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Fig. 1. We revisit localization and mapping in the context of Augmented Reality by introducing

LaMAR, a large-scale dataset captured using AR devices (HoloLens2, iPhone) and laser scanners.

Abstract. Localization and mapping is the foundational technology for aug-

mented reality (AR) that enables sharing and persistence of digital content in the

real world. While significant progress has been made, researchers are still mostly

driven by unrealistic benchmarks not representative of real-world AR scenarios.

In particular, benchmarks are often based on small-scale datasets with low scene

diversity, captured from stationary cameras, and lacking other sensor inputs like

inertial, radio, or depth data. Furthermore, ground-truth (GT) accuracy is mostly

insufficient to satisfy AR requirements. To close this gap, we introduce a new

benchmark with a comprehensive capture and GT pipeline, which allow us to co-

register realistic AR trajectories in diverse scenes and from heterogeneous devices

at scale. To establish accurate GT, our pipeline robustly aligns the captured trajec-

tories against laser scans in a fully automatic manner. Based on this pipeline, we

publish a benchmark dataset of diverse and large-scale scenes recorded with head-

mounted and hand-held AR devices. We extend several state-of-the-art methods

to take advantage of the AR specific setup and evaluate them on our benchmark.

Based on the results, we present novel insights on current research gaps to provide

avenues for future work in the community.

⋆ Equal contribution. † Now at Lund University, Sweden.
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1 Introduction

Placing virtual content in the physical 3D world, persisting it over time, and sharing it

with other users are typical scenarios for Augmented Reality (AR). In order to reliably

overlay virtual content in the real world with pixel-level precision, these scenarios require

AR devices to accurately determine their 6-DoF pose at any point in time. While visual

localization and mapping is one of the most studied problems in computer vision, its

use for AR entails specific challenges and opportunities. First, modern AR devices, such

as mobile phones or the Microsoft HoloLens or MagicLeap One, are often equipped

with multiple cameras and additional inertial or radio sensors. Second, they exhibit

characteristic hand-held or head-mounted motion patterns. The on-device real-time

tracking systems provide spatially-posed sensor streams. However, many AR scenarios

require positioning beyond local tracking, both indoors and outdoors, and robustness to

common temporal changes of appearance and structure. Furthermore, given the plurality

of temporal sensor data, the question is often not whether, but how quickly can the device

localize at any time to ensure a compelling end-user experience. Finally, as AR adoption

grows, crowd-sourced data captured by users with diverse devices can be mined for

building large-scale maps without a manual and costly scanning effort. Crowd-sourcing

offers great opportunities but poses additional challenges on the robustness of algorithms,

e.g., to enable cross-device localization [21], mapping from incomplete data with low

accuracy [67,8], privacy-preservation of data [73,25,71,26,23], etc.

However, the academic community is mainly driven by benchmarks that are dis-

connected from the specifics of AR. They mostly evaluate localization and mapping

using single still images and either lack temporal changes [72,56] or accurate ground

truth (GT) [65,37,76], are restricted to small scenes [6,72,37,83,70] or landmarks [34,68]

with perfect coverage and limited viewpoint variability, or disregard temporal tracking

data or additional visual, inertial, or radio sensors [66,65,76,40,12,75].

Our first contribution is to introduce a large-scale dataset captured using AR

devices in diverse environments, notably a historical building, a multi-story office

building, and part of a city center. The initial data release contains both indoor and

outdoor images with illumination and semantic changes as well as dynamic objects.

Specifically, we collected multi-sensor data streams (images, depth, tracking, IMU, BT,

WiFi) totalling more than 100 hours using head-mounted HoloLens 2 and hand-held

iPhone / iPad devices covering 45’000 square meters over the span of one year (Figure 1).

Second, we develop a GT pipeline to automatically and accurately register AR

trajectories against large-scale 3D laser scans. Our pipeline does not require any manual

labelling or setup of custom infrastructure (e.g., fiducial markers). Furthermore, the

system robustly handles crowd-sourced data from heterogeneous devices captured over

longer periods of time and can be easily extended to support future devices.

Finally, we present a rigorous evaluation of localization and mapping in the

context of AR and provide novel insights for future research. Notably, we show that

the performance of state-of-the-art methods can be drastically improved by considering

additional data streams generally available in AR devices, such as radio signals or

sequence odometry. Thus, future algorithms in the field of AR localization and mapping

should always consider these sensors in their evaluation to show real-world impact.
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dataset out/indoor changes scale density camera motion imaging devices additional sensors ground truth accuracy

