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Abstract. Understanding movies and their structural patterns is a cru-
cial task in decoding the craft of video editing. While previous works have
developed tools for general analysis, such as detecting characters or rec-
ognizing cinematography properties at the shot level, less effort has been
devoted to understanding the most basic video edit, the Cut. This paper
introduces the Cut type recognition task, which requires modeling multi-
modal information. To ignite research in this new task, we construct a
large-scale dataset called MovieCuts, which contains 173, 967 video clips
labeled with ten cut types defined by professionals in the movie industry.
We benchmark a set of audio-visual approaches, including some dealing
with the problem’s multi-modal nature. Our best model achieves 47.7%
mAP, which suggests that the task is challenging and that attaining
highly accurate Cut type recognition is an open research problem. Ad-
vances in automatic Cut-type recognition can unleash new experiences
in the video editing industry, such as movie analysis for education, video
re-editing, virtual cinematography, machine-assisted trailer generation,
machine-assisted video editing, among others. Our data and code are
publicly available: https://github.com/PardoAlejo/MovieCuts.

Keywords: Video Editing, Cut-types, Recognition, Shot transition, Cin-
ematography, Movie Understanding.

1 Introduction

Professionally edited movies use the film grammar [1] as a convention to tell
visual stories. Through the lenses of the film grammar, a movie can be decon-
structed into a hierarchical structure: a string of contiguous frames form a shot,
a sequence of shots build a scene, and a series of scenes compose the movie. Typ-
ically, scenes portray events that happen in single locations using shots recorded
with a multi-camera setup [28]. Like punctuation in the written grammar, careful
transition between shots is also an important component of the film grammar.
Indeed, shot transitions can be viewed as the most basic video editing device
[30,52]. They create changes of perspective, highlight emotions, and help to ad-
vance stories [30,52]. Several types of soft shot transitions like wipes, or fades are
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Fig. 1: Cut Type Recognition Task. Within a movie scene, most of the shot
transitions use the Straight Cut, or Cut. Cuts are designed to preserve audio-
visual continuity [45] across time, space, or story, and can be classified by their
the semantic meaning [46]. This figure illustrates a scene with different cut types
happening one after the other. Towards the end of the scene, there is a dialogue
portrayed by cutting when the active speaker changes. Understanding this task
requires audio-visual analysis. The visual stream helps detect the camera change
to focus on one of the two actors. The audio stream exhibits a clear change of
frequencies when the cut happens. Combining these two cues allows us to predict
the cut type: Speaker Change.

commonly used between scenes. However, within a scene, the most used tran-
sition between shots [13] is the Cut, which simply joins two shots without any
special effect.

Cuts in professionally edited movies are not random but rather have lan-
guage, structure, and a taxonomy [1]. Each cut in a movie has a purpose and
a specific meaning. Thus, to understand movie editing styles, one has to un-
derstand the cuts. Tsivian et al. introduced a platform called Cinemetrics to
analyze movies by analysing their cut frequency [13]. While Cinemetrics is help-
ful in characterizing the rhythm and pace of cuts, analyzing and understanding
the semantic meaning of these cuts remains a rather difficult task. In the com-
puter vision community, recent works have tackled the problem of analyzing
different cinematography components at the shot level [56,58,24,41] for auto-
matic film analysis. However, only a few works, have focused on shot transitions
for film analysis [57] and continuity editing [37,16]. We argue that automati-
cally recognizing and understanding cut types would make an important step
towards computationally characterize the principles of video editing, enabling
new experiences for movie analysis for education, video re-editing, virtual cin-
ematography, machine-assisted trailer generation, and machine-assisted video
editing. We showcase one example of the latter in Section 4.5.
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Figure 1 illustrates the cut type recognition task introduced in this work.
A Cut is composed of two adjacent shots and the transition between
them. Cuts are not only made of frames but also of their time-aligned sound
stream. In many situations, sounds and speech drive the cut and shape its mean-
ing. Our goal is then to recognize the cut type by analyzing the clip’s audio-visual
information across shots. Multiple research challenges emerge from this new
multi-shot video understanding task. First, there is a need for a high-level under-
standing of visual and audio relationships over time to identify the intended cut
type. To identify Speaker Change in Figure 1, one needs a detailed audio-visual
inspection to associate the sounds before and after the cut to the corresponding
actor’s voice. Although it sounds trivial, small changes in the signal can change
the cut type. For instance, if the speakers are in different locations, the cut type
would no longer be Speaker Change but rather a Cross Cut (see Figure 2). If
the active speaker does not change after the cut, the cut type would be Reaction
Cut instead. Thus, it is essential to understand the fine-grained details of both
signals. We argue that these challenges can promote the development of new
techniques to address the multi-modal and multi-shot nature of the problem.

