HuMMan: Multi-Modal 4D Human Dataset for
Versatile Sensing and Modeling

-x,1,2,3 2

Zhongang Cai*' , Daxuan Ren*2®, Ailing Zeng**®, Zhengyu Lin

Tao Yu*5®, Wenjia Wang*>®, Xiangyu Fan®, Yang Gao®, Yifan Yu?

Liang Pan?®, Fangzhou Hong?®, Mingyuan Zhang?®, Chen Change Loy?®,
Lei Yang®!3®, Ziwei Liuf2

*,3

!Shanghai AI Laboratory, 2S-Lab, Nanyang Technological University, SenseTime
Research, *The Chinese University of Hong Kong, *Tsinghua University
yanglei@sensetime.com, ziwei.liu@ntu.edu.sg

Abstract. 4D human sensing and modeling are fundamental tasks in vi-
sion and graphics with numerous applications. With the advances of new
sensors and algorithms, there is an increasing demand for more versatile
datasets. In this work, we contribute HuMMan, a large-scale multi-
modal 4D human dataset with 1000 human subjects, 400k sequences and
60M frames. HuMMan has several appealing properties: 1) multi-modal
data and annotations including color images, point clouds, keypoints,
SMPL parameters, and textured meshes; 2) popular mobile device is in-
cluded in the sensor suite; 3) a set of 500 actions, designed to cover fun-
damental movements; 4) multiple tasks such as action recognition, pose
estimation, parametric human recovery, and textured mesh reconstruc-
tion are supported and evaluated. Extensive experiments on HuMMan
voice the need for further study on challenges such as fine-grained ac-
tion recognition, dynamic human mesh reconstruction, point cloud-based
parametric human recovery, and cross-device domain gaps.*

1 Introduction

Sensing and modeling humans are longstanding problems for both computer
vision and computer graphics research communities, which serve as the fun-
damental technology for a myriad of applications such as animation, gaming,
augmented, and virtual reality. With the advent of deep learning, significant
progress has been made alongside the introduction of large-scale datasets in
human-centric sensing and modeling [29, 53, 60, 62, , 113]. In this work, we
present HuMMan, a comprehensive human dataset consisting of 1000 human
subjects, captured in total 400k sequences and 60M frames. More importantly,
HuMMan features four main properties listed below.

- Multiple Modalities. HuMMan provides a basket of data formats and
annotations in the hope to assist exploration in their potential complementary
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a) Color Image b) Point Cloud ¢) Keypoints d) SMPL e) Mesh f) Texture

Fig. 1: HuMMan features multiple modalities of data format and annotations. We
demonstrate a) color image, b) point cloud, ¢) keypoints, d) SMPL parameters
and e) mesh geometry with f) texture. Each sequence is also annotated with an
action label from 500 actions. Each subject has two additional high-resolution
scans of naturally and minimally clothed body.

nature. We build HuMMan with a set of 10 synchronized RGB-D cameras to
capture both video and depth sequences. Our toolchain then post-process the
raw data into sequences of colored point clouds, 2D/3D keypoints, statistical
model (SMPL) parameters, and model-free textured mesh. Note that all data
and annotations are temporally synchronized, while 3D data and annotations
are spatially aligned. In addition, we provide a high-resolution scan for each of
the subjects in a canonical pose.

- Mobile Device. With the development of 3D sensors, it is common to
find depth cameras or low-power LiDARs on a mobile device in recent years.
In view of the surprising gap between emerging real-life applications and the
insufficiency of data collected with mobile devices, we add a mobile phone with
built-in LiDAR in the data collection to facilitate the relevant research.

- Action Set. We design HuMMan to empower comprehensive studies on
human actions. Instead of empirically selecting daily activities, we propose to
take an anatomical point of view and systematically divide body movements
by their driving muscles. Specifically, we design 500 movements by categorizing
major muscle groups to achieve a more complete and fundamental representation
of human actions.

