
Not Just Streaks: Towards Ground Truth for
Single Image Deraining

(Supplementary Material)

Yunhao Ba1⋆ , Howard Zhang1⋆ , Ethan Yang1 , Akira Suzuki1 , Arnold
Pfahnl1 , Chethan Chinder Chandrappa1 , Celso M. de Melo2 , Suya You2 ,

Stefano Soatto1 , Alex Wong3 , and Achuta Kadambi1

1 University of California, Los Angeles
{yhba,hwdz15508,eyang657,asuzuki100,ajpfahnl,chinderc}@ucla.edu

soatto@cs.ucla.edu, achuta@ee.ucla.edu
2 DEVCOM Army Research Laboratory

{celso.m.demelo.civ,suya.you.civ}@army.mil
3 Yale University

alex.wong@yale.edu

A Visualization of Previous Deraining Datasets

We illustrate some typical image pairs from various deraining datasets in Fig. A.
Synthetic datasets in the community are usually generated by adding synthetic
rain effects on real images taken under sunny illumination conditions, and the
semi-real SPA-Data [34] only considers rain streaks. As a result, the domain gap
between these existing datasets and real rainy scenarios are relatively larger as
compared with the proposed GT-RAIN dataset.

B More Results from GT-RAIN

As an additional supplement to Fig. 5 in the main paper, we provide some
more quantitative and qualitative results from our test set in Fig. B. Note that
these comparison models are using the weights provided by the authors which
are trained on synthetic or semi-real datasets. We see that our proposed model
trained on GT-RAIN continues to outperform other competing models.

C More Results on Internet Images

As a supplement to Fig. 6 in the main paper, we provide more qualitative results
on real Internet images in Fig. C. Note that all comparison models are using the
weights provided by the author, which are trained on synthetic or semi-real
datasets. All images are taken from the dataset of common real rainy images
provided by [36]. Our proposed model trained onGT-RAIN continues to remove
rain streaks of varying shapes and sizes as well as rain accumulation without
introducing the unwanted color shifts seen in HRR [20] and DGNL-Net [10].
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Fig.A. GT-RAIN contains realistic rain effects (both rain streaks and rain
accumulation), while the existing synthetic and semi-real datasets fail to
cover the physical complexity and diversity of real-world rain. The synthetic
image pair is from the commonly used Rain14000 dataset [6], and the pseudo ground-
truth image of SPA-Data [34] in the figure is generated by running the official code
from the authors on our collected rainy video.
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Fig. B. More results on GT-RAIN test set. Similarly, the proposed method is
capable of removing various rain streaks and rain accumulation effects.

D Qualitative Results of Retrained Methods

As an additional supplement to Tab. 3 in the main paper, we provide some
representative samples of the retrained models for some qualitative comparison
in Fig. D. The visual improvements of these derainers in rain fog and streak
removal further validate the effectiveness of the proposed dataset.
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Rainy Image SPANet [34] HRR [20] MSPFN [13] RCDNet [33]

DGNL-Net [10] EDR V4 (S) [8] EDR V4 (R) [8] MPRNet [46] Ours

Rainy Image SPANet [34] HRR [20] MSPFN [13] RCDNet [33]

DGNL-Net [10] EDR V4 (S) [8] EDR V4 (R) [8] MPRNet [46] Ours

Fig. C. More qualitative results on Internet images. Our model continues to
exhibit robust generalization to real rainy images, whereas existing derainers usually
fail on removing rain streaks of diverse shapes and sizes. EDR V4 (S) [8] denotes the
EDR model trained on SPA-Data [34], and EDR V4 (R) [8] denotes the EDR model
trained on Rain14000 [6].

E Comparison with Semi-supervised Methods

In addition to the models trained on synthetic and semi-real datasets, we also
compare the proposed method with some recent semi-supervised methods, in-
cluding SIRR [36] and MOSS [11], that are trained on real images as a comple-
ment to Tab. 2 in the main paper. The corresponding PSNR/SSIM scores on
the entire GT-RAIN test set for these two semi-supervised methods are listed
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MPRNet (P)
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RCDNet (P)
(16.74/0.6165)

RCDNet (R)
(17.81/0.6286)

Fig.D. Qualitative results of retrained SOTAs. (P) denote pretrained models
provided by the original authors, and (R) denotes the retrained models on the pro-
posed GT-RAIN dataset. The improvements further highlight the effectiveness of the
proposed GT-RAIN dataset.

as follows: SIRR [36] (20.57/0.6448), and MOSS [11] (21.42/0.7073), where ours
are (22.53/0.7304). Some qualitative results can be found in Fig. E.