Understanding the audio-visual properties of movies has a long-standing
track of interest [32,17,42,53]. The community has developed methods to rec-
ognize characters and speaker [36,15,9], events and actions [33,17,21], story-lines
[2,53,24], shot-level cinematography properties such as shot-scale and camera
motion [40,11], and mine shot-sequencing patterns [58,57,52]. While these ap-
proaches have set an initial framework for understanding editing in movies, there
is still a lack of automated tools that understand the most basic and used editing
technique, the Cut.

This work aims to study and bootstrap research in Cut type recognition.
To do so, we introduce MovieCuts, a new large-scale dataset with manually
curated Cut type annotations. Our new dataset contains 173, 967 clips (with
cuts) labeled with ten different cut categories taken from the literature [5,51]
and movie industry [50]. We hired professional and qualified annotators to label
the cut type categories. MovieCuts offers the opportunity to benchmark core
research tasks such as multi-modal analysis, long-tailed distribution learning,
and multi-label classification. Furthermore, the study of this task, might benefit
other areas like machine-assited video editing. While we observe improvements
by leveraging recent techniques for audio-visual blending [55], there is ample
room for improvement, and the task remains an open research problem.

Contributions. Our contributions are threefold: (1) We introduce the cut type
recognition task. To the best of our knowledge, our work is the first to address
and formalize the task from a machine learning perspective. (2) We collect a
large-scale dataset containing qualified human annotations that verify the pres-
ence of different cut types. We do an extensive analysis of the dataset to high-
light its properties and the challenges it presents. We call this dataset MovieCuts
(Section 3). (3) We implement multiple audio-visual baselines and establish a
benchmark in cut type recognition (Section 4).
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2 Related Work

The Anatomy of a Movie Scene. Scenes are key building blocks for story-
telling in film. They are built from a sequence of shots to depict an event, action,
or element of film narration. Extensive literature in film studies has analyzed and
characterized the structure of a scene. It includes (among others) the properties
and categorization of shots and, to the interest of our work, the type of shot
transitions [1,10,35]. There are four basic shot transitions: the wipe, the fade,
the dissolve, and the cut. Each one of these four transitions has its purpose and
appropriate usage. For instance, soft transitions like wipe, fade, and dissolve,
are commonly used to transition between scenes and evoke a passage of time or
change in location. Our work studies the cut, the instantaneous (hard) change
from one shot to another, which is arguably the most frequently used.

Film theory has developed multiple taxonomies to organize the types of cuts
[1,48,5]. Case in point, Thompson and Bowen [48] divide the types of cuts (or
edits) into five different categories: action edit, screen position edit, form edit,
concept edit, and combined edit. While such categorization provides a high-
level grouping, it is too coarse. The categorization centers around the emotional
aspects of the edit rather than the audio-visual properties of the cut. Film courses
[51] and practitioners [50] have also developed a taxonomy of cut types. These
tend to be more specific and closely describe the audio-visual properties of the
shot pair forming the cut. We choose our list of Cut types based on the existing
literature and narrow it down to categories that video editors recognize in their
daily routine.

