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We include additional materials in this document. We first describe the de-
tails of our machine annotators (Appendix A), including the explanation of each
model (Appendix A.1) and diversity between each model (Appendix A.2). We
provide the details of Human Intelligence Tasks (HITs) for ECCV Caption con-
struction (Appendix B), such as detailed questionnaire (Appendix B.1), MTurk
worker statistics (Appendix B.2) and the results (Appendix B.3). Appendix C
describes the post-processing details, including the full list of invalid items (Ap-
pendix C.1) and the examples of ECCV Caption (Appendix C.2). We include
more evaluation results in Appendix D, such as user study details for compar-
ing mAP@R and Recall@k (Appendix D.1), training details of re-implemented
methods (Appendix D.2), the full results with various evaluation metrics (Ap-
pendix D.3). Finally, we provide the full bias analysis in Appendix E and the
discussions of noisy crowdsource annotations in Appendix F.

A ECCV Caption Machine Annotators Details

A.1 Machine annotators

To cover both diversity and practical relevance, we have choose five state-of-the-
art cross-modal retrieval models with diverse properties.

• VSRN [24] builds up connections between image regions, and perform reason-
ing with Graph Convolutional Networks to generates features with semantic
relationships. VSRN uses the Faster R-CNN detector [33] as the visual en-
coder following [1]. VSRN employs the triplet loss [36] with hardest negative
mining (HNM) [13].

• PVSE [38] learns a one-to-many function to solve ambiguous matching by
one-to-one function. PVSE is a multi-headed model, focusing on diverse
matching between two diverse concepts. PVSE also employs the triplet loss
with HNM as VSRN.

• PCME [7] is a stochastic model for learning many-to-many correspondences
in multi-modal matching tasks. PCME is trained by a probabilistic matching
objective function based on the pair-wise matching loss.
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• ViLT [20] is a vision-language pre-training method with massive paired data
(4.1M images and 9.9M captions). While other methods have separated text
and visual backbones, ViLT has a unified shared Transformer [39] backbone
for text and visual modalities.

• CLIP [32] is a contrastive approach for massive but noisy associations and
shows powerful zero-shot classification performances. CLIP is trained with
4M image and caption pairs. We use the ViT-B/32 CLIP, the largest one
when we start the annotation process.

PVSE, VSRN and PCME use pre-trained visual backbones (ImageNet-trained
ResNet, Visual Genome [21]-trained Faster R-CNN) and only use COCO Cap-
tion dataset as the training dataset. We use the official weights provided by the
authors, except for PCME. We re-train PCME with CutMix [40] pre-trained
ResNet-152. This slightly boosts the original performances. We illustrate the
example retrieved images by each model in Figure A.1.

“A guy does a trick 

on a skateboard.”

Caption

Image
(Ground Truth)

Cross-modal 
Retrieval Models

Top 5 Images retrieved by each model

ViLT

PVSE

PCME

VSRN

CLIP

Fig.A.1: Example retrieved images by the machine annotators. For the given
caption (“A guy does a trick on a skateboard.”), we show the top-5 images retrieved
by models. The matched pair in the dataset is denoted by red boxes.

A.2 Diversity between machine annotators

We illustrate the quantify of the diversity between machine annotators by their
retrieved items in Table A.1. We retrieve 25 images by each model from the
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PVSE VSRN PCME ViLT CLIP

PVSE - 0.266 0.430 0.089 0.088
VSRN 0.266 - 0.260 0.060 0.049
PCME 0.430 0.260 - 0.110 0.120
ViLT 0.089 0.060 0.110 - -0.013
CLIP 0.088 0.049 0.120 -0.013 -

(a) Model similarity analysis by
Kendall’s τ . A higher score means that
two models are more correlated.

PVSE VSRN PCME ViLT CLIP

PVSE - 4.52 3.87 5.95 6.24
VSRN 4.50 - 4.47 5.45 5.97
PCME 3.87 4.50 - 5.79 6.20
ViLT 5.79 5.19 5.78 - 6.18
CLIP 6.16 5.81 6.12 6.03 -

(b) Model similarity analysis by the
average ranking. A smaller rank means
that two models are more similar.

Table A.1: Model similarity analyses. We measure similarties between the ma-
chine annotators in two different ways. (a) We measure the ranking correlations using
Kendall’s τ ; 1.0 means two lists are identical, -1.0 indicates two lists are strongly dis-
agreed each other. (b) We measure the average rankings of the image retrieved by a
model for other models. Each row indicates the average ranking of the top-1 retrieved
image of the row model for other column models.

COCO validation captions, and measure (1) Kendall’s τ (Table A.1a), and (2)
the average ranking of the top-1 retrieved items by a model of another model.

Table A.1a shows the Kendall’s rank correlation coefficients (Kendall’s τ)
between the models. Kendall’s τ is computed on two ranked lists [x1, x2, . . . , xn]
and [y1, y2, . . . , yn]. We say that two pairs ,(xi, xj) and (yi, yj), agree if either
(xi > xj and yi > yj) or (xi < xj and yi < yj). Kendall’s τ is computed by

τ = #agreed pairs−#non-agreed pairs
#all pairs . We use the tau-B variant for the tie-breaking.

B Human Intelligence Tasks (HITs) for ECCV Caption
Construction

B.1 HIT details

The example HIT for crowd workers is shown in Figure B.1. Each of the 20
questions in the HIT ask the workers to select the degree of belief that the given
image-description pair is a positive match. We have designed the HITs in such a
way that not only the positivity of the match is recorded, but also the degrees and
rationales for the workers’ judgments are collected. Workers can choose among
“100% YES”, “Partially YES, but”, “Mostly NO, because”, and “100% NO”.
Here, we use four choices instead three level (“YES”, “Not Sure”, and “NO”)
to avoid encouraging the workers to select “Not Sure” for all questions. If a
worker chooses “Partially YES, but” or “Mostly NO, because”, then they are
asked further questions on the rationale behind their uncertainty. Four possible
shortcomings for the image-description match are presented as choices: “the
description describes concepts that do not appear in the image”, “the description
does not describe the main concepts in the image”, “the description describes the
main concepts in a wrong way”, and “the description is grammatically incorrect”.
Finally, if a worker thinks the description describes the image in a wrong way,
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we ask how the description is wrong. The possible choices here (e.g ., quantity,
color, . . . ) have been crystallized from an internal, preliminary study.