Aachen [66,65] ⋆⋆+ ⋆⋆⋆ still images DSLR SfM >dm

Phototourism [34] +⋆⋆ ⋆⋆⋆ still images DSLR, phone SfM ∼m

San Francisco [14] ⋆⋆⋆ ⋆⋆⋆ still images DSLR, phone GNSS SfM+GNSS ∼m

Cambridge [37] +⋆⋆ ⋆⋆⋆ handheld mobile SfM >dm

7Scenes [72] +⋆⋆ ⋆⋆⋆ handheld mobile depth RGB-D ∼cm

RIO10 [83] +⋆⋆ ⋆⋆⋆ handheld Tango tablet depth VIO >dm

InLoc [76] ⋆+⋆ +⋆⋆ still images panoramas, phone lidar manual+lidar >dm

Baidu mall [75] ⋆+⋆ ⋆⋆⋆ still images DSLR, phone lidar manual+lidar ∼dm

Naver Labs [40] ⋆⋆⋆ ⋆⋆⋆ robot-mounted fisheye, phone lidar lidar+SfM ∼dm

NCLT [12] ⋆⋆⋆ ⋆⋆⋆ robot-mounted wide-angle lidar, IMU, GNSS lidar+VIO ∼dm

ADVIO [56] ⋆⋆⋆ +⋆⋆ handheld phone, Tango IMU, depth, GNSS manual+VIO ∼m

ETH3D [70] +⋆⋆ ⋆⋆⋆ handheld DSLR, wide-angle lidar manual+lidar ∼mm

LaMAR (ours)

⋆⋆+
3 locations

45’000 m2

⋆⋆⋆
100 hours

40 km

handheld

head-mounted

phone, headset

backpack, trolley
lidar, IMU, Õ +

depth, infrared

lidar+SfM+VIO

automated
∼cm

Table 1. Overview of existing datasets. No dataset, besides ours, exhibits at the same time

short-term appearance and structural changes due to moving people , weather , or day-night

cycles , but also long-term changes due to displaced furniture or construction work .

The LaMAR dataset, benchmark, GT pipeline, and the implementations of baselines

integrating additional sensory data are all publicly available at lamar.ethz.ch. We

hope that this will spark future research addressing the challenges of AR.

2 Related work

Image-based localization is classically tackled by estimating a camera pose from

correspondences established between sparse local features [43,7,59,47] and a 3D

Structure-from-Motion (SfM) [67] map of the scene [24,42,64]. This pipeline scales

to large scenes using image retrieval [2,33,57,78,11,55,79]. Recently, many of these

steps or even the end-to-end pipeline have been successfully learned with neural net-

works [20,62,22,69,3,49,77,61,88,32,63]. Other approaches regress absolute camera

pose [37,36,50] or scene coordinates [72,82,46,45,41,9,85,10]. However, all these ap-

proaches typically fail whenever there is lack of context (e.g., limited field-of-view) or the

map has repetitive elements. Leveraging the sequential ordering of video frames [48,35]

or modelling the problem as a generalized camera [53,29,65,73] can improve results.

Radio-based localization: Radio signals, such as WiFi and Bluetooth, are spatially

bounded (logarithmic decay) [5,38,28], thus can distinguish similarly looking (spatially

distant) locations. Their unique identifiers can be uniquely hashed which makes them

computationally attractive (compared with high-dimensional image descriptors). Several

methods use the signal strength, angle, direction, or time of arrival [51,13,18] but the

most popular is model-free map-based fingerprinting [38,28,39], as it only requires to

collect unique identifiers of nearby radio sources and received signal strength. GNSS

provides absolute 3-DoF positioning but is not applicable indoors and has insufficient

accuracy for AR scenarios, especially in urban environments due to multi-pathing, etc.

Datasets and ground-truth: Many of the existing benchmarks (cf. Tab. 1)

are captured in small-scale environments [72,83,19,30], do not contain sequential

https://lamar.ethz.ch/
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device
motion

type

cameras
radios other data

poses

# FOV frequency resolution specs

M6 trolley 6 113° 1-3m 1080p RGB, sync Õ+ lidar points+mesh lidar SLAM

VLX backpack 4 90° 1-3m 1080p RGB, sync + lidar points+mesh lidar SLAM

HoloLens2 head-mounted 4 83° 30Hz VGA gray, GS Õ+ ToF depth/IR 1Hz, IMU head-tracking

iPad/iPhone hand-held 1 64° 10Hz 1080p RGB, RS, AF +∗ lidar depth 10Hz, IMU ARKit

Table 2. Sensor specifications. Our dataset has visible light images (global shutter GS, rolling

shutter RS, auto-focus AF), depth data (ToF, lidar), radio signals (∗, if partial), dense lidar point

clouds, and poses with intrinsics from on-device tracking.

data [66,34,14,76,75,70,6,68], lack characteristic hand-held/head-mounted motion pat-

terns [65,4,44,86], or their GT is not accurate enough for AR [56,37]. None of these

datasets contain WiFi or Bluetooth data (Tab. 1). The closest to our work are Naver

Labs [40], NCLT [12] and ETH3D [70]. Both, Naver Labs [40] and NCLT [12] are less

accurate than ours and do not contain AR specific trajectories or radio data. The Naver

Labs dataset [40] also does not contain any outdoor data. ETH3D [70] is highly accurate,

however, it is only small-scale, does not contain significant changes, or any radio data.