Edited Content in Video Understanding. Edited video content such as
movies has been a rich source of data for general video understanding. Such
video sources contain various human actions, objects, and situations occurring
in people’s daily life. In the early stages of action recognition, the Hollywood
Human Actions (HOHA) [32] and HMDB51 [31], introduced human action recog-
nition benchmarks using short clips from Hollywood movies. Another group of
works used a limited number of films to train, and test methods for charac-
ter recognition [43], human action localization [14], event localization [33], and
spatio-temporal action and character localization [4]. With the development of
deep-learning techniques and the need for large-scale datasets to train deep mod-
els, Gu et al. proposed the AVA dataset [17]. AVA is a large-scale dataset with
spatio-temporal annotations, actors, and actions, whose primary data sources
are movies and TV shows. Furthermore, other works have focused on action,
and event recognition across shots [33,21]. Finally, Pavlakos et al. leverage in-
formation across shots from TV shows to do human mesh reconstruction [38].
Instead of leveraging movie data to learn representations for traditional tasks,
we propose a new task to analyze movie cut types automatically.
Stories, Plots, and Cinematography. Movies and TV shows are rich in com-
plexity and content, which makes their analysis and understanding a challenging
task. Movies are a natural multi-modal source of data, with audio, video, and
even transcripts being often available. Several works in the literature focus on
the task of understanding movie content. Recent works have addressed the task



MovieCuts: A New Dataset and Benchmark for Cut Type Recognition 5

of movie trailer creation [27,20,62,44], TV show summarization [6,7], and au-
tomated video editing [37]. Moreover, Vicol et al. proposed MovieGraphs [53],
a dataset that uses movies to analyze human-centric situations. Rohrbach et
al. presented a Movie Description dataset [42], which contains audio narratives
and movie scripts aligned to the movies’ full-length. Using this dataset, a Large
Scale Movie Description Challenge (LSMDC) has hosted competitions for a vari-
ety of tasks, including Movie Fill-In-The-Blank [34], and movie Q&A [47], among
others. Like LSMDC, MovieNet [24] and Condensed Movies [2] are big projects
that contain several tasks, data, and annotations related to movie understanding.
MovieNet includes works related to person re-identification [26,60,22,23], Movie
Scene Temporal Segmentation [41], and trailer and synopsis analysis [61,25]. All
these works have shown that movies have rich information about human actions,
including their specific challenges. However, only a few of them have focused on
artistic aspects of movies, such as shot scales [40,11,3], shot taxonomy and clas-
sification [54], and their editing structure and cinematography [56,57,58]. These
studies form the foundations to analyze movie editing properties but miss one
of the most used techniques, the Cut. Understanding cuts is crucial for decoding
the grammar of the film language. Our work represents a step towards that goal.

3 The MovieCuts Dataset

3.1 Building MovieCuts

Cut Type Categories. Our goal is to find a set of cut type categories of-
ten used in movie editing. Although there exists literature in the grammar of
film language [1,46] and the taxonomy of shot types [54,11,3], there is no gold-
standard categorization of cuts. As mentioned earlier in the related work, there
exist categorization of cut types [48] but it focuses on the emotional aspects
of the cuts rather than the audio-visual properties of the shots composing the
cut. We gathered an initial taxonomy (17 cut types) from film-making courses
(e.g. [51]), textbooks [5], and blogs [50]. We then hired ten different editors to
validate the taxonomy. All the editors studied film-making, two have been nom-
inated for the Emmys, and most have over 10 years of experience. Some of the
original categories were duplicated and some of them were challenging to mine
from movies. Our final taxonomy includes 10 categories. Figure 2 illustrates each
cut type along with their visual and audio signals:

1. Cutting on Action: Cutting from one shot to another while the subject is
still in motion.

2. Cross Cut: Cutting back and forth within locations.
3. Emphasis Cut: Cut from wide to close within the same shot, or the other

way around.
4. Cut Away: Cutting into an insert shot of something and then back.
5. Reaction Cut: A cut to the reaction of a subject (facial expression or single

word) to the comments / actions of other actors, or a cut after the reaction.
6. Speaker Change: A cut that changes the shot to the current speaker.
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Cutting on Action Cross Cut Emphasis Cut Cut Away Reaction Cut

Speaker Change L Cut Smash Cut Match CutJ Cut

Fig. 2: MovieCuts Dataset. MovieCuts contains 173, 967 video clips labeled
with 10 different Cut types. Each sample in the dataset is composed of two shots
(with a cut) and their audio spectogram. Our cuts are grouped into two major
categories, visual (top) and audio-visual (bottom) driven.

