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Abstract. Developing neuromorphic intelligence on event-based datasets
with Spiking Neural Networks (SNNs) has recently attracted much re-
search attention. However, the limited size of event-based datasets makes
SNNs prone to overfitting and unstable convergence. This issue remains
unexplored by previous academic works. In an effort to minimize this gen-
eralization gap, we propose Neuromorphic Data Augmentation (NDA), a
family of geometric augmentations specifically designed for event-based
datasets with the goal of significantly stabilizing the SNN training and
reducing the generalization gap between training and test performance.
The proposed method is simple and compatible with existing SNN train-
ing pipelines. Using the proposed augmentation, for the first time, we
demonstrate the feasibility of unsupervised contrastive learning for SNNs.
We conduct comprehensive experiments on prevailing neuromorphic vi-
sion benchmarks and show that NDA yields substantial improvements
over previous state-of-the-art results. For example, the NDA-based SNN
achieves accuracy gain on CIFAR10-DVS and N-Caltech 101 by 10.1%
and 13.7%, respectively. Code is available on GitHub (URL).

Keywords: Data Augmentation, Event-based Vision, Spiking Neural
Networks

1 Introduction

Spiking Neural Networks (SNNs), a representative category of models in neuro-
morphic computing, have received attention as a prospective candidate for low-
power machine intelligence [52]. Unlike the standard Artificial Neural Networks
(ANNs), SNNs deal with binarized spatial-temporal data. A popular example
of this data is the DVS event-based dataset.1 Each pixel inside a DVS camera
is operated independently and asynchronously, reporting new brightness when
it changes, and staying silent otherwise [61]. The spatial-temporal information
encoded in DVS data can be suitably leveraged by the temporally evolving spik-
ing neurons in SNNs. In Fig. 1, we describe the process of data recording with a

1 In this paper, most event-based datasets we use are collected with Dynamic Vision
Sensor (DVS) cameras, therefore we also term them as DVS data for simplicity.
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Fig. 1: Left : Event data collection of a chair image from N-Caltech101 [47], these events
are too sparse to process, thus we integrate them into frames of sparse tensors. Right :
Our neuromorphic data augmentation on events data.

0 50 100 150 200
Epoch

20

40

60

80

100

Ac
cu

ra
cy

(a) ResNet-19 w/o NDA

Training
Test

0 50 100 150 200
Epoch

40

60

80

100
(b) ResNet-19 w/ NDA

Training
Test

0 50 100 150 200
Epoch

20

40

60

80

100
(c) VGG-11 w/o NDA

Training
Test

0 50 100 150 200
Epoch

20

40

60

80

100
(d) VGG-11 w/ NDA

Training
Test

Fig. 2: Training/test accuracy curves of ResNet-19 and VGG-11 on CIFAR10-DVS
dataset. Networks trained with NDA tends to have better convergence.

DVS camera. First, an RGB image is programmed to move in a certain trajec-
tory (or the camera moves in a reverse way), and then the event camera records
the brightness change and outputs an event stream. Note that the raw event-
based DVS data is too sparse to extract features. Thus, we integrate the events
into multiple frames and we study this sparse frame-based data [63] (see the
events2frames integration in Fig. 1).

Due to the high cost of collecting DVS data [43], existing DVS datasets usu-
ally contain limited data instances [37]. Consequently, models trained on raw
DVS datasets exhibit large training-test performance gaps due to overfitting.
For instance, CIFAR10-DVS [37] only contains 10k data points while CIFAR-
10 RGB dataset contains 60k data points. In Fig. 2, we plot the training-test
accuracies on CIFAR10-DVS using VGG-11 [56] and ResNet-19 [28]. It is obvi-
ous that training accuracy increases swiftly and smoothly. On the contrary, the
test accuracy oscillates and remains at half of the training accuracy. Although
advanced training algorithms [69,17] have been proposed to improve the gen-
eralization of SNNs, data scarcity remains a major challenge and needs to be
addressed. A naive way to increase DVS data samples is using the DVS cam-
era to record additional augmented RGB images. However, during training, this
carries prohibitively high latency overhead due to the cost of DVS recording.
Because of this, we focus on a data augmentation technique that can be directly
applied to DVS data in order to balance efficiency and effectiveness.
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We propose Neuromorphic Data Augmentation (NDA) to transform the off-
the-shelf recorded DVS data in a way that prevents overfitting. To ensure the
consistency between augmentation and event-stream generation, we extensively
investigate various possible augmentations and identify the most beneficial fam-
ily of augmentations. In addition, we show that the proposed data augmentation
techniques lead to a substantial gain of training stability and generalization per-
formance (cf. Fig. 2). Even more remarkably, NDA enables SNNs to be trained
through unsupervised contrastive learning without the usage of labels. Fig. 1
(right) demonstrates four examples where NDA is applied.