- Multiple Tasks. To facilitate research on HuMMan, we provide a whole
suite of baselines and benchmarks for action recognition, 2D and 3D pose es-
timation, 3D parametric human recovery, and textured mesh reconstruction.
Popular methods are implemented and evaluated using standard metrics. Our
experiments demonstrate that HuMMan would be useful for multiple fields of
study, such as fine-grained action recognition, point cloud-based parametric hu-
man recovery, dynamic mesh sequence reconstruction, and transferring knowl-
edge across devices.
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Table 1: Comparisons of HuMMan with published datasets. HuMMan has a
competitive scale in terms of the number of subjects (#Subj), actions (#Act),
sequences (#Seq) and frames (#Frame). Moreover, HuMMan features multiple
modalities and supports multiple tasks. Video: sequential data, not limited to
RGB sequences; Mobile: mobile device in the sensor suite; D/PC: depth image or
point cloud, only genuine point cloud collected from depth sensors are considered;
Act: action label; K2D: 2D keypoints; K3D: 3D keypoints; Param: statistical
model (e.g. SMPL) parameters; Txtr: texture. -: not applicable or not reported.

Dataset #Subj #Act #Seq #Frame Video Mobile Modalities
RGB D/PC Act K2D K3D Param Mesh Txtr

UCF101 [37] - 101 13k v v - - - -
AVA [21] - 80 437 v v - v - - -
FineGym [34] - 530 32k - v v - v - - -
HAAS500 [15] - 500 10k 591k v v - v - - -
SYSU 3DHOI [27] 40 12 480 - v v v v v - -
NTU RGB+D [83] 40 60 56k ' v v v v - -
NTU RGB+D 120 [55] 106 120 114k v v v v v - -
NTU RGB+D X [93] 106 120 113k v v v v VS -
MPII [4] - 410 - 24k - - v - v v - - -
COCO [53] - - - 104k - - v - -V - - -
PoseTrack [3] - - >1.35k >46k v - v - -V - - -
Human3.6M [29] 11 17 839 3.6M v - v v v v v - -
CMU Panoptic [35] 8 5 65 154M v - v v - vV - -
MPI-INF-3DHP [4] 8 8 16 1.3M v - v - - vV - -
3DPW [62] 7 - 60 51k v v v - - - - v -
AMASS [61] 344 >11k >16.88M v - - - - - v v -
AIST++ [19] 30 1.40k  10.1M v v A -
CAPE [60] 15 - >600 >140k v - - Vo= v v v -
BUFF [107] 6 3 >30 >13.6k v v v Vo= v ' v v
DFAUST [7] 10 >10 >100  >40k v v v v v v v v v
HUMBI [103] 772 - - ~26M v v - - vV v v v
ZJU LightStage [78] 6 6 9 >1k v - v - v v v v v v
THuman2.0 [101] 200 - - >500 - - - - - - - v ' v
HuMMan (ours) 1000 500 400k 60M v v v v v v v v v v

In summary, HuMMan is a large-scale multi-modal dataset for 4D (spatio-
temporal) human sensing and modeling, with four main features: 1) multi-modal
data and annotations; 2) mobile device included in the sensor suite; 3) action
set with atomic motions; 4) standard benchmarks for multiple vision tasks. We
hope HuMMan would pave the way towards more comprehensive sensing and
modeling of humans.

2 Related Works

Action Recognition. As an important step towards understanding human
activities, action recognition is the task to categorize human motions into prede-
fined classes. RGB videos [16,17,91,92] with additional information such as op-
tical flow and estimated poses and 3D skeletons typically obtained from RGB-D
sequences [385,806,100,105] are the common input to existing methods. Datasets
for RGB video-based action recognition are often collected from the Internet.
Some have a human-centric action design [15,21,39,46,84,87] whereas others in-
troduce interaction and diversity in the setup [11,67,111]. Recently, fine-grained
action understanding [15, 21, 84] is drawing more research attention. However,
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these 2D datasets lack 3D annotations. As for RGB-D datasets, earlier works are
small in scale [27,50,90]. As a remedy, the latest NTU RGB-D series [55,83,93]
features 60-120 actions. However, the majority of the actions are focused on the
upper body. We develop a larger and more complete action set in HuMMan.