7. J Cut: The audio of the next shot begins before you can see it. You hear
what is going on before you actually see what is going on.

8. L Cut: The audio of the current shot carries over to the next shot.
9. Smash Cut: Abrupt cut from one shot to another for aesthetic, narrative,

or emotional purpose.
10. Match Cut: Cut from one shot to another by matching a concept, an action

or a composition of both.

Video Collection and Processing. We need professionally edited videos con-
taining diverse types of cuts. Movies are a perfect source to gather and collect
such data. As pointed out by Bain et al. [2], there are online video channels4

that distribute individual movie scenes, thus facilitating access to movie data for
research. We downloaded 9, 363 scenes, which come from 1, 986 movies. However,
these movie scenes come untrimmed, and further processing is required to ob-
tain cuts from them. We automatically detect all the cuts in the dataset with a
highly accurate shot boundary detector [18] (97.3% precision and 98.5% recall),
which yields a total of 195, 000 candidate cuts for annotation.

Human Annotations and Verification. Our goal at this stage is to collect
expert annotations for 195, 000 candidate cuts. To do so, we hired Hive AI to
run our annotation campaign. We choose them given their experience in label-
ing data for the entertainment industry. Annotators did not necessarily have a
film-making background, but they had to pass a qualification test to participate
in the labeling process. At least three annotators reviewed each cut/label can-
didate pair, and only the annotations with more than two votes were kept. The
annotators also have the option to discard cuts due to: (i) errors in the shot

4 MovieClips YouTube Channel is the source of scenes in MovieCuts.

https://www.youtube.com/c/MOVIECLIPS/videos
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boundary detector, and (ii) the cut not showing any of the categories in our
taxonomy. We also build a handbook in partnership with professional editors
to include several examples per class and guidelines on addressing edge cases.
We discarded 21, 033 cuts, which left us with a total of 173, 967 cuts to form
our dataset. From the 21, 073 discarded clips, we found that 12, 090 did not
have enough consensus, which leads to an inter-annotator agreement of 93.8%.
Given that inter-annotator agreement does not account for missing labels, five
professional editors labelled a small subset of two thousand cuts and created a
high-consensus ground truth. We found that our annotations exhibited a 90.5%
precision and 88.2% recall when contrasted with such a gold standard.

3.2 MovieCuts Statistics

Cut label distribution. Figure 3a shows the distribution of cut types in
MovieCuts. The distribution is long-tailed, which may reflect the editors’ prefer-
ences for certain types of cuts. It is not a surprise that Reaction Cut is the most
abundant label given that emotion and human reactions play a central role in
storytelling. Beyond human emotion, dialogue and human actions are additional
key components to advance movie storylines. We observe this in the label distri-
bution, where Speaker Change and Cutting on Action are the second and third
most abundant categories in the dataset. While classes such as Smash Cut and
Match Cut emerge scarcely in the dataset, it is still important to recognize these
types of cuts, which can be considered the most creative ones. We also show the
distribution of cut types per movie genre in the supplementary material.

Multi-label distribution and co-occurrences. We plot in Figure 3b the
distribution of labels per cut and the co-occurrence matrix. On one hand, we
observe that a significant number of cuts contain more than one label. On the
other, we observe that certain pair of classes co-occur more often, e.g. Reaction
Cut / L Cut. The multi-label properties of the dataset suggest that video editors
compose and combine cut types quite often.

Duration of shot pairs. We study the duration of the shot pairs that surround
(and form) the cuts. Figure 3c shows the distribution of such shot pair duration.
The most typical length is about 3.5 seconds. Moreover, we observe that the
length of shot pairs ranges from 2 seconds to more than 30 seconds. In Section
4, we study the effect of sampling different context around the cut.