The main contributions of this paper are:

1. We propose Neuromorphic Data Augmentation for training Spiking Neural
Networks on event datasets. Our proposed augmentation policy significantly
improves the test accuracy of the model with negligible cost. Furthermore,
NDA is compatible with existing training algorithm.

2. We conduct extensive experiments to verify the effectiveness of our proposed
NDA on several benchmark DVS datasets like CIFAR10-DVS, N-Caltech
101, N-Cars, and N-MNIST. NDA brings a significant accuracy boost when
compared to the previous state-of-the-art results.

3. In a first of its kind analysis, we show the suitability of NDA for unsuper-
vised contrastive learning on the event-based datasets, enabling SNN feature
extractors to be trained without labels.

2 Related Work

2.1 Data Augmentation

Today, deep learning is a prevalent technique in various commercial, scientific,
and academic applications. Data augmentation [54] plays an indispensable role
in the deep learning model, as it forces the model to learn invariant features,
and thus helps generalization. The data augmentation is applied in many ar-
eas of vision tasks including object recognition [8,42,9], objection detection [71],
and semantic segmentation [51]. Apart from learning invariant features, data
augmentation also has other specific applications in deep learning. For example,
adversarial training [19,59] leverages data augmentation to create adversarial
samples and thereby improves the adversarial robustness of the model. Data
augmentation is also used in generative adversarial networks (GAN) [1,31,23,3],
neural style transfer [30,20], and data inversion [68,41]. For event-based data,
there are few data augmentation techniques. EventDrop [22], for example, ran-
domly removes several events due to noise produced in the DVS camera. Our
work, on the other hand, tackles the consistency problem of directly applying
data augmentations to event-based data. A related augmentation technique is
video augmentation [4], which also augmentation spatial-temporal data. The
main difference is that video augmentation can utilize photometric and color
augmentations while our NDA can only adopt geometric augmentations.
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2.2 Spiking Neural Networks

Spiking Neural Networks (SNNs) are often recognized as the third generation of
generalization methods for artificial intelligence [2]. Unlike traditional Artificial
Neural Networks (ANNs), SNNs apply the spiking mechanism inside the network.
Therefore, the activation in SNNs is binary and adds a temporal dimension. Cur-
rent practices consist of two approaches for obtaining an SNN: Direct training
and ANN-to-SNN conversion. Conversion from a pre-trained ANN can guar-
antee good performance [11,15,53,38,39,25], however, in this paper, we do not
study conversion since our topic is a neuromorphic dataset that requires direct
training. Training SNNs [64,63,26,40,12,24] requires spatial-temporal backprop-
agation. Recently, more methods and variants for such spatio-temporal training
have been proposed: [50] present hybrid training, [69,32] propose a variant of
batch normalization [29] for SNN; [49,17] propose training threshold and po-
tential for better accuracy. However, most of these works focus on algorithm
or architecture optimization to achieve improved performance. Because of their
sparse nature, DVS datasets present an orthogonal problem of overfitting that
is not addressed by the previously mentioned works.

3 Conventional Augmentations for RGB Data

We generally divide the current data augmentation techniques for ANN training
on natural RGB image datasets into two types, namely photometric & color
augmentations and geometric augmentations.
Photometric and Color Augmentations. This type indicates any augmentations
that can transform the image illumination and color space. Fig. 3 (2nd-5th ex-
amples) demonstrates some examples of increasing contrast, saturation, and im-
posing gray scale as well as Gaussian blur. Typically, photometric augmentation
is applied to an image by changing each pixel value. For instance, the contrast
enhancement will use f(x) = clip(ax − 1

2a + 1
2 , 0, 1) where a > 1, to push pixel

values close to black (zero value) and white (one value) and is applied in a pixel-
wise manner. The color augmentation includes some color space transformation
by casting more red, blue, or green colors on the image (e.g . saturation and
grayscale). Generally, both Photometric and Color augmentations can be cate-
gorized as value-based augmentation where a transformation f(x) applies to all
pixels. Therefore, we also categorize augmentations like a Gaussian filter where
a convolution with a Gaussian kernel is applied to this class.
Geometric Augmentations. Unlike value-based augmentations, geometric aug-
mentations do not seek to alter every pixel value with a certain criterion. Rather,
they change the images based on the coordinate of each pixel, i.e. the index of
each element. In Fig. 3 (6th-9th examples), we visualize several geometric aug-
mentation examples of horizontal flipping, resizing, rotation and cutout. For
example, horizontal flipping reverses the order of each pixel and turns the im-
age by 180 degrees. Rotation can be viewed as moving the location of pixels to
another place. Cutout [13] applies a 0/1 mask to the original image. All of these
augmentations are index-based.
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Fig. 3: Types of RGB data augmentation. The 2-5th examples include the photometric
& color augmentations and the 6-9th examples contain the geometric augmentations.