2D and 3D Keypoint Detection. Estimation of a human pose is a vital
task in computer vision, and a popular pose representation is human skeletal

keypoints. The field is categorized by output format: 2D [12,47, 71, 88] and
3D [63,77,104-106, 112] keypoint detection, or by the number of views: single-
view [12,63,71,77,88,105, 112] and multi-view pose estimation [28, 30, 80]. For

2D keypoint detection, single-frame datasets such as MPII [1] and COCO [53]
provide diverse images with 2D keypoints annotations, whereas video datasets
such as J-HMDB [32], Penn Action [108] and PoseTrack [3] provide sequences
of 2D keypoints. However, they lack 3D ground truths. In contrast, 3D key-
point datasets are typically built indoor data to accommodate sophisticated
equipment, such as Human3.6M [29], CMU Panoptic [35], MPI-INF-3DHP [64],
TotalCapture [94], and AIST++ [19]. Compared to these datasets, HuMMan
not only supports 2D and 3D keypoint detection but also textured mesh recon-
struction assist in more holistic modeling of humans.

3D Parametric Human Recovery. Also known as human pose and shape
estimation, 3D parametric human recovery leverages human parametric model
representation (such as SMPL [58], SMPL-X [75], STAR [73] and GHUM [99])
that achieves sophisticated mesh reconstruction with a small amount of parame-

ters. Existing methods take keypoints [6,75,109], images [20,22,44,45 48,72, 76],
videos [13,37,59,65,068,89], and point clouds [5,33,54,97] as the input to ob-
tain the parameters. Joint limits [1] and contact [69] are also important research

topics. Apart from those that provide keypoints, various datasets also provide
ground-truth SMPL parameters. MoSh [57] is applied on Human3.6M [29] to
generate SMPL annotations. CMU Panoptic [35] and HUMBI [103] leverages
keypoints from multiple camera views. 3DPW [(62] combines a mobile phone
and inertial measurement units (IMUs). Synthetic dataset such as AGORA [74]
renders high-quality human scans in virtual environments and fits SMPL to the
original mesh. Video games have also become an alternative source of data [9,10].
In addition to SMPL parameters that do not model clothes or texture, HuMMan
also provides textured meshes of clothed subjects.

Textured Mesh Reconstruction. To reconstruct the 3D surface, common
methods include multi-view stereo [18], volumetric fusion [31, 70, 102], Poisson
surface reconstruction [40,41], and neural surface reconstruction [79,82]. To re-
construct texture for the human body, popular approaches include texture map-
ping or montage [19], deep neural rendering [56], deferred neural rendering [90],
and NeRF-like methods [66]. Unfortunately, existing datasets for textured human
mesh reconstruction typically provide no sequential data [101,113], which is valu-
able to the reconstruction of animatable avatars [81,98]. Moreover, many have
only a limited number of subjects [2,7,23-25,60,78,107]. In contrast, HuMMan
includes diverse subjects with high-resolution body scans and a large amount of
dynamic 3D sequences.
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a) Perspective view b) Top view ¢) Sensors

Fig. 2: Hardware setup. a) and b) we build a octagonal prism-shaped framework
to accommodate the data collection system. c¢) sensors used to collect sequential
data include ten Azure Kinects and an iPhone 12 Pro Max. Besides, an Artec
Eva is used to produce high-resolution static scans of the subjects.

3 Hardware Setup

We customize an octagonal prism-shaped multi-layer framework to accommodate
calibrated and synchronized sensors. The system is 1.7 m in height and 3.4 m in
side length of its octagonal cross-section as illustrated in Fig. 2.