To establish ground-truth, many datasets rely on off-the-shelf SfM algorithms [67]

for unordered image collections [66,34,37,83,56,75,76,34]. Pure SfM-based GT gen-

eration has limited accuracy [8] and completeness, which biases the evaluations to

scenarios in which visual localization already works well. Other approaches rely on

RGB(-D) tracking [83,72], which usually drifts in larger scenes and cannot produce GT

in crowd-sourced, multi-device scenarios. Specialized capture rigs of an AR device with

a more accurate sensor (lidar) [40,12] prevent capturing of realistic AR motion patterns.

Furthermore, scalability is limited for these approaches, especially if they rely on manual

selection of reference images [75], laborious labelling of correspondences [66,76], or

placement of fiducial markers [30]. For example, the accuracy of ETH3D [70] is achieved

by using single stationary lidar scan, manual cleaning, and aligning very few images

captured by tripod-mounted DSLR cameras. Images thus obtained are not representative

for AR devices and the process cannot scale or take advantage of crowd-sourced data. In

contrast, our fully automatic approach does not require any manual labelling or special

capture setups, thus enables light-weight and repeated scanning of large locations.

3 Dataset

We first give an overview of the setup and content of our dataset.

Locations: The initial release of the dataset contains 3 large locations representative of

AR use cases: 1) HGE (18’000 m2) is the ground floor of a historical university building

composed of multiple large halls and large esplanades on both sides. 2) CAB (12’000 m2)

is a multi-floor office building composed of multiple small and large offices, a kitchen,

storage rooms, and 2 courtyards. 3) LIN (15’000 m2) is a few blocks of an old town with

shops, restaurants, and narrow passages. HGE and CAB contain both indoor and outdoor

sections with many symmetric structures. Each location underwent structural changes

over the span of a year, e.g., the front of HGE turned into a construction site and the

indoor furniture was rearranged. See Figure 2 for a visualization of the locations.
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Fig. 2. The locations feature diverse indoor and outdoor spaces. High-quality meshes, obtained

from lidar, are registered with numerous AR sequences, each shown here as a different color.

Data collection: We collected data using Microsoft HoloLens 2 and Apple iPad Pro

devices with custom raw sensor recording applications. 10 participants were each given

one device and asked to walk through a common designated area. They were only given

the instructions to freely walk through the environment to visit, inspect, and find their

way around. This yielded diverse camera heights and motion patterns. Their trajectories

were not planned or restricted in any way. Participants visited each location, both during

the day and at night, at different points in time over the course of up to 1 year. In total,

each location is covered by more than 100 sessions of 5 minutes. We did not need to

prepare the capturing site in any way before recording. This enables easy barrier-free

crowd-sourced data collections. Each location was also captured twice by NavVis M6

trolley and VLX backpack mapping platforms, which generate textured dense 3D models

of the environment using laser scanners and panoramic cameras.

Privacy: We paid special attention to comply with privacy regulations. Since the dataset

is recorded in public spaces, our pipeline anonymizes all visible faces and licence plates.

Sensors: We provide details about the recorded sensors in Table 2. The HoloLens has a

specialized large field-of-view (FOV) multi-camera tracking rig (low resolution, global

shutter) [81], while the iPad has a single, higher-resolution camera with rolling shutter

and more limited FOV. We also recorded outputs of the real-time AR tracking algorithms

available on each device, which includes relative camera poses and sensor calibration.

All images are undistorted. All sensor data is registered into a common reference frame

with accurate absolute GT poses using the pipeline described in the next section.

4 Ground-truth generation

The GT estimation process takes as input the raw data from the different sensors. The

entire pipeline is fully automated and does not require any manual alignment or input.

Overview: We start by aligning different sessions of the laser scanner by using the

images and the 3D lidar point cloud. When registered together, they form the GT

reference map, which accurately captures the structure and appearance of the scene. We

then register each AR sequence individually to the reference map using local feature
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matching and relative poses from the on-device tracker. Finally, all camera poses are

refined jointly by optimizing the visual constraints within and across sequences.

Notation: We denote iTj ∈ SE(3) the 6-DoF pose, encompassing rotation and trans-

lation, that transforms a point in frame j to another frame i. Our goal is to compute

globally-consistent absolute poses wTi for all cameras i of all sequences and scanning

sessions into a common reference world frame w.

4.1 Ground-truth reference model

Each capture session S ∈ S of the NavVis laser-scanning platform is processed by a

proprietary inertial-lidar SLAM that estimates, for each image i, a pose 0T
S
i relative to

the beginning of the session. The software filters out noisy lidar measurements, removes

dynamic objects, and aggregates the remainder into a globally-consistent colored 3D

point cloud with a grid resolution of 1cm. To recover visibility information, we compute

a dense mesh using the Advancing Front algorithm [17].