4 Neuromorphic Augmentations for Event-Based Data

The event-based datasets contain sparse, discrete, and time-series samples, which
have fundamentally different formats when compared to RGB images. As a re-
sult, the above conventional augmentations cannot all be directly applied. To
explore which augmentation is useful for event data, we study the case of pho-
tometric and geometric augmentations separately. We also discuss the potential
application of neuromorphic data augmentation.

4.1 DVS Data and Augmentation

DVS cameras are data-driven sensors: their output depends on the amount of
motion or brightness change in the scene [18]. Mathematically, the output of
event camera xE ∈ Bt×p×w×h is a 4-D tensor (B is the binary domain {0, 1}
and here we treat it as a sparse binary tensor, i.e. we also record 0 if there are
no events), where t is the time step, p is the polarity (p = 2 corresponding to
positive and negative polars) and w, h are the width and the height of the event
tensor. The event generation (see details in [18]) can be modeled as

xE(t, 1, x, y) =

{
1 if logV (t, x, y)− logV (t−∆t, x, y) > α

0 otherwise
, (1)

xE(t, 0, x, y) =

{
1 if logV (t, x, y)− logV (t−∆t, x, y) < −α

0 otherwise
, (2)

where, xE(t, 1, x, y) is the generated event stream at time step t, spatial coordi-
nate (x, y) and positive polarity. V is the photocurrent (or “brightness”) of the
original RGB image. ∆t is the time elapsed since the last event generated at the
same coordinate. During DVS data recording, the RGB images are programmed
to move in a certain trajectory (or the camera moves in a reverse way). As time
evolves, if the pixel value changes fast and exceeds a certain threshold α, an
event will be generated, otherwise it will stay silent, meaning that the output
is 0 in xE . The event stream will be split into two channels, i.e. two polarities.
Positive events are integrated into positive polarity and vice versa.

Consider the RGB data as x ∈ C3×w×h (C is the continuous domain in [0, 1]).
We use the function f(x) : C3×w×h → C3×w×h to augment the RGB data. Note
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Table 1: Comparison among all potential augmentation for DVS data. fP and fG
mean photometric and geometric augmentations. C stands for the continuous domain
in [0, 1] and B stands for the binary domain {0, 1}.
Aug. Combination Input-output Pros Cons

fP g ◦ fP (x) C3×w×h → Bt×p×w×h
i. Effective augmentation

i. Impractical to record

huge amount of DVS data

fP fP ◦ g(x) C3×w×h → Ct×p×w×h
i. Practical

i. Not effective,

ii. Creates continuous data

fG g ◦ fG(x) C3×w×h → Bt×p×w×h
i. Effective augmentation

i. Impractical to record

huge amount of DVS data

fG fG ◦ g(x) C3×w×h → Bt×p×w×h i. Practical and effective,

ii. Approximates g ◦ fG(x)
None

that f(x) can be both photometric or geometric augmentation, and is randomly
sampled from a set of augmentations. The optimization objective of training an
ANN with RGB augmented data can be given by minw

1
n

∑n
i=1 ℓ(w, f(xi),yi).

Now consider event-based data xE . We define RGB to DVS data function
xE = g(x) : C3×w×h → Bt×p×w×h.2 A naive approach to augment DVS data
when training SNN is to first augment RGB data and then translate them to
event-stream form, i.e. g ◦ f(x). This method can ensure the augmentation is
correctly implemented as well as yield the event-stream data. In fact, training
with Poisson encoding [14,52] uses such form g ◦ f(x) where g is the encoding
function that translates the RGB images to spike trains. However, unlike Poisson
encoding which can be implemented with one line of code, it would be very
time-consuming and expensive to generate a large amount of DVS augmented
data, i.e. g ◦ f(x). We propose a more efficient method, the neuromorphic data
augmentation fNDA which is directly applied to the DVS data fNDA ◦ g(x). As
a result, we avoid the expensive g ◦ f(x) in the training phase.