3.1 Sensors

RGB-D Sensors. Azure Kinect is popular with both academia and the industry
with a color resolution of 1920x1080, and a depth resolution of 640x576. We
deploy ten Kinects to capture multi-view RGB-D sequences. The Kinects are
strategically placed to ensure a uniform spacing, and a wide coverage such that
any body part of the subject, even in most expressive poses, is visible to at least
two sensors. We develop a program that interfaces with Kinect’s SDK to obtain
a data throughput of 74.4 MB per frame and 2.2 GB per second at 30 FPS
before data compression.

Mobile Device. An iPhone 12 Pro Max is included in the sensor suite to allow
for the study on a mobile device. Besides the regular color images of resolution
1920% 1440, the built-in LiDAR produces depth maps of resolution 256 x192. We
develop an i0S app upon ARKit to retrieve the data.

High-Resolution Scanner. To supplement our sequential data with high-
quality body shape information, a professional handheld 3D scanner, Artec Eva,
is used to produce a body scan of resolution up to 0.2 mm and accuracy up to
0.1 mm. A typical scan consists of 300k to 500k faces and 100k to 300k vertices,
with a 4K (4096 x4096) resolution texture map.
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3.2 Two-Stage Calibration

Image-based Calibration. To obtain a coarse calibration, we first perform
image-based calibration following the general steps in Zhang’s method [110].
However, we highlight that Kinect’s active IR depth cameras encounter over-
exposure with regular chessboards. Hence, we customize a light absorbent mate-
rial to cover the black squares of the chessboard pattern. In this way, we acquire
reasonably accurate extrinsic calibration for Kinects and iPhones.
Geometry-based Calibration. Image-based calibration is unfortunately not
accurate enough to reconstruct good-quality mesh. Hence, we propose to take
advantage of the depth information in a geometry-based calibration stage. We
empirically verify that image-based calibration serves as a good initialization
for geometry-based calibration. Hence, we randomly place stacked cubes inside
the framework. After that, we convert captured depth maps to point clouds and
apply multi-way ICP registration [14] to refine the calibration.

3.3 Synchronization

Kinects. As the Azure Kinect implements the Time-of-Flight principle, it ac-
tively illuminates the scene multiple times (nine exposures in our system) for
depth computation. To avoid interference between individual sensors, we use
the synchronization cables to propagate a unified clock in a daisy chain fashion,
and reject any image that is 33 ms or above out of synchronization. We highlight
that there is only a 1450-us interval between exposures of 160 us; our system of
ten Kinects reaches the theoretical maximum number.

Kinect-iPhone. Due to hardware limitations, we cannot apply the synchro-
nization cable to the iPhone. We circumvent this challenge by implementing a
TCP-based communication protocol that computes an offset between the Kinect
clock and the iPhone ARKit clock. As iPhone is recording at 60 FPS, we then
use the offset to map the closest iPhone frames to Kinect frames. Our test shows
the synchronization error is constrained below 33 ms.

4 Toolchain

To handle the large volume of data, we develop an automatic toolchain to pro-
vide annotations such as keypoints and SMPL parameters. Moreover, dynamic
sequences of textured mesh are also reconstructed. The pipeline is illustrated in
Fig. 3. Note that there is a human inspection stage to reject low-quality data
with erroneous annotations.

4.1 Keypoint Annotation

There are two stages of keypoint annotation (I and IT) in the toolchain. For stage
I, virtual cameras are placed around the minimally clothed body scan to render
multi-view images. For stage II, the color images from multi-view RGB-D are
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Fig. 3: Our toolchain produces multiple annotation formats such as 3D keypoint
sequences, SMPL parameter sequences, and textured mesh sequences

used. The core ideas of the keypoint annotation are demonstrated below, with
the detailed algorithm in the Supplementary Material.