Fig. B.1: Example question in a MTurk HIT. The question asks whether
the image is correctly described. If unsure (“Partially YES, but ...” or “Mostly
NO, because ...”), the question prompts the worker to provide the rationale.
There are 20 of such questions in each HIT.

We make two separated HITs for the annotation process. In the first stage, we
verify the results of the image-to-caption retrieval results of five models. We also
ask the crowd workers to justify their answer if they choose “Partially YES”
or “Mostly NO”. In the second stage, we verify the results of the caption-to-
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# HITs / worker # Workers # Submit. HITs # Approv. HITs Approve ratio

1 599 599 459 76.6%
1 < and ≤ 5 254 681 535 78.6%
5 < and ≤ 10 61 475 374 78.7%
10 < and ≤ 15 23 297 216 72.7%
15 < and ≤ 25 21 411 285 69.3%

25 < 12 506 293 57.9%

Table B.1: MTurk worker statistics. The number of the unique workers, the sub-
mitted HITs, the approved HITs and the average approve ratio by the number of
completed HITs are shown.

image retrieval results of the models. After we analyzed the first HITs, we have
concluded that the justification stage is not highly useful as our expectation.
We omit the justification questions in the second stage for reducing annotation
costs. The first annotation round was between 23rd Aug 2021 to 7th Sep 2021.
During the first stage, 1,000 HITs are verified by human annotators. The second
stage was between 24th Jun 2022 to 10th Feb 2022, and 1,160 HITs are verified
during this stage.

B.2 MTurk workers

Before launching the crowdsourcing on AMT, we have conducted an in-lab study
involving 70 HITs and 27 workers for 4 days. We have observed that if workers
continuously complete HITs, the average elapsed time per HIT is about 4 to 8
minutes. Based on this estimate, we have set the compensation level for each
HIT to $1.4 so that a worker can earn $15 per hour in the first stage. For the
second stage, we have set the the compensation level for each HIT to $0.65,
based on the similar in-lab study without justification questions. The final costs
including platform fees for the first and the second stages are $1.65 and $0.78,
respectively.

In the main crowdsourcing phases, crowd workers are recruited through
AMT. The detailed statistics for workers are shown in Table B.1. Overall, 970
unique workers have completed 2,969 unique Human Intelligence Tasks (HITs),
while 807 HITs of them (37.3%) have been rejected by our qualification process.
The average elapsed time for each HIT of the first and second annotation phase
are 9.5 and 13.8 minutes, respectively. The average HITs per worker is 3.06.

B.3 MTurk results

We summarize the results of the crowdsourced annotations, corresponding to
2,160 approved HITs on MTurk, in Table B.2 and Table B.3. In Table B.2, we
show the ratios of “Yes”, “Weak yes”, “Weak no” and “No” for different models
and rankings. Here, we observe that weaker results (i.e., worse ranked pairs)
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PVSE VSRN
Rank Yes Weak yes Weak no No Yes Weak yes Weak no No

1 52.3 31.7 11.2 4.7 54.4 31.6 10.0 4.0
2 39.0 36.7 16.7 7.5 39.9 37.6 15.8 6.7
3 34.5 36.9 18.0 10.6 36.6 36.8 17.6 9.0
4 30.9 39.2 19.6 10.4 33.2 38.1 17.6 11.1
5 28.0 39.2 20.5 12.3 30.4 38.6 19.0 12.0

Avg. 36.8 36.8 17.3 9.1 38.8 36.6 16.0 8.6

PCME ViLT
Rank Yes Weak yes Weak no No Yes Weak yes Weak no No

1 52.3 33.2 10.4 4.2 47.6 33.7 12.0 6.7
2 39.8 37.2 15.1 7.9 36.6 33.5 19.7 10.2
3 35.6 39.0 17.5 7.9 30.3 35.6 20.2 13.9
4 31.9 37.8 21.1 9.2 26.7 35.6 22.8 14.9
5 27.8 40.0 21.5 10.6 25.8 35.6 22.5 16.1

Avg. 37.4 37.5 17.2 8.0 32.9 34.8 19.7 12.5

CLIP
Rank Yes Weak yes Weak no No

1 50.5 33.5 12.0 3.9
2 35.3 38.5 18.0 8.2
3 33.8 39.9 16.1 10.1
4 31.0 38.6 18.0 12.5
5 28.4 39.8 20.2 11.6

Avg. 36.0 38.0 16.8 9.2

Table B.2: Model-wise annotation overview. The percentages of “100%
YES”, “Partially YES”, “Mostly NO” and “100% NO” for each model and each
ranking are shown. For example, the first row indicates the annotation results
for the top-1 retrieved image and description pairs.

have lower “Yes” and “Weak yes” ratios. For example, the annotation results
for PCME show that the “Yes” ratios monotonically decrease as the rank goes
down: 52.3% for the most similar pairs, but 27.8% for the least similar pairs.
Interestingly, we observe that the average ratio of “Yes” + “Weak yes” for the
top-1 retrieved items exceed 80% for all five models (e.g ., 86.0% for VSRN),
while the R@1 score of each model is known to less than 60% (See Table 4 in
the main paper).

From the table, we observe that by letting annotators verify more similar
pairs by machines, the annotation process becomes more efficient, i.e., we can
acquire the same amount of positive annotations with less number of human ver-
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Not in image Not in caption Incorrect object description grammar error

PVSE 30.4 17.5 48.0 4.1
VSRN 30.1 18.4 46.5 5.0
PCME 31.6 17.9 46.1 4.4
ViLT 31.2 18.9 45.7 4.2
CLIP 28.8 18.5 47.1 5.6

Avg. 30.4 18.2 46.7 4.7

(a) Shortcomings by models.

