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1 Overview

In this supplementary material, we first provide the implementation details of
the proposed model calibration in Section 2. We present further quantitative
analysis and discussion on the fidelity of event timestamps, the running time, and
the temperature effect in Section 3. We show additional qualitative comparison
among real events, our results and other simulated ones in Section 4. Finally, we
provide more visual comparisons on two applications, i.e. semantic segmentation
and intensity-image reconstruction, on real event data in Section 5 and Section
6, respectively.

2 Implementation Details of Model Calibration

To train deep neural networks generalizing to a specific DVS camera, it is nec-
essary to accurately calibrate the parameters in the proposed event model and
generate realistic events for this DVS camera. The parameters, including k1,
k2,..., k6, are related to sensors and environment (Please see Eq. (10) in the
original paper for details). Ideally, we can look up the specification of the cam-
era and conduct statistical experiments on noise effects to determine the pa-
rameters, similar to V2E [3]. However, the statistical experiments need complex
equipment, and thus, are difficult to implement. In this paper, we provide a cal-
ibration method to get the parameters from a sequence of intensity frames and
corresponding events.

Specifically, for every event recorded between two adjacent frames Fi and
Fi+1, we can get the brightness conditions when the event occurs, including an
approximated brightness L̄ = (Fi + Fi−1)/2 and a brightness changes ∆L =
Fi − Fi−1. As intensity frames have limited dynamic range resulting in the loss
of details, the events relevant to the black and white regions of the frames are
removed from calibration. Furthermore, we collect the time interval τ between
this event and the last event triggered at the same pixel. Then, given a specific
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pair of L̄ and ∆L, we can find the histogram of τ with a form of inverse Gaussian
function as shown in Fig. 1 and fit it using maximum-likelihood estimation.

(a) Histogram of � given � (b) Histogram of � given ∆�

Fig. 1. Distribution of the time interval τ between two adjacent events at the same
pixel. τ has an inverse Gaussian distribution / Lévy distribution. (a) The larger bright-
ness change ∆L, the more compressed the distribution. (b) The larger average bright-
ness L̄, the more spread out the distribution. The statistical result is consistent with
the proposed model.

After obtaining the coefficients of the inverse Gaussian-distributed τ , we
calculate the drift parameter µ and scale parameter σ of the Brownian motion-
based event model for each pair of L̄ and ∆L from Eq (13) in the original paper.
According to Eq (10)(11) in the original paper,

µ =
k1

L̄+ k2
kdL + k4 + k5L̄

σ =
k3

L̄+ k2

√
L̄+ k6,

(1)

in which, kdL = ∆L
∆t . Theoretically, given a set of {µm, σm, L̄m, ∆Lm},m ∈ N ,

parameters k1, k2, ..., k6 can be calculated by multivariable nonlinear regression.
In practice, we find that it is hard to get an accurate estimation, so that we adopt
linear regression several times and obtain the parameters sequentially.

As for the drift parameter µ in Eq. (1), given a specific L̄n, µ gets linear
relation with the brightness change ∆L formulated as µ = a(L̄n)∆L + b(L̄n),
which is consistent with the observation in Fig. 2 (a). We estimate robust re-
gression coefficients for the linear model and obtain {an, bn, L̄n}. Then, there is
a linear relation between a−1 and L̄ and thus, we obtain k2 by linearly fitting
a−1 = k−1

1 L̄+k−1
1 k2 as shown in Fig. 2 (b). After that, we set c = (L̄+k2)

−1kdL,
and estimate robust regression coefficients for the multivariable linear model
b = k1c+ k5L̄+ k4 as shown in Fig. 2 (c).

As for the σ-related parameters in Eq. (1), we find that the auto-calibration
method is limited by the quality of APS, image quantization, and the assumption
of constant brightness changes in our model, which introduces large errors on
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Fig. 2. µ-related parameter estimation. We conduct 3-time robust linear regression
to estimate µ-related parameters sequentially. (a) Linear relation between µ and the
brightness change ∆L given a specific L̄. (b) k2 is obtained by fitting the linear model
between a−1 and L̄. (c) k1, k5, k4 are obtained by multivariable linear regression, where
c = (L̄+ k2)

−1kdL.

σ-related parameters in challenging scenes, such as high dynamic range and fast
motion. Therefore, we calibrate the σ-related parameters manually.

3 Quantitative Analysis and Discussion

To further validate the effectiveness of the proposed DVS-Voltmeter, we compare
DVS-Voltmeter with existing methods [4,3] in terms of the fidelity of timestamps,
the running time and the temperature effect.

Table 1.Quantitative comparison in terms of the Wasserstein distance of time intervals
(ms) between real events [1] and simulated ones as well as the running time (ms per
frame pair) with the size 346× 260.

Methods Vid2E [4] V2E [3] Ours

Wasserstein Distances (ms) 228.9 226.6 47.9

Running time (ms per pair) 0.4 14.7 15.5

3.1 Fidelity of Event Timestamps

To quantitatively analyze the fidelity of event timestamps, for each event, we
calculate the time interval τ after the last event triggered at the same pixel, and
then measure the Wasserstein distance of τ . The comparison between real event
dataset [1] and the simulated ones is provided in Table 1. Our DVS-Voltmeter
produces much more realistic event data compared with the existing simulators.

3.2 Running time

Table 1 shows the average time cost based on the video frames with a size of 346×
260. Vid2E [4] runs on a RTX A5000 GPU, while V2E [3] and our DVS-Voltmeter



4 S. Lin et al.

run on a 3.7GHz AMD Ryzen Threadripper 3970X CPU. DVS-Voltmeter is
comparable to V2E [3], while less efficient than Vid2E [4] due to its complex
random number sampling and CPU implement. We leave GPU implement of
DVS-Voltmeter in the future.