Multi-view 2D Keypoint Detection. We employ the whole-body pose model
that includes body, hand and face 2D keypoints Pap € RP*2 where P = 133. A
large deep learning model HRNet-w48 [38] is used which achieves AP 66.1 and
AR 74.3 on COCO whole-body benchmark [34].

3D Keypoint Triangulation. As the camera intrinsic and extrinsic parameters
are available, we triangulate 3D keypoints Psp € RP*3 with the multi-view 2D
estimated keypoints Pap. However, 2D keypoints from any single view may not
be always reliable. Hence, we use the following strategies to improve the quality
of 3D keypoints. 1) Keypoint selection. To avoid the influence of poor-quality
estimated 2D keypoints, we use a threshold 7; to remove keypoints with a low
confidence score. 2) Camera selection. As our system consists of ten Kinects,
we exploit the redundancy to remove low-quality views. We only keep camera
views with reprojection errors that are top-k smallest [38] and no larger than
a threshold 7.. 3) Smoothness constraint. Due to inevitable occlusion in the
single view, the estimated 2D keypoints often have jitters. To alleviate the issue,
we develop a smoothness loss to minimize the difference between consecutive
triangulated 3D keypoints. Note that we design the loss weight to be inversely
proportional to average speed, in order to remove jitters without compromising
the ability to capture fast body motions. 4) Bone length constraint. As human
bone length is constant, the per-frame bone length is constrained towards the
median bone length B pre-computed from the initial triangulated 3D keypoints.
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¥ €

Fig. 4: HuMMan provides synchronized sequences of multiple data formats and
annotations. Here we demonstrate textured mesh sequences and SMPL param-
eter sequences

The constraints are formulated as Eq. 1:

T-—1
Bui =X Y IPsp(t+1) =Pap®) + X2 Y I1Bij— fs(Pap(i, )l (1)
t=0 (4,J)€Tn

where Zp contains the indices of connected keypoints and fz(-) calculates the
average bone length of a given 3D keypoint sequence. Note that 3) and 4) are
jointly optimized.

2D Keypoint Projection. To obtain high-quality 2D keypoints Pap €
we project the triangulated 3D keypoints to image space via calibrated camera
parameters. Note that this step is only needed for stage II keypoint annotation.
Keypoint Quality. We use Pyp and Psp as keypoint annotations for 2D Pose
Estimation and 3D Pose Estimation, respectively. To gauge the accuracy of the
automatic keypoint annotation pipeline, we manually annotate a subset of data.
The average Euclidean distance between annotated 2D keypoints and reprojected
2D keypoints Psp is 15.13 pixels on the resolution of 1920 x 1080.

Px2
REZ,

4.2 Human Parametric Model Registration

We select SMPL [58] as the human parametric model for its popularity. There
are two stages of registration (I and II). Stage I is used to obtain accurate
shape parameters from the static high-resolution scan, whereas stage II is used
to obtain pose parameters from the dynamic sequence, with shape parameters
from stage I. The registration is formulated as an optimization task to obtain
SMPL pose parameters § € R"*72 shape parameters 3 € R"*!0 (stage I only)
and translation parameters t € R"*3 where n is the number of frames (n = 1
for stage I), with the following energy terms and constraints. We show a sample
sequence of SMPL models with reconstructed textured mesh in Fig. 4.