Quantity Color Species Gender Age Action Emotion Location Orientation Others

PVSE 25.7 20.1 11.9 5.4 2.2 14.9 0.9 3.4 12.1 3.2
VSRN 23.8 20.1 12.7 4.0 1.7 15.5 1.2 4.3 13.6 3.0
PCME 24.8 20.9 12.1 5.6 2.1 14.3 0.8 4.2 12.1 3.1
ViLT 24.9 20.8 11.2 6.3 2.1 14.9 0.9 3.7 12.8 2.4
CLIP 27.2 19.7 13.5 3.5 1.7 14.5 1.1 3.9 11.3 3.5

Avg. 25.3 20.3 12.3 5.0 2.0 14.8 1.0 3.9 12.4 3.0

(b) Detailed errors by models.

Table B.3: Error types. The percentage of the error types by models. There is
no statistical significant difference by models.

ification. However, as we will discuss in depth later, we emphasize that the model
power is not only factor to consider: model biases emerge in MITL-produced
datasets regardless of the strength of the model.

We additionally show the rationales for the uncertain matches and the spec-
ification of the errors in Table B.3. We observe that the models result in similar
patterns in the annotations’ rationale and specification of errors. Finally, by our
annotation process, the average number of “100% YES” and “Partially YES”
images for each caption is 8.3 and 7.1, respectively. It is remarkable since original
COCO annotations allow only one image to be positively paired to a caption,
revealing the massive amount of missed positive matches.

C ECCV Caption Post-processing Details

C.1 The full list of invalid captions and images

In this subsection, we list up the invalid captions and images in the original
COCO test split. We filter the invalid captions by the following process: (1) We
first list up the “true positive” (i.e., the positive pairs in the original COCO test
set) annotated by “100% No” items by Turkers or CxC [30]. (2) We manually
validate the items into two categories: totally wrong captions (e.g ., “I don’t
know” captions) and semantically incorrect captions (e.g ., “A group of birds
flying above the beach” for an image with kites), The full list of invalid captions
with their COCO caption ids are as follows:
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• 607516 The first picture is blank all the time on purpose.
• 607486 Why is my first one a blank every time.
• 433639 There is no image here to provide a caption for.
• 248212 I am unable to see an image above.
• 469834 There is no image here to provide a caption for.
• 462530 I really cant see this image very well.
• 469102 There is no image to be reviewed on this hit.
• 743575 There is no image showing on this page to describe.
• 246706 I am unable to see an image above.
• 61717 There is no picture here to describe with a caption.
• 500797 I am unable to see the image above.
• 19273 There is no image for me to write about.
• 630298 There is no image to provide a caption for.
• 576409 I am unable to see the image above.
• 390637 I am unable to see an image above.
• 296557 There is no image here to provide a caption for.
• 450553 I am unable to see an image above.
• 44809 blank image with no pictures available to write about

We also show the list of semantically incorrect captions as the follows:

• 610564 An individual is in the open view in the image.
• 359139 I cant tell if the bears may be fighting or kissing.
• 218995 A baseball player hugging another player as lovers do.
• 609235 Individuals are up and doing something fun today.
• 143250 The bar of the small bathroom has many remotes on it.
• 375316 A photo duplicated a few times and put together.
• 712683 Talk about a bad hair day, his is frightful.
• 75083 A group of birds flying above the beach.
• 625605 It is always wise to have bottles of water on hand in case of an emergency.
• 620511 If the motorcycle brakes down, the bicycle will be good transportation.
• 613949 A full view of an outdoor space with many things to see.
• 129825 A picture of a comment that is open.
• 605566 There is a room with various items in the picture.
• 634829 That thing is really red and slow lol

Finally, we omit COCO val2014 000000578492.jpg from our test set, where
the image is duplicated to training images: COCO train2014 000000388662.jpg

and COCO train2014 000000397819.jpg.

C.2 More examples of ECCV Caption

We illustrate the samples from ECCV Caption in Figure C.2.

D More Evaluation Results on ECCV Caption

D.1 User study for evaluation metrics

In this subsection, we describe the details of the user study to compare mAP@R
and Recall@k in terms of human judgement. We first randomly sample 40 cap-
tions from the captions whose the number of corresponding images is between 5
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Fig. C.1: An example image of semantically wrong captions. We annotate “A
group of birds flying above the beach” as a wrong caption of the figure, while the other
captions are available in Figure C.2.

to 8. Then, we construct five rankings for each caption: (A) only top-1 is wrong
(B) only top-1 is correct (C) top1 to 5 are wrong (D) only top-5 is correct, and
(E) all items are wrong. When the number of corresponding images is 5, then we
treat (C) as (E). Each ranking system shows different mAP@R and Recall@k;
if we assume the number of the positives is 8, then (A) shows 0 R@1, 100 R@5
and 66.0 mAP@R, (B) shows 100 R@k and 12.5 mAP@R, (C) shows 0 R@k and
10.3 mAP@R, and (D) shows 0 R@1, 100 R@5 and 2.5 mAP@R. The examples
of each ranking system is illustrated in Figure D.1.

We collect binary preferences for the all possible combinations of (A) to (E),
namely 10 binary pairs. We use MTurk for collecting participants, and we collect
8 participants for each question (the example question is in Figure D.2). As a
result, we collect 40 × 10 × 8 = 3, 200 binary preferences of the five different
rankings. We list the full binary preference in Table D.1. After collecting binary
preferences, we restore the preference rankings using Bradley–Terry (BT) model
[4]. The BT model assumes that for the given pair i and j, the probability to the
pairwise comparison i > j is linear to the true ranking score, i.e., P (i > j) =

pi

pi+pj
. Our goal is to estimate pi, the true ranking preference for each method.

Using BT model, we got the following results: A (70.85), B (13.15), C (10.66),
D (4.89). This confirms that mAP@R is more aligned to humans than R@1; (A)
shows 0 R@1 and B shows 100 R@1, however humans prefer (A) to (B) where
(A) has higher mAP@R than (B) (66.0 and 12.5 if the number of positives is 8).