Ideally, NDA is supposed to satisfy fNDA ◦ g(x) ≈ g ◦ f(x). To fulfill this
commutative law, the NDA data augmentation function must have the mapping
of fNDA : Bt×p×w×h → Bt×p×w×h. Without loss of generality, a core component
is to evaluate whether an arbitrary augmentation f(·) can achieve

f(Hα [logV (t)− logV (t−∆t)]) ≈ Hα [logf(V (t))− logf(V (t−∆t))] , (3)

whereHα[·] is the Heaviside step function (i.e. returns 1 when the input is greater
than α otherwise 0). Note that we omit the spatial coordinate here. Recall that
photometric & color augmentation are value-based augmentation schemes. This
brings two problems: first, on the left hand side of Eq. (3), the augmented DVS
data is not event-stream since the value-based transformation outputs contin-
uous values. Second, on the right hand side of Eq. (3), predicting the event is

2 Note that using event camera g(x) to generate DVS data is expensive and impractical
during run-time. It is easier to pre-collect the DVS data with a DVS camera and,
then work with the DVS data during runtime.
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intractable. Due to brightness difference change, it is unclear whether the event
is activated or remains silent after augmentation (f(logV (t))− f(logV (t− 1))).
Therefore, we cannot use this type of augmentation in NDA.

It turns out that index-based geometric augmentation is suitable for NDA.
First, the geometric transformation only changes the position, and therefore the
augmented data is still maintained in event-stream. Second, assume an origi-
nal event which has logV (t) − logV (t − 1) > α is still generated in the case of
geometric augmentation f(logV (t))− f(logV (t− 1)). The only difference is po-
sition change which can be effectively predicted by the left hand side of Eq. (3).
For example, rotating a generated set of DVS data and generating a rotated
set of DVS data have the same output. Therefore, our NDA consists of several
geometric augmentations:
Horizontal Flipping. Flipping is widely used in computer vision tasks. It turns
the order of horizontal dimension w. Note that for DVS data, the polarity and
the time dimension are kept intact. We set the probability of flipping to 0.5.
Rolling. Rolling means randomly shifting the geometric position of the DVS
image. Similar to a bit shift, rolling can move the pixels left or right in the
horizontal dimension. In the vertical dimension, we can also shift the pixels up
or down. Note that both circular and non-circular shifts are acceptable since
DVS image borders are likely to be 0. Each time we apply rolling, the horizontal
shift value a and the vertical shift value b are sampled from an integer uniform
distribution U(−c, c), where c is a hyper-parameter.
Rotation. The DVS data will be randomly rotated in the clockwise or counter-
clockwise manner. Similar to rolling, each time we apply rotation, the degree of
rotation is sampled from a uniform distribution U(−d, d), where positive degree
means clockwise rotation and vice versa. d is a hyperparameter.
Cutout. Cutout was originally proposed in [13] to address overfitting. This
method randomly erases a small area of the image, with a similar effect of
dropout [58]. Mathematically, first, a square is generated with random size and
random position. The side length is sampled from an integer uniform distribu-
tion U(1, e), and then a center inside the image is randomly chosen to place the
square. All pixels inside the square are masked off.
Shear. Shear mapping originated from plane geometry. It is a linear map that
displaces each point in a fixed direction [62]. Mathematically, a horizontal shear
(or ShearX) is a function that takes point (x, y) to point (x+my, y). All pixels
above x-axis are displaced to the right if m > 0, and to the left if m < 0. Note
that we do not use vertical shear (ShearY) following prior arts [8,9]. The shear
factor m is also sampled from some uniform distribution U(n, n).
CutMix. Proposed in [67], CutMix is an effective linear interpolation of two
input data and labels. Consider two input data samples xN1 and xN2 and their
corresponding label y1,y2. CutMix is formulated as

x̃n = MxN1 + (1−M)xN2, ỹ = βy1 + (1− β)y2, (4)

where M is a binary mask (similar to the one used in Cutout), and β is the
ratio between the area of one and the area of zero in that mask.
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Table 2: Look-up table for exchanging N with augmenta-
tion hyper-parameters.

N Rolling c Rotation d Cutout e Shear n

1 3 15 8 0.15
2 5 30 16 0.30
3 7 45 24 0.45
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Fig. 4: NDA for SSL-SNN.