Keypoint Energy. SMPLIify [6] estimates camera parameters to leverage 2D
keypoint supervision, which may be prone to depth and scale ambiguity. Hence,



HuMMan 9

[ ] Q [ P 3 Q 9

M N o y ! HN ,/\,

'L S N ) N b L P AN it )1
Fig.5: Examples of SMPL registered on high-resolution static body scans for
accurate shape parameters. The subjects are instructed to wear tight clothes for
this scan. Note that each subject has another naturally clothed scan

we develop the keypoint energy on 3D keypoints. For simplicity, we denote Psp
as P, the global rigid transformation derived from the SMPL kinematic tree as
T, the joint regressor as J. We formulate the energy term:

[P

Ep(0.5.1) = g 3 IT(T(3):.0).0) = Pi| )
K3

Surface Energy. To supplement 3D keypoints that do not provide sufficient

constraint for shape parameters, we add an additional surface energy term for

registration on the high-resolution minimally clothed scans in stage I only. We

use bi-directional Chamfer distance to gauge the difference between two mesh

surfaces:

1 1

—_— min |lvg —vs|| + — min ||lvg — v 3

Vol ) UsEVs” H — vs|| Vsl N vHevH” m—vsll  (3)
vHEVH vsE€Vs

Eg =

where Vg and Vg are the mesh vertices of the high-resolution scan and SMPL.
Shape Consistency. Unlike existing work [74] that enforces an inter-beta en-
ergy term due to the lack of minimally clothed scan of each subject, we obtain
accurate shape parameters from the high-resolution scan that allow us to apply
constant beta parameters in the registration in stage II.

Full-body Joint Angle Prior. Joint rotation limitations serve as an important
constraint to prevent unnaturally twisted poses. We extend existing work [0, 75]
that only applies constraints on elbows and knees to all J = 23 joints in SMPL.
The constraint is formulated as a strong penalty outside the plausible rotation
range (with more details included in the Supplementary Material):

Jx3

! > exp(max(; — 0),0) + max (6} — 6;,0)) — 1 (4)
J

©T Tx3

where % and 0! are the upper and lower limit of a rotation angle. Note that each
joint rotation is converted to three Euler angles which can be interpreted as a
series of individual rotations to decouple the original axis-angle representation.
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a) Point Cloud Denoising b) Depth-aware Texture Reconstruction

Fig.6: Key steps to textured mesh reconstruction. a) Point cloud denoising re-
moves noisy points. b) Depth-aware texture reconstruction prevents texture miss
projection artifacts (such as projecting texture at point A to point B) due to
misalignment between the actual subject and the reconstructed geometry

4.3 Textured Mesh Reconstruction

Point Cloud Reconstruction and Denoising. We convert depth maps to
point clouds and transform them into a world coordinate system with camera
extrinsic parameters. However, the depth images captured by Kinect contain
noisy pixels, which are prominent at subject boundaries where the depth gra-
dient is large. To solve this issue, we first generate a binary boundary mask
through edge finding with Laplacian of Gaussian Filters. Since our cameras have
highly overlapped views to supplement points for one another, we apply a more
aggressive threshold to remove boundary pixels. After the point cloud is recon-
structed from the denoised depth images, we apply Statistical Outlier Removal
[26] to further remove sprinkle noises.

Geometry and Depth-aware Texture Reconstruction. With complete and
dense point cloud reconstructed, we apply Poisson Surface Reconstruction with
envelope constraints [12] to reconstruct the watertight mesh. However, due to
inevitable self-occlusion in complicated poses, interpolation artifacts arise from
missing depth information, which leads to a shrunk or a dilated geometry. These
artifacts are negligible for geometry reconstruction. However, a prominent arti-
fact appears when projecting a texture onto the mesh even if the inconsistency
between the true surface and the reconstructed surface is small. Hence, we extend
MVS-texturing [95] to be depth-aware in texture reconstruction. We render the
reconstructed mesh back into the camera view and compare the rendered depth
map with the original depth map to generate the difference mask. We then mask
out all the misalignment regions where the depth difference exceeds a threshold
74. The masked regions do not contribute to texture projection. As shown in
Fig. 6(b), the depth-aware texture reconstruction is more accurate and visually
pleasing.
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Fig. 7: Schematic diagram of muscles from a) front and b) back views. ¢) HuM-
Man categorizes 500 actions hierarchically, first by body parts to achieve com-
plete body coverage, then by driving muscles for unambiguous action definition

5 Action Set

Understanding human actions is a long-standing computer vision task. In this
section, we elaborate on the two principles, following which we design the action
set of 500 actions: completeness and unambiguity. More details are included in
the Supplementary Material.