D.2 Training details

We follow the implementation details by Chun et al . [7]. We use the AdamP [16]
optimizer and cosine annealing learning rate scheduling [26]. For re-implemented
VSE, PVSE and PCME, we use the pre-trained ResNet-152 backbone and pre-
trained Glove vectors following previous studies [7, 13, 38]. We use two-stage
training scheme that includes “pre-training” (freezing pre-trained backbones, but
only updating the additional modules) and “fine-tuning” (updating the whole
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Kites being flown along the coast line in the morning
People watch multi colored items fly above the beach.
A beach where people are flying kites at sunset.
A crowd of people flying kites on the beach.
Dozens of kite skiers out in the ocean
People in the water and parachutes overhead.
Many different sails flying over a large body of water.
There are many large kites flying above the beach.
Kites are flying over people on a beach.
A bunch of kites flying in the sky on the beach.
Several gliders floating on the ocean next to an island.
A couple flying a kite at dusk on the seaside.
People on a sunny beach flying various kites

The tennis player is extending his reach to hit the racket.
A man swings his acket to hit a tennis ball
A tennis player swinging the rackets towards the ball.
A man that is standing up and has a tennis racquet.
A man lunging to hit a tennis ball in a match
A male tennis player walking on the tennis court.
A man on a court swinging a racket at a ball.
The man is playing tennis with a racket.
A man standing on a tennis court holding a racquet.
A man on a tennis court trying to hit the ball
A man taking a swing at a tennis ball
A man taking a swing at a tennis ball
A man throwing a tennis ball in the air for him to
hit it with his racket.
A man hitting a tennis ball with a racquet.
A man with a tennis racket is running on a court
A man swinging his racket to hit the ball.
The tennis player is hitting the ball with his racket
A tennis player caught jumping up to hit the ball
A man is holding a tennis racquet prepared to hit
the incoming ball.
A man holding a tennis racquet as a ball clears the net.
A man with a racket prepares to hit a tennis ball
A man in shorts and a long sleeve shirt playing tennis.

A man stands on a tennis court hitting a ball with a racket.
A man plays a game of tennis during the day.
A man with a tennis racket swings at a tennis ball
A man with a tennis racket on a court.
A man playing tennis on the tennis court
A person hitting a tennis ball with a tennis racket
A man playing tennis and holding back his racket to hit the ball.
A male tennis player swinging his tennis racket.
A man swinging at a tennis ball with a tennis racket.
A person hitting a tennis ball with a tennis racket.
A man on a tennis court that has a racquet.
A man in a head band hits a tennis ball
A man standing on top of a tennis court holding a racquet.
A male in a blue shirt playing tennis on a tennis court
A man holding a tennis racket on a tennis court.
A tennis player swinging a racket at a ball
A man holding a racquet on top of a tennis court.
A boy hitting a tennis ball on the tennis court.
A man on a court swinging a tennis racket.
A man in white shirt and shorts playing tennis.
A guy in a maroon shirt is holding a tennis racket out to hit a tennis ball.
A person hitting a tennis ball with a tennis racket on a tennis court.
The man is playing tennis on the court.

Some zebras are seen grazing in the field.
Four adult zebra are grazing on a field of grass.
Four zebras are grazing on grass in a pasture.
Four zebras eating grass on a field.
A herd of zebra standing on top of a lush green field.
These four zebra are walking in a field.
There is a herd of zebras standing around.
A herd of zebras walking through the grass.
Clouds with a rainbow in the sky of an open field with
zebras grazing on the grass.
Several zebras in an open area during a not so sunny day.
A group of zebras that are standing in the grass.
A group of zebras in a grassy and forested area
Four zebras are grazing at a nature reserve.
Zebras graze in a grass and bush fenced enclosure.
There are some zebras standing in a grassy field
The zebra is standing in the field with the other animals
in the background.
Four zebras standing in the grass on a cloudy day.
Four zebras walking in a grassy area.

A herd of zebras stand on a pathway near brown grass.
Zebras graze on the plains with trees in the background.
Three zebras and two other animals grazing.
Several zebras walking the terrain of hills and mountains
Two zebras in some brown and green grass and some bushes
A herd of zebras grazing with a rainbow behind.
A herd of zebra grazing on a dry grass field.
Herd of five zebras grazing in a field
Two black and white zebras and some green grass and trees
A group of zebra standing on top of a dry grass field.
A zebra is standing outside on the grass by itself.
Three zebra in the middle of a field with a body of water
in the distance.
Zebras grazing on sparse grass in an enclosure at an animal park.
A herd of zebras grazing in a field and a rainbow.
A group of zebras are on some grass with trees and bushes
behind them.
A few deer and a zebra on a grass field
Several zebras eat the green grass in the pasture.

Query: Boats are traveling in the large open water.

Fig. C.2: Example sample from ECCV Caption. Positive captions and images in
ECCV Caption. Red: original positive. Green: annotated as “100% Yes”. Blue: anno-
tated as “Weak Yes”.
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GT images for “A train on a train track near many trees”.

(A) Only top-1 is wrong.

(B) only top-1 is correct.

(C) Top-1 to -5 are wrong.

(D) Only top-5 is correct.

(E) All items are wrong.

Fig.D.1: Examples of five ranking systems compared by our user study.

A B C D E

A: only top-1 is wrong 0 231 66 111 316
B: only top-1 is correct 89 0 21 79 328
C: top1 to 5 are wrong 254 299 0 273 343
D: only top-5 is correct 185 217 23 0 287
E: all items are wrong 28 16 1 9 24

Table D.1: Binary preferences for five ranking systems. Each number in row i
and column j denotes that the number of preferences i > j. For example, 231 responses
preferred “(A) only top-1 is wrong” than “(B) only top-1 is correct”, while the number
of the converse case is 89.

parameters). The models are pre-trained during 30 epochs and fine-tuned during
30 epochs. For the improved PCME, we use the ResNet-152 model trained with
the CutMix [40] augmentation for achieving better R@1 accuracies.
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Fig.D.2: Example question in the user study for evaluation metric compar-
isons. The question asks which ranking system A or B looks more correct by humans.
There are 40 of such questions in each HIT. We collect 8 participants per each question.