4.2 Augmentation Policy

With each above augmentation, one can generate more training samples. In this
section, we explore the combination and intensity of the considered augmenta-
tions. We first set flipping and CutMix as the default augmentation, which means
they are always enabled. The flipping probability is set to 0.5 and the CutMix in-
terpolation factor is sampled from β(1, 1). Second, for all time step of input data,
we randomly sample several augmentations from {Rolling, Rotation, Cutout,
ShearX}, inspired by prior work [9,46,70]. We define two hyper-parameters: M
for the number of augmentations and N for the intensity of augmentations. That
is, before each forward pass, we randomly sample M augmentations with N -level
intensity (the higher the N , the greater the difference between augmented and
original data). M can be set from 1 to 4. In Table 2, we describe the corre-
sponding relationship between N and the augmentation hyper-parameters. For
instance, using M2N3 policy during a forward pass yields 2 randomly sampled
augmentations with N = 3 intensity as shown in Table 2. Our algorithm can
be simply implemented and can be an add-on extension to existing SNN train-
ing methods. In the following experiments, we will show how the number of
augmentations and the intensity of augmentations impact test accuracy.

4.3 Application to Unsupervised Contrastive Learning

Besides improving the supervised learning of SNNs, we show another appli-
cation of NDA, i.e. unsupervised contrastive learning for SNNs. Unsupervised
contrastive learning [27,5,6,21] is a widely used and well-performing learning al-
gorithm without the requirement of labels. The idea of contrastive learning is to
learn the similarity between paired input images. Each paired output can be ei-
ther similar or different. It would be easy to identify different images, as they are
naturally distinct. However, for a similar image pair, it is required to augment
the same image to different tensors and optimize the network to output the same
feature. This task is a simpler task that doesn’t require any labels as compared
to image classification or segmentation, which makes it perfect for learning some
low-level features and transferring the model to some high-level vision tasks.

In this paper, we implement unsupervised contrastive learning for SNNs
based on a recent work Simple Siamese Network [7] with our proposed NDA, as
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illustrated in Fig. 4. First, a DVS data input xE is augmented into two sam-
ples: fNDA1(xE) and fNDA2(xE). Our goal is to maximize the similarity of two
outputs and one output is further processed by a predictor head to make the
final prediction. The contrastive loss is defined as the cosine similarity between
the predictor output and the encoder output. In contrastive learning, there is
a problem called latent space collapsing, meaning that the output of a network
is the same, irrespective of different inputs which can render the network use-
less. This collapsing can always yield minimum loss. To address this problem,
gradient detach is applied to the branch without predictor. It is noteworthy to
mention that all the contrastive learning schemes require data augmentation to
make model learn invariant features. As a broader impact, this could be helpful
when the event camera collects new data that is not easy to be labeled because
of raw events.

After the unsupervised pre-training stage, we drop the predictor and only
save the encoder part. This encoder is used for transfer learning, i.e. construct
a new head (the last fully-connected layer a.k.a the classifier) and finetune the
model. We will provide transfer results in the experiments section below.

5 Experiments

In this section, we will verify the effectiveness and efficiency of our proposed
NDA. In section 5.2, we compare our model with existing literature. In sec-
tion 5.3, we analyze our method in terms of sharpness and efficiency. In sec-
tion 5.1, we give an ablation study of our methods. In section 5.4, we provide
the results of unsupervised contrastive learning.
Implementation details. We implement our experiments with the Pytorch pack-
age. All our experiments are run on 4 GPUs. We use ResNet-19 [28,69] and
VGG-11 [56,17] as baseline models. Note that all ReLU layers are changed to
the Leaky integrate-and-fire module and all max-pooling layers are changed to
average pooling. We use tdBN [69] as our baseline SNN training method. For our
own implementation, we only change the data augmentation part and keep other
training hyper-parameters aligned. We use M1N2 NDA configuration for all our
experiments. The total batch size is set to 256 and we use Adam optimizer. For
all our experiments, we train the model for 200 epochs and the learning rate is
set to 0.001 followed by a cosine annealing decay [45]. The weight decay is 1e−4.
We verify our method on the following DVS benchmarks:
CIFAR10-DVS [37]. CIFAR10-DVS contains 10K DVS images recorded from
the original CIFAR10 dataset. We apply a 9 : 1 train-valid split (i.e. 9k training
images and 1k validation images). The resolution is 128 × 128, we resize all of
them to 48× 48 in our training and we integrate the event data into 10 frames
per sample.
N-Caltech 101 [47]. N-Caltech 101 contains 8831 DVS images recorded from the
original Caltech 101 dataset. Similarly, we apply 9 : 1 train-valid split and resize
all images to 48 × 48. We use the spikingjelly package [16] to process the data
and integrate them into 10 frames per sample.
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Table 3: Ablation study: comparison between photometric/color augmentation and
geometric augmentation, and comparison with the intensity and the number of the
augmentation per data.