Completeness. We build the action set to cover plausible human movements
as much as possible. Compared to the popular 3D action recognition dataset
NTU-RGBD-120 [55] whose actions are focused on upper body movements, we
employ a hierarchical design to first divide possible actions into upper extrem-
ity, lower limbs, and whole-body movements. Such design allows us to achieve
a balance between various body parts instead of over-emphasizing a specific
group of movements. Note that we define whole body movements to be actions
that require multiple body parts to collaborate, including different poses of the
body trunk (e.g. lying down and sprawling). Fig. 7(c) demonstrates the action
hierarchy and examples of interesting actions that are vastly diverse.
Unambiguity. Instead of providing a general description of the motions [11,29,
39,62,64,67,87], we argue that the action classes should be clearly defined and
are easy to identify and reproduce. Inspired by the fact that all human actions
are the result of muscular contractions, we propose a muscle-driven strategy to
systematically design the action set from the perspective of human anatomy.
As illustrated in Fig. 7(a)(b), 20 major muscles are identified by professionals in
fitness and yoga training, who then put together a list of standard movements as-
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Fig. 8: HuMMan contains 1000 subjects with diverse appearances. For each sub-
ject, a naturally clothed high-resolution scan is obtained

sociated with these muscles. Moreover, we cross-check with the action definitions
from existing datasets [3,11,15,21,35,39,51,55] to ensure a wide coverage.

6 Subjects

HuMMan consists of 1000 subjects with a wide coverage of genders, ages, body
shapes (heights, weights), and ethnicity. The subjects are instructed to wear
their personal daily clothes to achieve a large collection of natural appearances.
We demonstrate examples of high-resolution scans of the subjects in Fig. 8. We
include statistics in the Supplementary Material.

7 Experiments

In this section, we evaluate popular methods from various research fields on
HuMMan. To constrain the training within a reasonable computation budget,
we sample 10% of data and split them into training and testing sets for both
Kinects and iPhone. The details are included in the Supplementary Material.
Action Recognition. HuMMan pro-

vides action labels and 3D skeletal po-

sitions, which can verify its usefulness Table 2: Action Recognition

on 3D action recognition. Specifically,

we train popular graph-based meth-  Method  Top-1 (%)t Top-5 (%)
ods (STGCN [100] and 2s-AGCN [35])  §T.GCN 795 94.3

on HuMMan. Results are shown in 25-ACCN 741 95.4
Table 2. Compared to NTU RGB+D,
a large-scale 3D action recognition
dataset and a standard benchmark
that contains 120 actions [55], HuMMan may be more challenging since 2s-
AGCN [85] achieves Top-1 accuracy of 88.9% and 82.9% on NTU RGB+D 60
and 120 respectively, but 74.1% only on HuMMan. The difficulties come from
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the whole-body coverage design in our action set, instead of over-emphasis on
certain body parts (e.g. NTU RGB+D has a large proportion of upper body
movements). Moreover, we observe a significant gap between Top-1 and Top-
5 accuracy (~30%). We attribute this phenomenon to the fact that there are
plenty of intra-actions in HuMMan. For example, there are similar variants of
push-ups such as quadruped push-ups, kneeling push-ups, and leg push-ups. This
challenges the model to pay more attention to the fine-grained differences in these
actions. Hence, we find HuMMan would serve as an indicative benchmark for

fine-grained action understanding.