Our first goal is to align the sessions into a common GT reference frame. We

assume that the scan trajectories are drift-free and only need to register each with a rigid

transformation wT
S
0 . Scan sessions can be captured between extensive periods of time

and therefore exhibit large structural and appearance changes. We use a combination of

image and point cloud information to obtain accurate registrations without any manual

initialization. The steps are inspired by the reconstruction pipeline of Choi et al. [15,89].

Pair-wise registration: We first estimate a rigid transformation ATB for each pair of

scanning sessions (A,B) ∈ S2. For each image IAi in A, we select the r most similar

images (IBj )1≤j≤r in B based on global image descriptors [33,3,57], which helps the

registration scale to large scenes. We extract sparse local image features and establish

2D-2D correspondences {pA
i ,p

B
j } for each image pair (i, j). The 2D keypoints pi ∈ R

2

are lifted to 3D, Pi ∈ R
3, by tracing rays through the dense mesh of the corresponding

session. This yields 3D-3D correspondences {PA
i ,P

B
j }, from which we estimate an

initial relative pose [80] using RANSAC [24]. This pose is refined with the point-to-plane

Iterative Closest Point (ICP) algorithm [60] applied to the pair of lidar point clouds.

We use state-of-the-art local image features that can match across drastic illumination

and viewpoint changes [61,20,58]. Combined with the strong geometric constraints in

the registration, our system is robust to long-term temporal changes and does not require

manual initialization. Using this approach, we have successfully registered building-scale

scans captured at more than a year of interval with large structural changes.

Global alignment: We gather all pairwise constraints and jointly refine all absolute

scan poses {wT
S
0 } by optimizing a pose graph [27]. The edges are weighted with the

covariance matrices of the pair-wise ICP estimates. The images of all scan sessions

are finally combined into a unique reference trajectory {wT
ref
i }. The point clouds and

meshes are aligned according to the same transformations. They define the reference

representation of the scene, which we use as a basis to obtain GT for the AR sequences.

Ground-truth visibility: The accurate and dense 3D geometry of the mesh allows us to

compute accurate visual overlap between two cameras with known poses and calibration.

Inspired by Rau et al. [55], we define the overlap of image i wrt. a reference image j by



LaMAR: Benchmarking Localization and Mapping for Augmented Reality 7

Fig. 3. Sequence-to-scan alignment. We first estimate the absolute pose of each sequence frame

using image retrieval and matching. This initial localization prior is used to obtain a single rigid

alignment between the input trajectory and the reference 3D model via voting. The alignment

is then relaxed by optimizing the individual frame poses in a pose graph based on both relative

and absolute pose constraints. We bootstrap this initialization by mining relevant image pairs and

re-localizing the queries. Given these improved absolute priors, we optimize the pose graph again

and finally include reprojection errors of the visual correspondences, yielding a refined trajectory.

the ratio of pixels in i that are visible in j:

O(i → j) =

∑

k∈(W,H) ✶
[

Πj(wTj ,Π
−1
i (wTi,p

i
k, zk)) ∈ (W,H)

]

αk

W ·H
, (1)

where Πi projects a 3D point k to camera i, Π−1
i conversely backprojects it using its

known depth zk with (W,H) as the image dimensions. The contribution of each pixel

is weighted by the angle αk = cos(ni,k,nj,k) between the two rays. To handle scale

changes, it is averaged both ways i → j and j → i. This score is efficiently computed

by tracing rays through the mesh and checking for occlusion for robustness.

This score O ∈ [0, 1] favors images that observe the same scene from similar view-

points. Unlike sparse co-visibility in an SfM model [54], our formulation is independent

of the amount of texture and the density of the feature detections. This score correlates

with matchability ± we thus use it as GT when evaluating retrieval and to determine an

upper bound on the theoretically achievable performance of our benchmark.

4.2 Sequence-to-scan alignment

We now aim to register each AR sequence individually into the dense GT reference

model (see Fig. 3). Given a sequence of n frames, we introduce a simple algorithm that

estimates the per-frame absolute pose {wTi}1≤i≤n. A frame refers to an image taken at

a given time or, when the device is composed of a camera rig with known calibration

(e.g., HoloLens), to a collection of simultaneously captured images.

Inputs: We assume given trajectories {0T
track
i } estimated by a visual-inertial tracker ±

we use ARKit for iPhone/iPad and the on-device tracker for HoloLens. The tracker also

outputs per-frame camera intrinsics {Ci}, which account for auto-focus or calibration

changes and are for now kept fixed.