Dataset Photo/Color Geo−M1N1 Geo−M1N2 Geo−M2N2 Geo−M3N3

CIFAR10-DVS 62.8 73.4 78.0 75.1 71.4
N-Caltech101 64.0 74.4 78.6 72.7 65.1

N-MNIST [47]. The neuromorphic MNIST dataset is a converted dataset from
MNIST. It contains 50K training images and 10K validation images. We pre-
process it in the same way as in N-Caltech 101.
N-Cars [57]. Neuromorphic cars dataset is a binary classification dataset with
labels either from cars or from background. It contains 7940 car and 7482 back-
ground training samples, 4396 car and 4211 background test samples. We pre-
process it in the same way as in N-Caltech 101.

5.1 Ablation Study

Augmentation Choice. In theory, photometric & color augmentations are not
supposed to be used for DVS data. To verify this, we compulsorily cast Color-
Jitter and GaussianBlur augmentation to the DVS data (note that the data is not
event-stream after these augmentations) and compare the results with geometric
augmentation. The results are shown in Table 3 (all entries are results trained
with ResNet-19). We find that photometric and color augmentation (Jitter +
GaussianBlur) performs much worse than geometric augmentation, regardless of
the dataset. This confirms our analysis that value-based augmentations are not
suitable for NDA.
Augmentation Policy. We also test the augmentation intensity as well as the
number of the augmentation. In Table 3, we show that the intensity of the aug-
mentation satisfies some bias-variance trade-off. The augmentation can become
neither too simple so that the data is not diverse enough, nor too complex so
that the data does not contain useful event information.

5.2 Comparison with Existing Literature

We first compare our NDA method on the CIFAR10-DVS dataset. The results
are shown in Table 4. We compare our method with Gabor-SNN, Streaming
rollout, tdBN, and PLIF [57,44,64,34,69,17]. Among these baselines, tdBN and
PLIF achieve better accuracy. We reproduce tdBN with our own implementa-
tions. When training with NDA, we use the best practice M1N2 for sampling
augmentations. With NDA, our ResNet-19 reaches 78.0% top-1 accuracy, outper-
forming the baseline without augmentation by a large margin. After scaling the
data to a resolution of 128, our method gets 81.7% accuracy on VGG-11 model.
We also compare our method on N-Caltech 101 dataset. There aren’t many SNN
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Table 4: Accuracy comparison with different methods on CIFAR10-DVS, N-Caltech
101, N-Cars, we use tdBN in our model. Acc. is referred as the top-1 accuracy.

Method Model
CIFAR10-DVS N Caltech-101 N-Cars

T Step Acc. T Step Acc. T Step Acc.

HOTS [35] N/A N/A 27.1 N/A 21.0 10 54.0
Gabor-SNN [57] 2-layer CNN N/A 28.4 N/A 28.4 - -
HATS [57] N/A N/A 52.4 N/A 64.2 10 81.0
DART [48] N/A N/A 65.8 N/A 66.8 - -
CarSNN [60] 4-layer CNN - - - - 10 77.0
CarSNN [60] 4-layer CNN2 - - - - 10 86.0
BNTT [32] 6-layer CNN 20 63.2 - - - -
Rollout [34] VGG-16 48 66.5 - - - -
SALT [33] VGG11 20 67.1 20 55.0 - -
LIAF-Net [65] VGG-like 10 70.4 - - - -
tdBN [69] ResNet-191 10 67.8 - - - -
PLIF [17] VGG-112 20 74.8 - - - -

tdBN (w/o NDA)3 ResNet-191 10 67.9 10 62.8 10 82.4
tdBN (w/. NDA) ResNet-191 10 78.0 10 78.6 10 87.2

tdBN (w/o NDA)3 VGG-11 10 76.2 10 67.2 10 84.4
tdBN (w/. NDA) VGG-11 10 79.6 10 78.2 10 90.1
tdBN (w/o NDA)3 VGG-112 10 76.3 10 72.9 10 87.4
tdBN (w/. NDA) VGG-112 10 81.7 10 83.7 10 91.9
1 Quadrupled channel number, 2 128× 128 resolution, 3 Our implementation.

works on this dataset. Most of them are non-neural network based methods us-
ing hand-crafted processing [35,57,48]. NDA can obtain a high accuracy network
with 15.8% absolute accuracy improvement over the baseline without NDA. Our
VGG-11 even reaches 83.7% accuracy with full 128×128 resolution. This indi-
cates that only improving the network training strategy is less effective. Next,
we test our algorithm on the N-Cars dataset. The primary comparison work
is CarSNN [60] which optimizes a spiking network and deploys it on the Loihi
chip [10]. tdBN trained ResNet-19 achieve 82.4% using 48×48 resolution. Simply
applying NDA improves the accuracy by 4.8% without any additional modifica-
tions. When training with full resolution, we have 4.5% accuracy improvement
with VGG-11.