Cut genre, year of production, and cuts per scene. Figures 3d, 3e, 3f show
statistics about the productions from where the cuts are sampled. First, we ob-
serve that the cuts are sampled across a diverse set of genres, with Comedy being
the most frequent one. Second, we sourced the cuts from old and contemporary
movie scenes. While many cuts come from the last decade, we also scouted cuts
from movie scenes from the 1930’s. Finally, we observe that the number of cuts
per scene roughly follows a normal distribution with a mean of 15 cuts per scene.
Interestingly, few movie scenes have a single cut, while others may contain more
than 60 cuts. These statistics highlight the editing diversity in MovieCuts.
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Fig. 3: MovieCuts statistics. Figure 3a shows the number of instances per
cut type. Labels follow a long-tail distribution. Figure 3b indicates that a large
number of instances contain more than a single cut type. Moreover, certain pairs
of cut types co-occur more often. Figure 3c plots the distribution of lengths
(in seconds) of all the dataset instances. Figure 3d summarizes the production
properties of the movie scenes and cuts used in our study. Figure 3e shows the
distribution based on year of production. Finally, Figure 3f shows the distribution
of number of cuts per scene.

3.3 MovieCuts Attributes

Sound attributes. We leverage an off-the-shelf audio classifier [12] to annotate
the sound events in the dataset. Figure 4a summarizes the distribution of three
super-groups of sound events: Speech, Music, and Other. Dialogue related cuts
such as Speaker Change and J Cut contain a large amount of speech. Contrarily,
visual-driven cuts e.g. Match Cut and Smash Cut hold a larger number of varied
sounds and background music. These attributes suggest that, while analyzing
speech is crucial for recognizing cut types, it is also beneficial to model music
and general sounds.

Subject attributes. We build a zero-shot classifier using CLIP [39], a neural
network trained on 400M image-text pairs, to tag the subjects present in our
dataset samples (4b).

Interestingly, dialogue and emotion-driven cuts (e.g. Reaction Cut) contain
many face tags, which can be interpreted as humans framed in medium-to-close-
up shots. Contrarily, Body is the most common attribute in the Cutting on
Action class, which suggests editors often opt for framing humans in long shots
when actions are occurring.
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Fig. 4: MovieCuts attributes. MovieCuts contains diverse sounds (4a), sub-
jects (4b), and locations (4c). Some sounds co-occur more often in particular
cut types. For instance, Speech is the predominant sound for dialogue related
cut types such as Speaker Change or J Cut. Similarly, there exists correlation
between cut types and the subjects depicted in the movie clip.

Location Attributes. We reuse CLIP [39] to construct a zero-shot classifier
of locations on our dataset. Figure 4c summarizes the distribution of locations
(Interior/Exterior) per cut type. On one hand, we observe that most cut types
contain instances shot in Interior locations 60%-70% of the time. On the other
hand, Match Cuts reverse this trend with the majority (53%) of cuts shot in
Exterior places. The obtained distribution suggests that stories in movies (as in
real-life) develop (more often) in indoor places.

4 Experiments

4.1 Audio-visual Baseline

Our base architecture is shown in Figure 5. Similar to [55], it takes as input
the audio signal and a set of frames (clip), which are then processed by a late-
fusion multi-modal CNN. We use a visual encoder and an audio encoder to
extract audio and visual features per clip. Then, we form an audio-visual feature
by concatenating them. Finally, a Multi Layer Perceptron (MLP) computes the
final predictions on the audio-visual features. We optimize a binary cross-entropy
(BCE) loss L per modality and for their combination in a one-vs-all manner to
deal with the problem’s multi-label nature. Our loss is summarized as:

loss = ωaL (ŷa, y) + ωvL (ŷv, y) + ωavL (ŷav, y) , (1)

where ωa, ωv, and ωav are the weights for the audio, visual, and audio-visual
losses, respectively. Using this architecture, we propose several baselines:

MLP classifier. We use the backbone as a feature extractor for each stream
and train an MLP to predict on top of them and their concatenation.
Encoder fine-tuning. We train the whole backbone starting from Kinetics-400
[29] weights for the visual stream and from VGGSound [12] weights for the audio.
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Fig. 5: Audio-visual pipeline. A late-
fusion multi-modal network processes audio
and visual streams. We train both networks
jointly using audio loss La, visual loss Lv,
and audio-visual loss Lav, weighted with wa,
wv, and wav, respectively.

