; Act: actions; Seq: sequences; Video: sequential data, not limited to RGB
sequences; Mobile: mobile device in the sensor suite; D/PC: depth image or point
cloud, only genuine point cloud collected from depth sensors are considered; Act:
action label; K2D: 2D keypoints; K3D: 3D keypoints; Param: statistical model
(e.g. SMPL) parameters; Txtr: texture. -: not applicable or not reported

Dataset #Subj #Act #Seq #Frame Video Mobile
Modalities

RGB D/PC Act K2D K3D Param Mesh Txtr

Action Recognition

HMDB51 [18] - 51 7k - ✓ - ✓ - ✓ - - - - -
UCF101 [34] - 101 13k - ✓ - ✓ - ✓ - - - - -
Sports1M [17] - 487 1M - ✓ - ✓ - ✓ - - - - -
AVA [9] - 80 437 - ✓ - ✓ - ✓ - - - - -
Kinectics 700 [5] - 700 650k - ✓ - ✓ - ✓ - - - - -
HACS [44] - 200 1.55M - ✓ - ✓ - ✓ - - - - -
Moments-In-Time [29] - 339 1M - ✓ - ✓ - ✓ - - - - -
FineGym [33] - 530 32k - ✓ - ✓ - ✓ - - - - -
HAA500 [7] - 500 10k 591k ✓ - ✓ - ✓ - - - - -

MSR-Action3D [20] 10 20 567 - ✓ - - ✓ ✓ - ✓ - - -
Northwestern-UCLA [38] 10 10 1.47k >23k ✓ - ✓ ✓ ✓ - ✓ - - -
SYSU 3DHOI [13] 40 12 65 - ✓ - ✓ ✓ ✓ - ✓ - - -
NTU RGB+D [32] 40 60 56k - ✓ - ✓ ✓ ✓ - ✓ - - -
NTU RGB+D 120 [22] 106 120 114k - ✓ - ✓ ✓ ✓ - ✓ - - -
NTU RGB+D X [36] 106 120 113k - ✓ - ✓ ✓ ✓ - ✓ ✓ - -

2D/3D Keypoint Detection and 3D Parametric Human Recovery

J-HMDB [15] - 21 928 33.18k ✓ - ✓ - ✓ ✓ - - - -
Penn Action [43] - 15 2.32k - ✓ - ✓ - ✓ ✓ - - - -
MPII [3] - 410 - 24k - - ✓ - ✓ ✓ - - - -
COCO [21] - - - 104k - - ✓ - - ✓ - - - -
PoseTrack [2] - - >1.35k >46k ✓ - ✓ - - ✓ - - - -

Human3.6M [14] 11 17 839 3.6M ✓ - ✓ ✓ ✓ ✓ ✓ - - -
CMU Panoptic [16] 8 5 65 154M ✓ - ✓ ✓ - ✓ ✓ - - -
MPI-INF-3DHP [28] 8 8 16 1.3M ✓ - ✓ - - ✓ ✓ - - -
TotalCapture [37] 5 5 60 1.89M ✓ - ✓ - - ✓ ✓ - - -
3DPW [26] 7 - 60 51k ✓ ✓ ✓ - - - - ✓ - -
AMASS [25] 344 - >11k >16.88M ✓ - - - - - ✓ ✓ - -
Mirrored-Human [8] - 56 56 >1.5M ✓ - - - ✓ ✓ ✓ ✓ - -
AIST++ [19] 30 - 1.40k 10.1M ✓ - ✓ - - ✓ ✓ ✓ - -

Mesh Reconstruction

ZJU LightStage [31] 6 6 9 >1k ✓ - ✓ - ✓ ✓ ✓ ✓ ✓ ✓
CAPE [24] 15 - >600 >140k ✓ - - - ✓ - ✓ ✓ ✓ -
BUFF [42] 6 3 >30 >13.6k ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ ✓
DFAUST [4] 10 >10 >100 >40k ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
People Snapshot [1] 9 - 24 15k ✓ - ✓ - - - ✓ ✓ ✓ ✓
LiveCap [11] 7 11 11 36k ✓ - ✓ - ✓ ✓ ✓ ✓ ✓ ✓
DynaCap [10] 4 5 5 35k ✓ - ✓ - ✓ ✓ ✓ ✓ ✓ ✓
DeepCap [12] 4 17 17 26k ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ ✓
HUMBI [41] 772 - - ∼26M ✓ - ✓ - - ✓ ✓ ✓ ✓ ✓
THuman [45] 200 - - >6k - - ✓ ✓ - - - ✓ ✓ ✓
THuman2.0 [40] 200 - - >500 - - - - - - - ✓ ✓ ✓

Multi-task

HuMMan (ours) 1000 500 400k 60M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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