Initial localization: For each frame of a sequence {Iquery
i }, we retrieve a fixed number

r of relevant reference images (I ref
j )1≤j≤r using global image descriptors. We match

sparse local features [43,20,58] extracted in the query frame to each retrieved image I ref
j
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obtaining a set of 2D-2D correspondences {pq

i,k,p
ref
j,k}k. The 2D reference keypoints

are lifted to 3D by tracing rays through the mesh of the reference model, yielding a

set of 2D-3D correspondences Mi,j := {pq

i,k,P
ref
j,k}k. We combine all matches per

query frame Mi = ∪r
j=1Mi,j and estimate an initial absolute pose wT

loc
i using the

(generalized) P3P algorithm [29] within a LO-RANSAC scheme [16] followed by a

non-linear refinement [67]. Because of challenging appearance conditions, structural

changes, or lack of texture, some frames cannot be localized in this stage. We discard all

poses that are supported by a low number of inlier correspondences.

Rigid alignment: We next recover a coarse initial pose {wT
init
i } for all frames, including

those that could not be localized. Using the tracking, which is for now assumed drift-free,

we find the rigid alignment wT
init
0 that maximizes the consensus among localization poses.

This voting scheme is fast and effectively rejects poses that are incorrect, yet confident,

due to visual aliasing and symmetries. Each estimate is a candidate transformation

wT
i
0 = wT

loc
i

(

0T
track
i

)−1
, for which other frames can vote, if they are consistent within

a threshold τrigid. We select the candidate with the highest count of inliers:

wT
init
0 = argmax

T∈{wTi
0
}1≤i≤n

∑

1≤j≤n

✶
[

dist
(

wT
loc
j ,T · 0T

track
j

)

< τrigid

]

, (2)

where ✶ [·] is the indicator function and dist (·, ·) returns the magnitude, in terms of

translation and rotation, of the difference between two absolute poses. We then recover

the per-frame initial poses as {wT
init
i := wT

init
0 · 0T

track
i }1≤i≤n.

Pose graph optimization: We refine the initial absolute poses by maximizing the

consistency of tracking and localization cues within a pose graph. The refined poses

{wT
PGO
i } minimize the energy function

E({wTi}) =
n−1
∑

i=1

CPGO

(

wT
−1
i+1 wTi, i+1T

track
i

)

+
n
∑

i=1

CPGO

(

wTi, wT
loc
i

)

, (3)

where CPGO (T1,T2) :=
∥

∥Log
(

T1 T
−1
2

)∥

∥

2

Σ,γ
is the distance between two absolute or

relative poses, weighted by covariance matrix Σ ∈ R
6×6 and loss function γ. Here, Log

maps from the Lie group SE(3) to the corresponding algebra se(3).
We robustify the absolute term with the Geman-McClure loss function and anneal its

scale via a Graduated Non-Convexity scheme [87]. This ensures convergence in case

of poor initialization, e.g., when the tracking exhibits significant drift, while remain-

ing robust to incorrect localization estimates. The covariance of the absolute term is

propagated from the preceding non-linear refinement performed during localization.

The covariance of the relative term is recovered from the odometry pipeline, or, if not

available, approximated as a factor of the motion magnitude.

This step can fill the gaps from the localization stage using the tracking information

and conversely correct for tracker drift using localization cues. In rare cases, the resulting

poses might still be inaccurate when both the tracking drifts and the localization fails.

Guided localization via visual overlap: To further increase the pose accuracy, we

leverage the current pose estimates {wT
PGO
i } to mine for additional localization cues.
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Instead of relying on global visual descriptors, which are easily affected by aliasing,

we select reference images with a high overlap using the score defined in Section 4.1.

For each sequence frame i, we select r reference images with the largest overlap and

again match local features and estimate an absolute pose. These new localization priors

improve the pose estimates in a second optimization of the pose graph.

Bundle adjustment: For each frame i, we recover the set of 2D-3D correspondences

Mi used by the guided re-localization. We now refine the poses {wT
BA
i } by jointly

minimizing a bundle adjustment problem with relative pose graph costs:

E({wTi}) =

n−1
∑

i=1

CPGO

(

wT
−1
i+1 wTi, i+1T

track
i

)

+
n
∑

i=1

∑

Mi,j∈Mi

∑

(pref
k
,P

q

k
)∈Mi,j

∥

∥

∥
Π(wTi,P

ref
j,k)− p

q

i,k

∥

∥

∥

2

σ2

,

(4)

where the second term evaluates the reprojection error of a 3D point Pref
j,k for observation

k to frame i. The covariance is the noise σ2 of the keypoint detection algorithm. We

pre-filter correspondences that are behind the camera or have an initial reprojection error

greater than σ τreproj. As the 3D points are sampled from the lidar, we also optimize them

with a prior noise corresponding to the lidar specifications. We use the Ceres [1] solver.