Rainy SSIR [36] MOSS [11] Ours

Fig. E. Qualitative comparison with semi-supervised SOTAs. As compared
with semi-supervised models, the proposed method can remove the rain streaks more
effectively.

F Alignment of Small Motions

As a complement to Sec. 3 of the main paper, we first show, in Fig. F-(a), a
ground-truth image overlayed on top of a rainy image to demonstrate repre-
sentative samples that passed our data collection appearance criteria and also
motion criterion, where we do not need to perform motion correction. We note
that this is the case for the majority of our dataset. Additionally, we show an
overlayed image pair that passed our appearance criteria, but failed the motion
criterion. Fig. F-(b) shows the image pair before and after the motion correction.
It should be noted that only a small portion of the data requires such correc-
tion, and our correction pipeline is designed to be robust to rain artifacts. It
is because even though rain can influence local descriptors, the combinatorial
matching stage is designed to be robust to a preponderance of outliers. For most
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cases, the percentage of outliers affects the time it takes to converge, but not
the quality. All samples that require our correction procedure were manually
inspected after the alignment – any failure cases of the procedure, typically due
to extreme weather conditions, were manually removed.

(a)

No correction needed No correction needed

(b)

Before correction After correction

Fig. F. The proposed method can correct for small motions under rain. We
illustrate two types of scenes by overlaying the rainy images on top of their clean ground
truths: (a) two scenes that do not need additional image processing for motion align-
ment; and (b) a scene with motion before and after running the correction algorithms.
It should be noted that both types of scenes are aligned properly in GT-RAIN.

G Runtime Comparison

We list the total number of parameters with the associated runtime for other
state-of-the-art methods and our proposed model in Table A. The comparison is
conducted on a single NVIDIA P100 GPU, and each derainer is asked to restore
a colored rainy image of size 256 × 256. We note that the top three methods
(DGNL-Net [10], EDR [8], and our proposed method) all operate at real-time
deraining speeds. However, our method outperforms them by 3.73 dB and 2.72
dB PSNR respectively.

H Limitations

Although we achieve the state of the art for deraining real images, our method is
not perfect. Our PSNR and SSIM scores on GT-RAIN are 22.53 dB and 0.7304.
This suggests that indeed, we still have ample room for improvement. For exam-
ple, we leave a slight rain accumulation in the tree in Fig. B. While the recov-
ered image is sharper and contains less rain artifacts than competing methods,
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Table A. Runtime comparison. The average inference time is calculated on 256×
256 color images.

Model
SPANet [34]
(CVPR’19)

HRR [20]
(CVPR’19)

MSPFN [13]
(CVPR’20)

RCDNet [33]
(CVPR’20)

DGNL-Net [10]
(IEEE TIP’21)

EDR [8]
(AAAI’21)

MPRNet [46]
(CVPR’21)

Ours

Number of
Parameters

284k 40.6M 15.8M 3.16M 4.03M 27.3M 3.63M 12.9M

Inference
Time (ms)

86.65 35.35 145.5 189.6 4.230 4.617 36.91 12.79

boundaries in highly textured areas (e.g. leaves, bricks, and foliage) are blurred.
In Fig. C, we observe a similar trend. However, this is a challenge that plagues all
methods. We hope that further extensions of our approach and GT-RAIN will
help mitigate these artifacts. We also do not consider occlusions from raindrops
on the camera lens because the raindrops will likewise be present on the lens
after the rain stops. Moreover, we do not consider specular reflections from water
surfaces. This is because these reflections are nearly impossible to reconstruct as
the water ripples in the puddles will destroy the visual patterns during raining.
We hope that future works can address these limitations. While we have describe
image restoration as the main task of deraining, we conjecture that our results
may also be applicable towards the re-use of pretrained models on clean data
for downstream tasks like: depth completion [9,21,24,25,38,39,40,43,45], stereo
[2,3,4,41,44], optical flow [1,17,18,19,31,32], object detection [14,15,22,30], and
monocular depth prediction [5,7,27,28,29,35,37,42].