Modality variants. We train
our model using the different
modalities: audio only, visual
only, and audio-visual. For audio-
visual, we combine the losses in a
naive way giving each one of them
the same weight, i.e. ωa = ωv =
ωav.
Modality blending. To com-
bine losses from multiple modal-
ities in a more effective way,
Wang et al. [55] proposed Gra-
dient Blending (GB), a strategy
to compute the weight of each
modality loss at training time.
We use the offline GB algorithm
to calculate ωa, ωv, and ωav.
For further details, refer to Al-
gorithms 1 and 2 of the pa-
per [55].

4.2 Experimental Setup

Dataset summary. We divide our dataset into training, validation, and test
sets by using 70%, 10%, and 20% percent of the data, respectively. Thus, we
use 121, 423 clips for training, 17, 505 clips for validation, and 35, 039 clips for
testing. We make sure that the sets are i.i.d.w.r.t. the movie genre, we show
distributions per genre for each split in the supplementary material. We report
all experiments on the validation set unless otherwise mentioned.

Metrics. Following [59], we choose the mean Average Precision (mAP) across
all classes and per-class AP to summarize and compare baseline performances.
This metric helps to deal with MovieCuts’ multi-label nature. We also report
Precision-Recall curves in supplementary material.
Implementation details. For all experiments, we use ResNet-18 [19] as the
backbone for both visual and audio streams. For the audio stream, we use
a ResNet with 2D convolutions pre-trained on VGGSound [12]. This backbone
takes as input a spectrogram of the audio signal and processes it as an image.
To compute the spectogram we take the audios of each pair of clips, and apply
consecutive Fourier Transforms with 512 points windows with 353 overlapping
points between them. If the audio is longer than 10 seconds we trim it to 10 sec-
onds only. For the visual stream, we use a ResNet-(2+1)D [49] pre-trained on
Kinetics-400 [29]. We sample 16 frames from a window centered around the cut
as the input to the network Using single streams, i.e. only audio or only visual,
we use the features after the average pooling followed by an MLP composed
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of a 512 × 128 Fully-Connected (FC) layer followed by a ReLU and a 128 × N
FC-layer, where N is the number of classes (N = 10). Using two streams, we
concatenate the features after the first FC-layer of the MLP to obtain an audio-
visual feature per clip of size 128× 2 = 256. Then, we pass it through a second
FC-layer of size 256×N to compute the predictions. We train using SGD with
momentum 0.9 and weight decay of 10−4. We also use a linear warm-up for the
first epoch. We train for 8 epochs with an initial learning rate of 3×10−2, which
decays by a factor of 10 after 4 epochs. We use an effective batch-size of 112 and
train on one NVIDIA A100 GPU.

4.3 Results and Analysis

As described in Section 4.1, we benchmark the MovieCuts dataset using several
combinations of modalities. Results are reported in Table 1.

Linear Classifier vs. Fine-tune: We evaluate the performance of using frozen
vs. fine-tuned features. As one might expect, the fine-tuning of the backbone
shows consistent improvement over all the classes regardless of the modality used.
For instance, the Audio-Visual backbone performance increases from 30.82% to
46.57%. These results validate the value of the dataset for improving the audio
and visual representations encoded by the backbones.
Modality Variants: Consistently across training strategies, we observe a com-
mon pattern in the results: the visual modality performs better (43.98%) at the
task than its audio counterpart (27.24%). Nonetheless, combining both modal-
ities still provides enhanced results for several classes and the overall mAP
(46.57%). We observe that cuts driven mainly by visual cues, such as Cutting on
Action, Cut Away, and Cross Cut, do not improve their performance when audio
is added. However, the rest of the classes improve when using both modalities.
In particular, L Cut, J Cut, and Speaker Change improve drastically, since these
types of cuts are naturally driven by audio-visual cues.

Gradient Blending: The second-to-last row in Table 1 shows the results of
using the three modalities combined with the GB weights ωa = 0.08, ωv = 0.57
and ωav = 0.35. GB performs slightly better (47.43%) than combining the losses
naively (46.57%), where ωa = ωv = ωav.