3D Keypoint Detection. With
the well-annotated 3D keypoints,
HuMMan supports 3D keypoint
detection. We employ popular

Table 3: 3D Keypoint Detection. PA:
PA-MPJPE. Row 1-3: FCN |

]; Row 4-6:

2D-to-3D lifting backbones [03, Video3D [77]

] as single-frame and multi-
frame baselines on HuMMan. We Train Test MPJPE | PA |
experiment with different train-
ing and test settings to ob- HuMMan HuMMan 78.5 46.3
tain the baseline results in Ta- H36M  AIST++ 133.9 73.1
ble 3. First, in-domain training HuMMan AIST++ 116.4 67.2
and testing on HuMMan are pro- HuMMan HuMMan 73.1 43.5
vided. The values are slightly H36M  AIST++ 128.5 72.0
higher than the same baselines on HuMMan AIST++ 109.2 63.5

Human3.6M [29] (on which FCN
obtains MPJPE of 53.4 mm). Sec-
ond, methods trained on HuM-

Man tend to generalize better than on Human3.6M. This may be attributed
to HuMMan’s diverse collection of subjects and actions.

3D Parametric Human Recovery. HuM-
Man provides SMPL annotations, RGB and
RGB-D sequences. Hence, we evaluate HMR
[36], not only one of the first deep learn-
ing approaches towards 3D parametric hu-
man recovery but a fundamental compo-
nent for follow-up works [43,45], to repre-
sent image-based methods. In addition, we
employ VoteHMR [54], a recent work that
takes point clouds as the input. In Table 4,
we find that HMR has achieved low MPJPE
and PA-MPJPE, which may be attributed to
the clearly defined action set and the train-

Table 4: 3D Parametric Hu-
man Recovery. Image- and
point cloud-based methods are
evaluated

Method MPJPE | PA |
HMR 54.78  36.14
VoteHMR ~ 144.99  106.32

ing set already includes all action classes. However, VoteHMR is not performing

well. We argue that existing point cloud-based methods [33,54,

| rely heavily on

synthetic data for training and evaluation, whereas HuMMan provides genuine
point clouds from commercial RGB-D sensors that remain challenging.
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Textured Mesh Reconstruction. Tahle 5: Geometry Reconstruction
We gauge mesh geometry reconstruc-

tion quality of PIFU, PIFUHD, and Method PIFu PIFuHD F4D
FunctiondD (F4D) in Table 5 with
Chamfer distance (CD) as the metric. ~ CD (1072 m) 7.92 773 1.80
Note that benefiting from the multi-

modality signals, HuMMan supports

a wide range of surface reconstruction methods that leverage various input types
like PIFu [82] (RGB-only), 3D Self-Portrait [52] (single-view RGBD video), and
CON [79] (multi-view depth point cloud).

Mobile Device. It is under-

explored that if model trained

with the regular device is readily Table 6: Mobile Device. The models are
transferable to the mobile device. trained with different training sets, and eval-
In Table 6, we study the perfor- uated on HuMMan iPhone test set. Kin.:
mance gaps across devices. For Kinect training set. iPh.: iPhone training set.
the image-based method, we find

that there exists a considerable  Method  Kin. iPh. MPJPE | PA |
domain gap across devices, de-

spite that they have similar res- HMR v B 97.81 52.74
olutions. Moreover, for the point HMR - v 72.62 41.86
cloud-based method, the domain VoteHMR v/ B 255.71  162.00

VoteHMR, - v 83.18 61.69

gap is much more significant as
the mobile device tends to have
much sparser point clouds as a
result of lower depth map resolution. Hence, it remains a challenging problem
to transfer knowledge across devices, especially for point cloud-based methods.

8 Discussion

We present HuMMan, a large-scale 4D human dataset that features multi-modal
data and annotations, inclusion of mobile device, a comprehensive action set,
and support for multiple tasks. Our experiments point out interesting directions
that await future research, such as fine-grained action recognition, point cloud-
based parametric human estimation, dynamic mesh sequence reconstruction,
transferring knowledge across devices, and potentially, multi-task joint training.
We hope HuMMan would facilitate the development of better algorithms for
sensing and modeling humans.
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