D.3 Full table

Table D.2 and Table D.3 show the full results of each model for image-to-text
retrieval tasks and text-to-image retrieval tasks, respectively.

E Analysis of Biases in MITL

In this section, We explore and quantify the effect of the choice of multiple
machine annotators to the dataset quality. We delve into the effect of the choice
of machine annotators used for machine-in-the-loop (MITL) labeling paradigm
to the dataset quality. Specifically, we are interested in the model bias, the
type of bias that arises because of the pre-selection of plausible samples by
the model in the annotation pipeline. We discuss the generalizability of our
framework to general annotation tasks in Appendix E.1, and the definition of
“bias” in our dataset process in Appendix E.2. We measure the model bias by
employing the crowdsourced data as the source for evaluating the ITM models.
For a perfectly unbiased data, we shall expect the identical rankings across the
version of datasets collected with different models. We show the performances
on different versions of the datasets using only one MITL model and provide
discussions (Appendix E.3).
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ECCV CxC COCO 1K COCO 5K
mAP@R R-P R@1 R@1 R@1 R@5 R@10 R@1 R@5 R@10 PMRP

ResNet-152 [15] image encoder + Bi-GRU [6] text encoder

VSE0† 14.92 26.05 44.73 26.92 48.50 81.74 89.26 24.76 53.82 67.98 51.54

VSE++† 24.45 36.51 64.31 43.66 66.86 91.34 95.80 41.52 72.10 82.88 59.58
PVSE K=1 23.40 35.56 62.57 43.88 66.70 90.94 95.60 41.76 72.96 82.90 58.80
PVSE K=2 26.72 39.24 65.03 46.08 68.42 91.26 96.18 44.10 73.38 83.68 60.69
PCME 26.24 38.65 65.50 46.22 68.78 91.42 96.38 44.26 73.52 83.44 60.87

PCME (CutMix)† 28.55 41.23 68.75 47.14 68.72 92.58 96.36 45.04 75.12 84.66 61.85

Region features based on Bottom-up Attention [1] and SCAN [23]

VSRN 30.77 42.89 73.83 55.06 76.20 94.76 97.86 53.02 81.12 89.42 62.41
VSRN + AOQ 30.70 42.61 73.12 56.86 77.50 95.44 98.38 55.14 83.30 90.80 62.47
CVSE 28.11 40.14 69.23 52.92 74.14 94.94 98.04 51.00 79.58 89.36 62.23
SGR 27.24 39.15 71.05 58.80 77.26 95.94 98.26 57.24 83.18 90.64 61.98
SAF 27.36 39.30 71.05 56.98 78.06 95.84 98.20 55.48 83.82 91.82 62.00
VSE infty (BUTD region) 31.36 42.78 74.86 60.12 79.64 96.38 98.60 58.34 85.32 92.34 62.98
VSE infty (BUTD grid) 31.68 43.08 76.53 60.64 80.42 96.78 98.86 59.10 85.90 92.82 62.79
VSE infty (WSL grid) 34.80 45.41 81.05 67.88 84.50 98.06 99.38 66.38 89.34 94.60 64.13

Large-scale Vision-Language pre-training

CLIP ViT-B/32 22.39 32.61 66.06 51.68 69.26 90.92 95.00 50.14 75.00 83.42 54.40
CLIP ViT-B/16 23.67 33.96 68.68 53.84 71.56 91.40 95.82 52.30 76.78 84.64 56.46
CLIP ViT-L/14 24.00 33.84 71.37 57.98 74.20 92.84 96.58 56.32 79.32 86.60 59.79
VinVL (zero-shot) 16.17 27.31 49.64 37.06 58.06 87.54 93.70 35.18 64.36 76.30 36.80
VinVL 34.56 44.39 83.35 75.74 88.14 98.32 99.40 74.66 92.58 96.34 75.73
ViLT (zero-shot) 23.22 33.64 65.34 58.24 77.10 95.12 97.92 56.70 82.54 89.58 57.26
ViLT 27.50 38.57 73.35 62.76 80.76 96.28 98.32 61.50 86.26 92.66 62.65
BLIP 36.02 44.56 88.50 82.68 92.28 98.96 99.58 81.90 95.38 97.80 82.32

Different negative mining (NM) strategies

PVSE K=1, Sum triplet† 22.26 34.97 56.70 37.18 60.42 89.24 94.84 35.16 66.32 79.22 37.27

PVSE K=1, SHM† 25.24 37.67 64.00 43.24 66.12 91.36 96.18 41.14 71.64 82.68 42.90

PVSE K=1, HNM† 25.24 37.75 64.55 44.78 67.18 91.94 96.16 42.70 73.56 84.04 45.36

Table D.2: Re-evaluating VL models: Image-to-text retrieval results.

E.1 Image caption matching problem to general annotation tasks

Many real-world applications are powered by state-of-the-art machine learning
(ML) models shown to exceed human-level performances in tasks such as natural
language understanding [10] and image classification [14,15]. However, previous
studies have shown that two conditions must be met for these models to perform
well: massive training data and quality annotations. For example, large datasets
that consist of well-curated 1M images [34], 3.5B Instagram photos [27,37], 300M
web photos [11], 400M captioned images [32], 1.8B noisy captioned images [17],
15M hierarchically structured images [11, 41], and synthetic images [8, 9, 40, 42]
are the key factors behind the corresponding models’ success. Moreover, the
annotation quality is equally important for the model performances. Mahajan
et al . [27] showed that training on 940M images with well-processed 1.5k labels
results in a model comparable to training on 3.5B images with noisy and weak
17k labels; both models show 84.2% ImageNet-1K top-1 accuracy.