Scaled Gradient Blending: By experimenting with the Gradient Blending
weights, we found that scaling them all by a constant factor can help. We em-
pirically found that scaling the weights by a factor of 3 (ωa = 1.31, ωv = 4.95
and ωav = 2.74) improves the results to 47.91% mAP.
Frame Sampling: In addition to these experiments, we explore how to pick
the frames to feed into the visual network. For all the previous experiments
and as mentioned, we use Fixed Sampling by sampling frames from a window
centered around the cut. However, this is not the only strategy to sample frames.
We explore two other strategies: Uniform Sampling that takes sample frames
from a uniform distribution across the two shots forming the cut, and Gaussian
Sampling, which samples the frames from a Gaussian centered around the cut.
We fit both audios up to 10 seconds into the audio stream.
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Model mAP CA CW CC EC MC SC RC LC JC SC

L
in
e
a
r Audio(A) 23.9 36.7 14.8 11.8 14.6 1.5 10.7 65.3 15.3 18.4 50.0

Visual(V) 28.8 53.8 36.3 16.9 19.4 1.1 13.3 69.7 12.9 16.2 48.0
AV 30.8 55.5 32.8 16.0 20.3 1.7 13.2 73.7 17.4 21.6 56.0

F
in
e
-t
u
n
e Audio 27.2 42.6 19.0 14.6 15.8 1.5 12.9 69.4 18.5 21.3 56.7

Visual 44.0 64.8 60.8 33.2 30.7 1.5 21.5 81.2 33.7 42.0 70.3
AV 46.6 65.2 62.5 31.1 30.5 2.0 22.3 82.9 43.3 50.0 75.1

AV+GB 47.4 64.8 62.4 32.5 31.6 1.8 23.8 83.1 45.6 51.0 77.4
AV+SGB 47.9 65.6 63.0 34.9 31.8 2.3 24.3 83.3 45.0 51.6 77.1

Table 1: Baseline comparison on MovieCuts. We show the results of our
different baselines using visual, audio, and audio-visual modalities. The last two
rows use both modalities combined with Gradient Blending (GB) [55] and Scaled
Gradient Blending (SGB). All the reported results are % AP. We observe three
key findings. (1) Fine-tuning on MovieCuts provides clear benefits over the linear
classifier trained on frozen features. (2) Audio-visual information boosts the per-
formance of the visual only stream. (3) Gradient Blending provides further per-
formance gains by an optimal combination of both modalities. Showing classes:
Cutting on Action (CA), Cut Away (CW), Cross Cut (CC), Emphasis Cut
(EC), Match Cut (MC), Smash Cut (SC), Reaction Cut (RC), L Cut (LC), J
Cut (JC), Speaker Chance (SC).

Fixed Sampling gives the best results with 47.91% mAP, followed byGaussian
Sampling with 47.44%, and Uniform Sampling gives the lowest mAP among
them with 47.17%. These results suggest that the most critical information lays
around the cut. We hypothesize that the model is not good enough at handling
context, architectures better at handling sequential inputs may benefit from the
context of the Gaussian or Uniform sampling.
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Fig. 6: Performance breakdown. Here, we showcase a detailed performance
analysis. Figure 6a shows the performance breakdown according to attributes
of MovieCuts, such as type of sound, subjects, locations, duration per clip, and
production year. Figure 6b shows the performance gain of the audio-visual model
versus the visual-only model. For this analysis, we group the cut classes into
visual-driven and audio-visual driven.
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Test set results. After obtaining the best-performing model on the validation
set, we evaluate this model on the test set. We obtain 47.70% mAP, which is
slightly lower than the results on the validation set 47.91% mAP. For the full
test set results, and experiments using Distribution-Balanced loss [59], refer to
the supplementary material.