Finally, we validate our method on the N-MNIST dataset (as shown in Table
5). N-MNIST is harder than the original MNIST dataset, but most baselines get
over 99% accuracy. We use the same architecture as PLIF. Our NDA uplifts the
model by 0.12% in terms of accuracy. Although this is a marginal improvement,
the final test accuracy is quite close to the 100% mark.

Evaluating NDA on ANN. We also evaluate if our method is applicable to ANNs.
We mainly compare our method with EventDrop on frame data [22], another
work that augments the event data by random dropping some events (like Cutout
used in NDA). In Table 6, we find NDA can greatly improve the performance
of ANN. For VGG-19, our NDA can boost the accuracy to 82.8%. For N-Cars
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Table 5: N-MNIST accuracy comparison
with different methods, we use tdBN in our
model.

Method Model Time Step Top-1 Acc.

Lee et al . [36] 2-layer CNN N/A 98.61
SLAYER [55] 3-layer CNN N/A 99.20
Gabor-SNN [57] 2-layer CNN N/A 83.70
HATS [57] N/A N/A 99.10
STBP [64] 6-layer CNN 10 99.53
PLIF [17] 4-layer CNN 10 99.61

tdBN (w/o NDA) 4-layer CNN 10 99.58
tdBN (w/. NDA) 4-layer CNN 10 99.70

Table 6: Comparison with EventDrop [22]
using ANNs for DVS datasets. EventDrop
models are ImageNet pre-trained.

Model Method N-Caltech 101 N-Cars

ResNet-34

Baseline [22]1 77.4 91.8
EventDrop [22]1 78.2 94.0
Ours (w/o NDA) 67.7 90.5
Ours (w/. NDA) 81.2 95.5

VGG-19

Baseline [22]1 72.3 91.6
EventDrop [22]1 75.0 92.7
Ours (w/o. NDA) 65.4 90.3
Ours (w/. NDA) 82.8 94.5

dataset, we adopt the same pre-processing as EventDrop, i.e. using 8 : 2 train-
validation split to optimize the model, and our method attains 1.8% higher
accuracy even without any ImageNet pre-training.

5.3 Analysis

Model Sharpness. Apart from the test accuracy, we can measure the sharpness of
a model to estimate its generalizability. A sharp loss surface implies that a model
has a higher probability of mispredicting unseen samples. In this section, we will
use two simple and popular metrics: (1) Hessian spectra and (2) Noise injection.
Hessian matrix is the second-order gradient matrix. The second-order gradient
contains the curvature information of the model. Here, we measure the topk
Hessian eigenvalues and the trace to estimate the sharpness. Low eigenvalue and
low trace lead to low curvature and better performance. We compute the 1st, 5th
eigenvalues as well as the trace of the Hessian in ResNet-19 using PyHessian [66].
The model is trained on CIFAR10-DVS with and without NDA. We summarize
the results in Table 7. We show that the Hessian spectra of the model trained
with NDA is significantly lower than that without NDA. Moreover, the trace of
the Hessian also satisfies this outcome.

Another way to measure the sharpness is noise injection. We randomly inject
Gaussian noise sampled from N (0, γ) into the model weights, where γ is a hyper-
parameter controlling the range of the noise. We run 5 times for each γ and
record the mean & standard deviation, which are summarized in Fig. 5. It can
be seen that the model with NDA is much more robust to the noise we imposed
on the weights. For example, when we set the noise to N (0, 0.01), the model
with NDA only suffers a slight 1.5% accuracy drop, while the model without
NDA has a 19.4% accuracy drop. More evidently, when casting N (0, 0.02) noise,
our NDA model suffers 11.3% accuracy decline, while the counterpart suffers a
drastic 43.4% accuracy decline. This indicates that NDA serves a similar effect
with regularization technique.