An emerging pattern for obtaining quality labels for a large dataset is pipelin-
ing a machine learning model and human annotators. Expert human annotators
are reliable and produce high-quality label, but they are costly to accommo-
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ECCV CxC COCO 1K COCO 5K
mAP@R R-P R@1 R@1 R@1 R@5 R@10 R@1 R@5 R@10 PMRP

ResNet-152 [15] image encoder + Bi-GRU [6] text encoder

VSE0† 30.41 40.48 66.37 21.56 39.95 74.71 84.71 19.78 46.12 59.87 42.36

VSE++† 45.57 54.49 81.91 32.24 52.76 84.79 91.92 30.05 60.11 72.95 48.94
PVSE K=1 44.55 53.41 83.93 32.88 53.49 85.11 92.08 30.64 61.37 73.62 48.32
PVSE K=2 53.80 60.6 88.44 34.27 54.91 86.50 93.12 32.15 62.79 74.84 50.36
PCME 47.97 56.99 84.08 33.95 54.65 86.25 93.17 31.80 62.17 74.59 52.54

PCME (CutMix)† 54.92 61.66 88.59 36.26 56.70 87.08 93.84 33.97 63.77 75.85 53.46

Region features based on Bottom-up Attention [1] and SCAN [23]

VSRN 53.78 60.78 89.19 42.63 62.77 89.71 94.62 40.46 70.58 81.10 48.47
VSRN + AOQ 51.17 58.68 89.94 43.34 63.46 90.50 95.40 41.14 71.50 81.96 50.36
CVSE 46.59 54.88 84.16 38.71 59.88 89.29 94.81 36.60 68.04 79.57 50.74
SGR 44.35 52.93 86.49 42.39 62.06 89.56 94.90 40.47 69.64 80.28 51.84
SAF 44.55 53.07 85.66 42.18 62.24 89.53 94.98 40.12 69.73 80.38 52.42
VSE infty (BUTD region) 49.56 57.16 90.17 44.67 64.79 91.41 95.95 42.41 72.67 83.19 50.31
VSE infty (BUTD grid) 49.12 57.10 89.49 46.29 66.42 92.10 96.36 44.09 74.10 84.01 50.94
VSE infty (WSL grid) 50.02 57.45 91.82 53.70 72.04 93.92 97.19 51.64 79.34 87.58 51.16

Large-scale Vision-Language pre-training

CLIP ViT-B/32 31.11 41.2 68.09 32.26 49.68 79.29 87.70 30.42 55.96 66.89 50.69
CLIP ViT-B/16 34.82 44.01 73.42 34.67 52.47 80.86 88.90 33.07 58.42 68.99 51.80
CLIP ViT-L/14 31.96 41.76 72.97 38.30 55.46 82.29 90.18 36.55 61.05 71.14 52.82
VinVL (zero-shot) 28.19 38.54 60.74 30.41 50.15 80.37 87.19 28.96 56.99 68.79 37.55
VinVL 47.06 54.71 92.19 59.77 76.62 95.15 97.91 58.12 83.20 90.08 46.79
ViLT (zero-shot) 30.46 39.97 72.65 42.45 62.26 90.70 96.21 40.56 70.00 81.07 51.90
ViLT 41.66 49.97 82.27 44.68 64.73 91.84 96.68 42.85 72.76 83.00 53.11
BLIP 45.01 52.30 93.47 65.92 79.95 95.80 97.82 64.32 85.73 91.57 53.15

Different negative mining (NM) strategies

PVSE K=1, Sum triplet† 44.41 53.91 79.28 28.20 49.30 83.68 91.87 26.13 56.40 70.28 52.42

PVSE K=1, SHM† 48.02 57.05 83.93 33.09 53.57 85.45 92.43 30.86 60.83 73.71 49.91

PVSE K=1, HNM† 46.28 55.24 82.81 33.25 54.02 85.40 92.24 31.06 61.26 73.76 48.99

Table D.3: Re-evaluating VL models: Text-to-image retrieval results.

date. Strong machine annotators are relatively inexpensive, but they result in
low-quality and unreliable annotations. One popular method of combining the
two is feeding human annotators with machine learning model’s outputs. For
example, a model suggests annotations (e.g ., candidates of labels [22], estimated
boxes [22], estimated segmentation maps [2], estimated descriptions [19]) for
the given data point, and the annotators only need to confirm or fix the labels
given by the machine annotators. This approach is commonly used for building
a large-scale dataset, such as OpenImages [2, 22], e-Vil [19].

While rich body of discussions are available for building annotation interfaces
and crowdsourcing workflows, we still lack a good understanding of the impact
the underlying machine learning models have on the annotators and on the
annotation results. In this research, we specifically examine the downstream
effects of a common practice where researchers and practitioners consider only
one “strong” model in the machine-in-the-loop annotation pipeline. This can
be problematic because different models not only show different results to the
human annotators, but also in different orders, bring the impartialness of the
annotated dataset towards any particular model to the surface. In other words,
the machine-in-the-loop annotations are not stable across model choices.
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As a realistic scenario for utilizing ML models to aid annotators, we consider
the COCO Caption matching task [5,25] that matches each image with sentences
in a large database of captions. Due to the sheer bulk of the involved databases
(123,287 images and 616,767 captions), it is infeasible for annotators to search
through the matching caption. Instead, for each image, we use model-based
ranking of possible captions to greatly reduce the search space for annotators. We
have conducted studies with five state-of-the-art image-text matching models.
Our COCO Caption matching task can be seen as the extreme version of the
class label selection task where the number of possible classes is as large as the
number of possible descriptions.

A decent overview of the image annotation tools is provided by Sager et
al . [35]. The annotation task is determined along two axes: the types of inputs
and the expressiveness of the labels. This paper focuses on the image inputs, one
of the most frequently annotated type of data. The expressiveness and complex-
ity of labels are directly related to the learning task being addressed. Tagging
images with class labels is arguably the most common and basic form in the spec-
trum of label expressiveness. In the other extreme, we have the image-caption
matching task : given an image, annotator has to search through the database
of descriptions to find the one that best matches the image [5]. The caption
matching task is of the same nature as image tagging: one needs to find the
correct label in a list of possible labels. However, the candidate space for the
possible labels is exponentially greater for the caption matching task. If the vo-
cabulary size is V and the lengths of caption sequences are generally L, the size
of the candidate space is as large as O(V L). This contrasts against the number
of possible class labels that are generally far smaller than V .