4.3 Joint global refinement

Once all sequences are individually aligned, we refine them jointly by leveraging

sequence-to-sequence visual observations. This is helpful when sequences observe

parts of the scene not mapped by the LiDAR. We first triangulate a sparse 3D model

from scan images, aided by the mesh. We then triangulate additional observations, and

finally jointly optimize the whole problem.

Reference triangulation: We estimate image correspondences of the reference scan

using pairs selected according to the visual overlap defined in Section 4.2. Since the

image poses are deemed accurate and fixed, we filter the correspondences using the

known epipolar geometry. We first consider feature tracks consistent with the reference

surface mesh before triangulating more noisy observations within LO-RANSAC using

COLMAP [67]. The remaining feature detections, which could not be reliably matched

or triangulated, are lifted to 3D by tracing through the mesh. This results in an accurate,

sparse SfM model with tracks across reference images.

Sequence optimization: We then add each sequence to the sparse model. We first

establish correspondences between images of the same and of different sequences. The

image pairs are again selected by highest visual overlap computed using the aligned

poses {wT
BA
i }. The resulting tracks are sequentially triangulated, merged, and added to

the sparse model. Finally, all 3D points and poses are jointly optimized by minimizing the

joint pose-graph and bundle adjustment (Equation 4). As in COLMAP [67], we alternate

optimization and track merging. To scale to large scenes, we subsample keyframes from

the full frame-rate captures and only introduce absolute pose and reprojection constraints

for keyframes while maintaining all relative pose constraints from tracking.
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Fig. 4. Uncertainty of the GT poses for the CAB scene. Left: The overhead map shows that the

uncertainties are larger in long corridors and outdoor spaces. Right: Pixel-aligned renderings at

the estimated camera poses confirm that the poses are sufficiently accurate for our evaluation.

4.4 Ground-truth validation

Potential limits: Brachmann et al. [8] observe that algorithms generating pseudo-GT

poses by minimizing either 2D or 3D cost functions alone can yield noticeably different

results. We argue that there exists a single underlying, true GT. Reaching it requires fusing

large amounts of redundant data with sufficient sensors of sufficiently low noise. Our

GT poses optimize complementary constraints from visual and inertial measurements,

guided by an accurate lidar-based 3D structure. Careful design and propagation of

uncertainties reduces the bias towards one of the sensors. All sensors are factory- and

self-calibrated during each recording by the respective commercial, production-grade

SLAM algorithms. We do not claim that our GT is perfect but analyzing the optimization

uncertainties sheds light on its degree of accuracy.

Pose uncertainty: We estimate the uncertainties of the GT poses by inverting the

Hessian of the refinement. To obtain calibrated covariances, we scale them by the

empirical keypoint detection noise, estimated as σ=1.33 pixels for the CAB scene. The

maximum noise in translation is the size of the major axis of the uncertainty ellipsoids,

which is the largest eivenvalue σ2
t of the covariance matrices. Fig. 4 shows its distribution

for the CAB scene. We retain images whose poses are correct within 10cm with a

confidence of 99.7%. For normally distributed errors, this corresponds to a maximum

uncertainty σt=3.33cm and discards 3.9% of the queries. For visual inspection, we

render images at the estimated GT camera poses using the colored mesh. They appear

pixel-aligned with the original images, supporting that the poses are accurate.

4.5 Selection of mapping and query sequences

We divide the set of sequences into two disjoint groups for mapping (database) and

localization (query). Database sequences are selected such that they have a minimal

overlap between each other yet cover the area visited by all remaining sequences. This

simulates a scenario of minimal coverage and maximizes the number of query sequences.

We cast this as a combinatorial optimization problem solved with a depth-first search

guided by some heuristics. We provide more details in the supp. material.
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Fig. 5. Main results. We show results for NetVLAD image retrieval with SuperPoint local features

and SuperGlue matcher on both HoloLens 2 and phone queries. We consider several tracks: single-

frame (SF) localization with / without radios (R) and similarly for multi-frame (MF) localization.

In addition, we report a theoretical upper bound (U): the percentage of queries with at least 5% /

1% ground-truth overlap with respect to the best database image.

5 Evaluation

We evaluate state-of-the-art approaches in both single- and multi-frame settings and

summarize our results in Figure 5.

Single-frame: We first consider in Sec. 5.1 the classical academic setup of single-frame

queries (single image for phones and single rig for HoloLens 2) without additional

sensor. We then look at how radio signals can be beneficial. We also analyze the impact

of various settings: FOV, type of mapping images, and mapping algorithm.

Multi-frame: Second, by leveraging the real-time AR tracking poses, we consider the

problem of multi-frame localization in Sec. 5.2. This corresponds to a real-world AR

application retrieving the content attached to a target map using the real-time sensor

stream from the device. In this context, we not only care about accuracy and recall but

also about the time required to localize accurately, which we call the time-to-recall.