3.3 Temperature Effect

To quantify the effectiveness of the proposed model, we conduct an experiment
to compare the temperature effect of our simulated events with the statistical
results from real DVS. We adjust the temperature-related parameter k4 in the
proposed model according to Eq. (4) in the original paper, and continuously feed
a single dark image into the simulator to measure the noise rate.

Fig. 3 shows leak event rate as a function of temperature plotted as the log
of the quantity versus reciprocal of absolute temperature. The temperature axis
is labeled with centigrade. As our simulator is designed based on the DVS pixel
circuit and incorporates a noise term to model the noises from temperature,
it naturally represents the distribution of real events. As shown in Fig. 3(a),
the number of leak events increases with the temperature, similar to the real
statistical analysis in Fig. 3(b).

(a) Ours (b) Real

Fig. 3. Comparisons on the effects of temporature. We continuously feed a single dark
image into our simulator and measure the noise rate at different temperature. (a)(b)
are the results of our simulator and real DAVIS240C data provided by [7]. Our noise
rate is similar to the real statistical analysis.
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4 More Qualitative Comparison

We exhibit additional side-by-side comparison of real public event datasets
[6,2] and the simulated reproductions from Vid2E [4], V2E [3] and our DVS-
Voltmeter. Fig. 4 to Fig. 7 show the events between four adjacent frames in
forms of spatiotemporal event clouds, exponential time surface [5] with exponen-
tial decay 3.0ms and probability density function histograms of time intervals.

(a) Vid2E (b) V2E (c) Ours (d) Real

Fig. 4. Comparison on DAVIS240C ‘office zigzag’ data [6]. (a)(b)(c) Simulated repro-
duction from Vid2E [4], V2E [3], our DVS-Voltmeter. (d) real DAVIS240C data. We
illustrate 3D clouds, 2D time surfaces, and probability density function histograms of
event data from top to bottom. The color pair (red, blue) represents the polarity (1,-
1) of events. The proposed DVS-Voltmeter gains more randomness and the generated
events resemble real data.
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(a) Vid2E (b) V2E (c) Ours (d) Real

2-200

Fig. 5. Comparison on DAVIS240C ‘calibration’ data [6]. (a)(b)(c) Simulated repro-
duction from Vid2E [4], V2E [3], our DVS-Voltmeter. (d) real DAVIS240C data. We
illustrate 3D clouds, 2D time surfaces, and probability density function histograms of
event data from top to bottom. The color pair (red, blue) represents the polarity (1,-
1) of events. The proposed DVS-Voltmeter gains more randomness and the generated
events resemble real data.
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(a) Vid2E (b) V2E (c) Ours (d) Real

All

Fig. 6. Comparison on DAVIS346 ‘rec1487339175’ data [2]. (a)(b)(c) Simulated repro-
duction from Vid2E [4], V2E [3], our DVS-Voltmeter. (d) real DAVIS346 data. We
illustrate 3D clouds, 2D time surfaces, and probability density function histograms of
event data from top to bottom. The color pair (red, blue) represents the polarity (1,-
1) of events. The proposed DVS-Voltmeter gains more randomness and the generated
events resemble real data.
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(a) Vid2E (b) V2E (c) Ours (d) Real

All

Fig. 7. Comparison on DAVIS346 ‘rec1487593224’ data [2]. (a)(b)(c) Simulated repro-
duction from Vid2E [4], V2E [3], our DVS-Voltmeter. (d) real DAVIS346 data. We
illustrate 3D clouds, 2D time surfaces, and probability density function histograms of
event data from top to bottom. The color pair (red, blue) represents the polarity (1,-
1) of events. The proposed DVS-Voltmeter gains more randomness and the generated
events resemble real data.
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5 More Results on Semantic Segmentation Application

In this section, we provide more visual comparison on semantic segmentation
application in Fig. 8 to Fig. 10. As there is a good resemblance between real
events and the simulated ones generated from our simulator, the segmentation
network trained on our data can give a more accurate and detailed results.
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Fig. 8. Visual comparisons on semantic segmentation on Ev-Seg data [1]. The network
trained on our simulated events generates much accurate and detailed results.
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Fig. 9. Visual comparisons on semantic segmentation on Ev-Seg data [1]. The network
trained on our simulated events generates much accurate and detailed results.
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Fig. 10. Visual comparisons on semantic segmentation on Ev-Seg data [1]. The network
trained on our simulated events generates much accurate and detailed results.
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6 More Results on Intensity-Image Reconstruction
Application

We provide more visual comparison on intensity-image reconstruction in Fig. 11
to Fig. 13. As the proposed simulator is designed based on the statistics and
circuit principle of events, it naturally encourages the reconstructed images to
have natural image statistics. The results show that the network trained on our
simulated events reconstructs more visually pleasing images with finer details
and fewer artifacts.
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Fig. 11. Visual comparisons on intensity-image reconstruction on Event Camera
Dataset [6]. The network trained on our simulated events generates much sharper
results with fewer artifacts.
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Fig. 12. Visual comparisons on intensity-image reconstruction on Event Camera
Dataset [6]. The network trained on our simulated events generates much sharper
results with fewer artifacts.
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Fig. 13. Visual comparisons on intensity-image reconstruction on Event Camera
Dataset [6]. The network trained on our simulated events generates much sharper
results with fewer artifacts.
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