We consider the image-caption matching as a testbed for analyzing annota-
tion pipelines for two reasons. First, it highly relevant for the MITL annotation
paradigm because it is downright infeasible for humans to browse through the
database. Second, it inherits the same tool as image tagging, making our exper-
imental results and analyses transferable to general image tagging tasks.

E.2 What Do We Mean by “Bias”?

Bias is an overloaded term with multiple senses. We briefly explore its use in
relevant fields and make a definition relevant to our paper.

In statistics and machine learning, bias of an estimator or model refers to
the mismatch between its average behavior and the true parameter or underly-
ing function [3, 18]. We partially adopt this definition of bias in a broad sense.
The annotation pipeline as a whole can be regarded as a mechanism for assign-
ing plausible labels to a given set of images. When we say that the annotation
pipeline is “biased”, we refer to the discrepancy between the resulting annota-
tions and the true, underlying labels for the samples.

In human-related studies, like psychology, neuroscience, human-computer in-
teraction, and increasingly in machine learning, the use of “bias” often points to
its underlying human factor. Examples include “confirmation bias” where hu-
mans favorably select data that serve their purpose [31], “reporting bias” where
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crucial commonsense knowledge is overlooked [12], and “survivorship bias” where
non-surviving cases are under-represented [28]. In our MITL annotation pipeline,
we study the model bias where models hinder humans from generating an unbi-
ased set of labels by presenting humans with only a selection of the candidate
labels deemed correct by the models.

E.3 Biases in ECCV Caption

Given the crowdsourced labeled image-caption data of ECCV Caption, our aim
is to analyze the degrees of bias in them, depending on the underlying model used
for machine-in-the-loop (MITL) labeling paradigm. Specifically, we are interested
in the model bias, the type of bias that arises because of the pre-selection of
plausible samples by the model in the annotation pipeline. We measure the
model bias by employing the crowdsourced data as the source for evaluating
the cross-modal retrieval models. For a perfectly unbiased data, we shall expect
the identical evaluation results (i.e., in terms of the ranking of the methods)
across the version of datasets collected with different models. In this section,
we introduce the strategy to measure the model bias and present experimental
results and analyses.

We measure the model bias in a labeled dataset by examining whether certain
versions of datasets behaves favorably to certain models when they are used as
the evaluation benchmark. To measure this, we need to introduce the specific
evaluation metrics used for measuring the cross-modal retrieval performances.
We use Recall@1 and R-Precision.

Recall@1 is the most widely-used metric for reporting the performances of
cross-modal retrieval models. To compute it, we first let mi(x) be the indicator
whether the i-th retrieved item of the input x is a positive match.

mi(x) = 1 if i-th retrieved item of x is a positive match;

mi(x) = 0 otherwise.
(E.1)

R@1 measures whether the top-1 retrieved item is a positive match on average:

R@1 =
1

N

N∑
n=1

m1(xn). (E.2)

Despite its popularity, Recall@1 has a serious shortcoming. As argued by Mus-
grave et al . [29], a high Recall@1 does not always guarantee high-quality retrieval
results. Musgrave et al . have proposed to use the R-Precision as an alternative
metric. Let R(x) be the total number of matched items for the input x. Then,
R-Precision is defined as follows:

R-P =
1

N

N∑
n=1

1

R(x)

R(x)∑
i=1

mi(xn). (E.3)

Despite its good properties, in practice, it is impossible to use R-Precision for
cross-modal retrieval benchmarks because many cross-modal retrieval bench-
marks only a few number of (e.g ., 1) positive pairs in the dataset. However, as
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Models used for annotations
Models PVSE VSRN PCME ViLT CLIP All

PVSE 76.5 63.6 67.6 45.3 42.0 76.6
VSRN 68.0 80.1 69.0 51.1 47.2 80.1
PCME 67.7 64.3 77.3 46.0 44.1 77.4
ViLT 59.5 59.8 58.8 62.0 49.3 72.4
CLIP 51.7 51.5 52.6 42.8 49.3 64.3

(a) Text-to-Image Recall@1.

Models used for annotations
Models PVSE VSRN PCME ViLT CLIP All

PVSE 53.5 39.4 42.1 30.1 31.3 42.1
VSRN 41.8 55.9 41.6 33.8 35.9 43.2
PCME 42.9 39.9 54.8 31.8 33.8 43.1
ViLT 34.0 34.5 33.9 45.5 37.0 35.8
CLIP 31.0 31.5 31.9 29.6 39.6 32.1

(b) Text-to-Image R-Precision.

Table E.1: Model performances vs. different annotation processes. Each row
indicates performances of the same model by different annotation strategies: using the
annotations filtered by a specific model. For example, the first column of the tables
shows the model performances by only using “PVSE” filtered annotation. “All” denotes
the full annotations are used. The bold numbers denote the best model performances
for each annotation strategy, where the best performed model and the model used for
the annotation strategy are the same in all experiments.

shown in Figure A.1, there actually are many plausible positive pairs missed by
the original positive pairs.

We further refurbish the metrics by using the fine-grained degrees of pair
positivity provided by the annotators (Appendix B.2), which are not available
for conventional cross-modal retrieval datasets. We update the matching function
(Equation (E.1)) as follows:

mi(x) = 1 if i-th retrieved item of x is annotated as “100% YES”

mi(x) = 0.5 if i-th retrieved item of x is annotated as “Partially YES”

mi(x) = 0 otherwise.

(E.4)

We report the modified Recall@1 and R-Precision using the matching function
above as the final performance metric for cross-modal retrieval models on our
crowdsourced datasets.

Table E.1a and Table E.1b show the performances on different versions of
the datasets using only one MITL model. Not surprisingly, we observe that the
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“A guy does a trick on a skateboard.”