4.4 Performance Breakdown

Attributes and dataset characteristics. Figure 6a summarizes the perfor-
mance of our best audio-visual model from Table 1 for different attributes and
dataset characteristics. In most cases, the model exhibits robust performance
across attributes. The largest performance gap is observed between Speech and
Other sounds. We associate this result with the fact that cuts with complex audio
editing, e.g. those that include sound effects, often employ abstract editing such
as Smash Cuts and Match Cuts, which are harder for the model to recognize.
We also observe that the model is better at classifying cuts when there are faces
in the scene, which aligns with the fact that it was trained on movies, which
are mainly human-centered. These findings showcase the multi-modal nature of
MovieCuts. Thus, the results can be improved by studying better audio-visual
backbones.
Audio-visual improvements per cut type. Figure 6b shows the relative
improvement of the audio-visual model w.r.t. using the visual stream only. It
highlights whether the type of cut is driven by visual or audio-visual informa-
tion. We observe that the audio-visual driven cuts generally benefit the most
from training a joint audio-visual model. Match cuts show a relative 50% im-
provement when adding audio. These types of cuts use audiovisual concepts to
match the two shots. The second-largest gains are for cuts related to dialogue
and conversations (L cut, J cut). For instance, L Cuts improve by 30%; this
class typically involves a person on screen talking in the first shot while only
their voice is heard in the second shot. By encoding audio-visual information,
the model disambiguates predictions that would otherwise be confused by the
visual-only model. Finally, all classes show a relative improvement w.r.t. the
visual baseline. This suggests that the GB [55] strategy allows the model to
optimize modality weights. In the worst-case scenario, GB achieves slight im-
provements over the visual-only baseline. In short, we empirically demonstrate
the importance of modeling audio-visual information to recognize cut types.

4.5 Machine-assisted Video Editing with MovieCuts

We argue that recognizing cut types can enable many applications in video edit-
ing. In this section, we leverage the knowledge of our Audio-Visual model to
attempt automated video editing. Inspired by [37], we use EditStock5 to gather
raw footage of edited movies and perform video editing on them. Specifically,
we use our model to create cuts (shot transitions) between two long sequences

5 EditStock.com

https://editstock.com/
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of shots. Further details can be found in supplementary material. We mea-
sure qualitatively and quantitatively our model’s editing by comparing it with
different automated editing methods: (1) Random baseline frame by frame
RF: Every frame, we perform a cut with a probability of 0.5. (2) Random
baseline snippet by snippet RS: Similar to how the model is trained, every
16 frames snippet we cut with a probability of 0.5. This restriction allows each
shot to be on screen for at least 16 frames. (3) Biased Random BR: Similar
to (2), we cut every 16 snippets. However, this time we use the expected number
of cuts prior. Thus, we ensure that the number of random cuts is the same as
the ground truth. (4) MovieCuts’ AV model AV: We use our audio-visual
model’s scores to score all possible cuts between the two sequences. Then, we use
the top-k cuts, where k is given by the expected number of cuts. (5) Human
Editor GT: From EditStock we collect the actual edited sequence edited by
professional editors. We use these sequences as a reference for the quantitative
study, and ground-truth for the qualitative evaluation.

In the qualitative evaluation we ask 63 humans to pick between our method
and all the other methods. We observe that users picked our method (AV) over
the human editor 38% of the times while the BR was picked 34% of the times –
RF and RS were picked only 15.7% and 1.8%, respectively. Furthermore, for the
quantitative results we use the human edit as ground-truth and measure Purity,
Coverage, and F1 for each method. These metrics were implemented by [8] and
measure the similarity between the segmentation of two different sequences. The
results are consistent with the qualitative study and show that MovieCuts’ edits
have an F1 of 81% while BR, RS, and RF have only 77%, 63% 17%, respec-
tively. A more in-depth analysis of this study can be found in supplementary
material. This simple experiment suggests that the MovieCuts dataset allows
the model to learn about video editing by learning cut-type recognition. Thus,
we argue that further improvement in Cut-type recognition tasks can translate
into advances in tasks related to machine-assisted video editing.

5 Conclusion

We introduced the cut-type recognition task in movies and started research in
this new area by providing a new large-scale dataset, MovieCuts accompanied
with a benchmark of multiple audio-visual baselines.. We collect 173, 967 an-
notations from qualified human workers. We analyze the dataset diversity and
uniqueness by studying its properties and audio-visual attributes. We propose
audio-visual baselines by using learning approaches that address the multi-modal
nature of the problem. Although we established a strong research departure
point, we hope that more research pushes the envelope of cut-type recognition
by leveraging MovieCuts.
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