5.1 Single-frame localization

We first evaluate several algorithms representative of the state of the art in the classical

single-frame academic setup. We consider the hierarchical localization framework with

different approaches for image retrieval and matching. Each of them first builds a

sparse SfM map from reference images. For each query frame, we then retrieve relevant

reference images, match their local features, lift the reference keypoints to 3D using the

sparse map, and finally estimate a pose with PnP+RANSAC. We report the recall of the

final pose at two thresholds [65]: 1) a fine threshold at {1◦, 10cm}, which we see as the

minimum accuracy required for a good AR user experience in most settings. 2) a coarse

threshold at {5◦, 1m} to show the room for improvement for current approaches.

We evaluate global descriptors computed by NetVLAD [3] and by a fusion [31] of

NetVLAD and APGeM [57], which are representative of the field [52]. We retrieve the

10 most similar images. For matching, we evaluate handcrafted SIFT [43], SOSNet [77]

as a learned patch descriptor extracted from DoG [43] keypoints, and a robust deep-

learning based joint detector and descriptor R2D2 [58]. Those are matched by exact

mutual nearest neighbor search. We also evaluate SuperGlue [62] ± a learned matcher

based on SuperPoint [20] features. To build the map, we retrieve neighboring images
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Hierarchical localization Query device

Retrieval Matching HL2 Phone

NetVLAD

SIFT 30.3 / 41.4 28.6 / 42.3

DoG+SOSNet 31.6 / 43.3 29.8 / 45.7

R2D2 38.9 / 51.3 40.6 / 57.3

SP+SG 46.3 / 59.8 49.3 / 62.8

Fusion

SIFT 32.8 / 47.0 29.0 / 43.6

DoG+SOSNet 34.5 / 48.9 30.4 / 46.4

R2D2 43.0 / 57.8 40.4 / 57.7

SP+SG 52.4 / 67.3 50.2 / 64.3
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Table 3. Left: single-frame localization. We report the recall at (1◦, 10cm)/(5◦, 1m) for baselines

representative of the state of the art. Our dataset is challenging while most others are saturated.

There is a clear progress from SIFT but also large room for improvement. Right: localization with

radio signals. Increasing the number {5, 10, 20} of retrieved images increases the localization

recall at (1◦, 10cm). The best-performing visual retrieval (Fusion, orange) is however far worse

than the GT overlap. Filtering with radio signals (blue) improves the performance in all settings.

using NetVLAD filtered by frustum intersection from reference poses, match these pairs,

and triangulate a sparse SfM model using COLMAP [67].

We report the results in Table 3 (left). Even the best methods have a large gap to

perfect scores and much room for improvement. In the remaining ablation, we solely

rely on SuperPoint+SuperGlue [20,62] for matching as it clearly performs the best.

Leveraging radio signals: In this experiment, we show that radio signals can be used

to constrain the search space for image retrieval. This has two main benefits: 1) it

reduces the risk of incorrectly considering visual aliases, and 2) it lowers the compute

requirements by reducing that numbers of images that need to be retrieved and matched.

We implement this filtering as follows. We first split the scene into a sparse 3D grid

considering only voxels containing at least one mapping frame. For each frame, we

gather all radio signals in a ±10s window and associate them to the corresponding voxel.

If the same endpoint is observed multiple times in a given voxel, we average the received

signal strengths (RSSI) in dBm. For a query frame, we similarly aggregate signals over

the past 10s and rank voxels by their L2 distance between RSSIs, considering those with

at least one common endpoint. We thus restrict image retrieval to 5% of the map.

Tab. 3 (right) shows that radio filtering always improves the localization accuracy

over vanilla vision-only retrieval, irrespective of how many images are matches. The

upper bound based on the GT overlap (defined in Sec. 4.1) shows that there is still much

room for improvement for both image and radio retrieval. As the GT overlap baseline

is far from the perfect 100% recall, frame-to-frame matching and pose estimation have

also much room to improve.

Varying field-of-view: We study the impact of the FOV of the HoloLens 2 device via

two configurations: 1) Each camera in a rig is seen as a single-frame and localized using

LO-RANSAC + P3P. 2) We consider all four cameras in a frame and localize them

together using the generalized solver GP3P. NetVLAD retrieval with SuperPoint and

SuperGlue only achieves 36.6% / 45.8% recall, compared to the results from Tab. 3

(46.3% / 59.8%). Rig localization thus provides much better performance, mainly in

hard cases where single cameras face texture-less areas, such as the ground and walls.
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Mapping images → HL2 + Phone HD 360 Both

Image pairs from → Retrieval GT

overlap
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Retrieval

+ PosesMatching Device NetVLAD + Poses
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HL2 46.6 / 59.6 46.3 / 59.8 47.4 / 60.2 69.3 / 81.8 68.6 / 80.3
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62.8
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Table 4. Impact of mapping. Left: Scenarios. Building the map with sparse HD 360 images

from the NavVis rig, instead of or with dense AR sequences, boosts the localization performance

for HL2 as it makes image retrieval easier ± NetVLAD tends to incorrectly retrieve same-device

HL images over same-location phone images. This does not help phone localization, likely due to

the viewpoint sparsity. Right: Modalities. Lifting 2D points to 3D using the lidar mesh instead of

triangulating with SfM is beneficial. This can also leverage dense matching, e.g. with LoFTR.