Algorithm Efficiency. Our NDA is efficient and easy to implement. To demon-
strate its efficiency, we hereby report the time cost of NDA.We use Intel XEON(R)
E5-2620 v4 CPU to test the data loader. When loading CIFAR10-DVS, the CPU
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Table 7: Hessian spectra comparison. λ1, λ5, T r refer
to the 1st, 5th highest eigenvalue and the trace of the
Hessian matrix. We record the model at 100, 200, 300
epochs. (The lower the Hessian spectrum, the flatter
the converged minimum is).

Epoch
w/o NDA w/. NDA

λ1 λ5 Tr λ1 λ5 Tr

100 910.7 433.4 6277 424.3 73.87 1335
200 3375 1416 21342 516.4 155.3 1868
300 3404 1686 20501 639.7 187.5 2323
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Fig. 6: Fire Rate of several LIF layers of
ResNet-19 trained on CIFAR10-DVS.

Table 8: Ablation Study: the effect of val-
idation dataset.

Method Acc. No Valid. Acc. 15% Valid.

PLIF [17] 74.8 69.0

w/o NDA 63.4 58.5
w/. NDA 78.0 74.4

expends additional 15.2873 seconds in applying NDA to 9000 DVS training im-
ages. The average cost basically amounts to 1.7ms per image.

We also estimate the energy consumption of the model using NDA. Specifi-
cally, we use the number of operations and roughly assume energy consumption
is linearly proportional to the number of operations [49,69]. We do not count the
operation if the spike does not fire. Thus, the number of operations can be com-
puted as FireRate×MAC. In Fig. 6, we visualize the FireRate of several layers
in the trained model with and without NDA. We can find that the FireRate
is similar (note, NDA is slightly higher) and the final number of operations are
very close in both cases. Model with NDA only expends a 10% higher number of
operations than the model without NDA, demonstrating the efficiency of NDA.
Training with validation dataset. Following [17], we test our algorithm on a
challenging task. We take 15% of the data from the training dataset to build a
validation dataset. Then, we report the test accuracy when the model reaches
best validation accuracy. We run experiments on CIFAR10-DVS with ResNet-
19. In this case (Table 8), our NDA model yields 16.3% accuracy improvement
over a model without NDA.

5.4 Unsupervised Contrastive Learning

In this section, we test our NDA algorithm with unsupervised contrastive learn-
ing. Usually, the augmentation in unsupervised contrastive learning requires
stronger augmentation than that in supervised learning [5]. Thus we use NDA-
M3N2 for augmentation. We pre-train a VGG-11 on the N-Caltech 101 dataset
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Table 9: Unsupervised transfer learning results on CIFAR10-DVS. All the model is
pre-trained on N-Caltech 101.

Pre-training Method Finetuning Method Test Acc.

No Pre-training Train@300 81.7
Supervised Finetune@100 77.4
Supervised Finetune@300 80.9
Unsupervised Finetune@100 80.8
Unsupervised Finetune@300 82.1

with SimSiam learning (cf. Section 4.3, Fig. 4). N-Caltech 101 contains more
visual categories and can be a good pre-training dataset. In this experiment,
we use the original 128 × 128 resolution DVS data, and use the simple-siamese
method to train the network for 600 epochs. The batch size is set to 256.

After pre-training, we replace the predictor with a zero-initialized fully-
connected classifier and finetune the model for 100/300 epochs on CIFAR10-
DVS. We also add supervised pre-training with NDA and no pre-training (i.e.
directly train a model on downstream task) as our baselines. We show the trans-
ferability results in Table 9. Interestingly, we find supervised pre-training has
no effect on transfer learning with such DVS datasets, which is different from
conventional natural image classification transferability results. This may be at-
tributed to the distance between dataset domains that is larger in DVS than
that in RGB dataset. The model pre-trained on N-Caltech 101 with supervised
learning only achieves 80.9% accuracy, which is even 0.8% lower than the no
pre-training method. The unsupervised learning with NDA achieves significantly
better transfer results: finetuning only for 100 epochs takes the model to 80.8%
accuracy on CIFAR10-DVS, and 300 epochs finetuning yields 82.1% test accu-
racy, establishing a new state of the art.

6 Conclusions

We introduce the Neuromorphic Data Augmentation technique (NDA), a simple
yet effective method that improves the generalization of SNNs on event-based
data. NDA allows users to generate new high-quality event-based data instances
that force the model to learn invariant features. Furthermore, we show that NDA
acts like regularization that achieves an improved bias-variance trade-off. Exten-
sive experimental results validate that NDA is able to find a flatter minimum
with the higher test accuracy and enable unsupervised pre-training for transfer
learning. However, the current NDA lacks value-based augmentations for events,
which may be realized by logical operations and studied in the future.
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