I Comparison Code Links

The code links for all the comparison methods in the main paper are listed
in Table B.

Table B. Code links for the comparison methods.

Methods Links

SPANet [34] (CVPR’19) https://github.com/stevewongv/SPANet

HRR [20] (CVPR’19) https://github.com/liruoteng/HeavyRainRemoval

MSPFN [13] (CVPR’20) https://github.com/kuijiang0802/MSPFN

RCDNet [33] (CVPR’20) https://github.com/hongwang01/RCDNet

DGNL-Net [10] (IEEE TIP’21) https://github.com/xw-hu/DGNL-Net
Efficient Derain [8] (AAAI’21) https://github.com/tsingqguo/efficientderain

MPRNet [46] (CVPR’21) https://github.com/swz30/MPRNet

https://github.com/stevewongv/SPANet
https://github.com/liruoteng/HeavyRainRemoval
https://github.com/kuijiang0802/MSPFN
https://github.com/hongwang01/RCDNet
https://github.com/xw-hu/DGNL-Net
https://github.com/tsingqguo/efficientderain
https://github.com/swz30/MPRNet
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J Network Architecture & Implementation

As an additional supplement of the network architecture & implementation sec-
tion in the main paper, we provide more implementation details here. In our
model, the input convolutional block contains two convolutional layers with ker-
nel sizes of 7×7 and 3×3 respectively. The downsampling blocks are instantiated
by 3× 3 convolutional layers with a stride of 2, and each upsampling block con-
sists of a bilinear interpolation layer and a 3×3 convolutional layer. Please refer
to Table C for a more detailed illustration of the network architecture. We
use batch normalization [12] and choose leaky ReLUs [23] with a negative slope
of 0.1 as the activation function. Our model is implemented in PyTorch [26].
The MS-SSIM loss is implemented based on the PyTorch Image Quality (PIQ)
library [16]. Experiments are conducted on an NVIDIA Tesla P100 GPU.

Table C. Illustration of our network architecture.

Network
Kernel Channels Resolution

Parameters Input
Size Stride In Out In Out

Encoder

InputConv1 7 1 3 64 1 1 ≈ 9.5k Rainy Image

InputConv2 3 1 64 64 1 1 ≈ 37.0k InputConv1

DownConv1 3 2 64 128 1 1/2 ≈ 74.0k InputConv2

DownConv2 3 2 128 256 1/2 1/4 ≈ 295.4k DownConv1

DeformResBlock1

DeformConv11 3 1 256 256 1/4 1/4 ≈ 652.6k DownConv2

DeformConv12 3 1 256 256 1/4 1/4 ≈ 652.6k DeformConv11

Sum1 - - 256 256 1/4 1/4 DownConv2 + DeformConv12

DeformResBlock2

DeformConv21 3 1 256 256 1/4 1/4 ≈ 652.6k Sum1

DeformConv22 3 1 256 256 1/4 1/4 ≈ 652.6k DeformConv21

Sum2 - - 256 256 1/4 1/4 Sum1 + DeformConv21

...

DeformResBlock9

DeformConv91 3 1 256 256 1/4 1/4 ≈ 652.6k Sum8

DeformConv92 3 1 256 256 1/4 1/4 ≈ 652.6k DeformConv91

Sum9 - - 256 256 1/4 1/4 Sum8 + DeformConv92

Decoder

UpConvBlock1

Bilinear1 - - 256 256 1/4 1/2 - Sum9

Conv11 3 1 256 128 1/2 1/2 ≈ 295.2k Bilinear2

Concat1 - - 128 + 128 256 1/2 1/2 DownConv1, Conv11

Conv12 3 1 256 128 1/2 1/2 ≈ 295.2k Concat1

UpConvBlock2

Bilinear2 - - 128 128 1/2 1 - Conv12

Conv21 3 1 128 64 1 1 ≈ 73.9k Bilinear2

Concat2 - - 64 + 64 128 1 1 InputConv2, Conv21

Conv22 3 1 128 64 1 1 ≈ 73.9k Concat2

OutputConv 3 1 64 3 1 1 ≈ 1.7k Conv22

Total Parameters ≈ 12.9M
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