Mapping modality: We study whether the high-quality lidar mesh can be used for

localization. We consider two approaches to obtain a sparse 3D point cloud: 1) By

triangulating sparse visual correspondences across multiple views. 2) By lifting 2D

keypoints in reference images to 3D by tracing rays through the mesh. Lifting can lever-

age dense correspondences, which cannot be efficiently triangulated with conventional

multi-view geometry. We thus compare 1) and 2) with SuperGlue to 2) with LoFT [74],

a state-of-the-art dense matcher. The results (Tab. 4 right) show that the mesh brings

some improvements. Points could also be lifted by dense depth from multi-view stereo.

We however did not obtain satisfactory results with a state-of-the-art approach [84] as it

cannot handle very sparse mapping images.

Mapping scenario: We study the accuracy of localization against maps built from

different types of images: 1) crowd-sourced, dense AR sequences; 2) curated, sparser

HD 360 images from the NavVis device; 3) a combination of the two. The results are

summarized in Tab. 4 (left), showing that the mapping scenario has a large impact on

the final numbers. On the other hand, image pair selection for mapping matters little.

Current crowd-sourcing approaches do not yield as good results as capturing a space

using a specialized scanning device at high density. Further, crowd-sourcing and manual

scans can complement each other. We hope that future work can close the gap between

the scenarios to achieve better metrics from crowd-sourced data without curation.

5.2 Multi-frame localization

Inspired by typical AR use cases, we consider the problem of multi-frame localization

in this section. The task is to align multiple consecutive frames of varied lengths and

aggregated radio signals against the database map. Our baseline for this task is based

on the ground-truthing pipeline and has as such relatively high compute requirements.

However, we are primarily interested to demonstrate the potential performance gains by

leveraging multiple frames. First, we run image retrieval and single-frame localization,

followed by a first PGO with tracking and localization poses. Then, we do a second

localization with retrieval guided by the poses of the first PGO, followed by a second

PGO. Finally, we run a pose refinement by considering reprojections to query frames and

tracking cost. Additionally, we can also use radio to restrict image retrieval throughout

the pipeline. We keep the same accuracy metric as before, considering only the last
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frame in each multi-frame query, which is the one that influences the current AR user

experience in a real-time scenario.
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Fig. 6. Multi-frame localization. We report the

localization recall of SuperPoint+SuperGlue as

we increase the duration of each sequence. The

pipeline leverages both on-device tracking and

absolute retrieval, as vision-only (solid) or com-

bined with radio signals (dashed). We show the

TTR@80% for HL2 (blue) and TTR@60% for

phone queries (orange). Using radio signals re-

duce the TTR from 8s to 5s and from 5s to 3s,

respectively.

We evaluate various query sizes and

introduce the time-to-recall metric as: se-

quence length (time) until successful lo-

calization at X% (recall) for a tight thresh-

old (1◦, 10cm) (TTR@X%). Methods

should aim to minimize this metric to ren-

der retrieved content as quickly as possi-

ble after starting an AR experience. We

show the results for the CAB scene in

Figure 6. While the performance of cur-

rent methods is not satisfactory yet to

achieve a TTR@90% under 20 seconds,

using multi-frame localization leads to

significant gains of 20-40%. The radio

signals improve the performance in par-

ticular with shorter sequences and thus

effectively reduce time-to-recall.

6 Conclusion

In this paper, we identified several key limitations of current localization and mapping

benchmarks that make them unrealistic in the context of AR. To address these limitations,

we developed a new GT pipeline to accurately and robustly register realistic AR scenario

captures in large and diverse scenes against laser scans without any manual labelling

or setup of custom infrastructure. With this new benchmark, initially consisting of

3 large locations (note that we will add more locations over time), we revisited the

traditional academic setup and showed a large performance gap for existing state-of-

the-art methods when evaluated using our more realistic and challenging dataset. By

implementation of simple yet representative baselines to take advantage of the AR

specific setup, we present novel insights and pave several avenues of future work. In

particular, we showed huge potential for leveraging query sequences instead of single

frames as well as leveraging other sensor modalities like radio signals or depth data in the

localization and mapping problem. Furthermore, we hope to direct research attention to

not only tackle the localization problem in isolation but also improve map representations

as well as consider the currently largely ignored time-to-recall metric. The dataset and

the source code of the GT pipeline will be available to the community. We will also host

an evaluation server to facilitate benchmarking of future work.
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