Phase 1. Verification by crowd workers Phase 2. Construct MILT-produced labels

ViLT

PVSE

PCME

VSRN

CLIP

MILT-produced images

(by all models)

MILT-produced images

(by PCME and VSRN)

Fig. E.1: Overview of our machine-in-the-loop annotation process. We
choose the subset of the verified image caption pairs by crowd workers to control
the effect by the models to final annotations.

best-performing model for each dataset coincides with the model used for the
MITL label proposal (i.e., the diagonal elements in Table E.1). Other models
tend to show quite some drop in performance. This strongly corroborates the
existence of model bias in datasets collected with the aid of machine filtering. We
further observe that even for models not used for generating the label proposals
(i.e., the non-diagonal elements in Table E.1a and Table E.1b), the rankings
shift with respect to the underlying MITL model. This suggests that even when
one avoids the direct use of the MITL model for evaluating its own performance,
one may still observe unstable evaluation results, where different MITL models
arbitrarily favor different models.

This suggests that even when one avoids the direct use of the MITL model
for evaluating its own performance (i.e., avoiding the diagonal results), one may
still observe unstable evaluation results, where different MITL models arbitrarily
favor different models.

A crucial limitation in an analysis of this type is the lack of the true labels.
The obtained versions of datasets are clearly enhanced versions compared to the
original COCO Caption dataset, but they are still heavily affected by the model
biases as seen above. To make a better estimate of how far the datasets are
from the true labels, we introduce the multi-model strategy where the workers
verify label proposals generated by more than two of the models involved. More
specifically, a multi-model strategy involving models Θ = {PVSE,PCME} pools
the label proposals from both PVSE and PCME and present them to the hu-
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Fig. E.2: Number of models vs. bias quantity. The bias quantities (Eq.
(E.5)) with changing the number of models for the annotation filtering process
are shown. For both Recall@1 and R-Precision metrics, we observe that using
more models reduce the severity of bias; the discrepancy between the resulting
annotations by models and the underlying labels for the samples decreases.

man annotators. The rest of the verification process is identical as before. The
intuition is that the dataset built with the multiple models will be much closer
to the true labels for the image-caption matches. In the extreme case, we have
the all-model strategy involving all five models considered in this work. See the
“All” columns in Table E.1a and Table E.1b for the corresponding results.

Based on this intuition, we additionally measure the distance between a ver-
sion of dataset and the all-model dataset, which is deemed to contain the labels
that are closer to the true labels. We define sΘ(ϕ) as the performance of the
model ϕ evaluated upon the dataset built with the multi-model strategy with
MITL models Θ. We write sAll(ϕ) as a good proxy for the true performance of
the model ϕ. We define the model bias incurred by a subset of models Θ as

BΘ :=
1

5

∑
ϕ∈All

|sΘ(ϕ)− sAll(ϕ)| (E.5)

where All = {PVSE, VSRN, PCEM, ViLT, CLIP}. For example, B{PVSE} using
Recall@1 (Table E.1a) is computed as follows:

B{PVSE} = (|76.5− 76.6|+ |68.0− 80.1|+ |67.7− 77.4|
+ |59.5− 72.4|+ |51.7− 64.3|)/5 = 9.5

(E.6)

We break down the degree of bias BΘ into the bias incurred onto oneself (“self-
bias”) and the one incurred onto the other models (“non-self-bias”). We quantify
the self-bias for a set of models Θ to measure the amount of the bias incurred onto
oneself: 1

|Θ|
∑

ϕ∈Θ |sΘ(ϕ)− sAll(ϕ)|. For example, self-bias for PVSE is |76.5 −
76.6| = 0.1. The complementary amount of bias, the non-self-bias is computed
similarly. For example, PVSE’s non-self-bias is computed as |68.0−80.1|+|67.7−
77.4|+ |59.5− 72.4|+ |51.7− 64.3|)/4 = 11.8.
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COCO 1K R@1 ECCV R@1 ECCV R-PrecisionECCV mAP@R
Evaluation Metric
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ViLT
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PCME (CutMix)
PVSE K=2
CLIP ViT-B/32

Fig. E.3: Bias quantity in the dataset. The full rankings of the chosen MITL
annotators on our benchmark.

We plot the degrees of the biases, measured with BΘ, self-bias, and non-self-
bias in Figure E.2. We have experimented with changing the numbers of models
|Θ|. All numbers are averaged over all possible subsets of models of size |Θ| (e.g .,
if |Θ| = 2, the result is the average of n(n − 1)/2 numbers). We omit the case
with |Θ| = 5 because all metrics are zero by definition.

We have two observations. First, the smaller number of MITL models make
the gap between “self-bias” and “model-bias” larger. This implies that if we use
a single model for the MITL annotations, the resulting dataset is highly un-
likely to treat the methods differently. Second, the general bias measurements
decrease with the number of involved models in the MITL annotation process.
For the practical applications, hence, it is advisable to use multiple models to
collect the label candidates to verify. In practice, we observe that only three ma-
chine annotators (PVSE, PCME and VSRN) achieve better rankings on ECCV
mAP@R compared to the COCO R@1 ranking (Figure E.3). That suggests that
our ECCV Caption is not fully biased towards the selected machine annotators.

F Noisy Annotations

Our annotations are built upon crowdsoure annotations. Due to the nature of
the noisiness of crowdsource annotations, ECCV Caption contains some wrong
annotations. Also, our annotations are chosen not only from “100% YES” but
also from “Partially YES”. Note that our HIT is designed for specifying the
details of what makes the annotation “partially correct” – See Figure B.1. We
illustrate some false positive cases in Figure F.1. The false positives can be hap-
pened due to (1) wrong object, e.g ., “baseball bat” instead of “tennis racquet”
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(a) “A boy holding a tennis racquet on a tennis court.”.

(b) “A large white airplane flies in the gray sky.”.

(c) “Two men of some sort on a tennis court.”.

Fig. F.1: Examples of noisy annotations in ECCV Caption. Examples of false
positive images are shown. Each of false positive contains (a) wrong object, e.g ., “base-
ball bat” instead of “tennis racquet” (b) wrong color, e.g ., “blue” instead of “gray” (c)
wrong quantity, e.g ., “one” instead of “two”.

(Figure F.1a), (2) wrong color, e.g ., “blue” instead of “gray” (Figure F.1b) (c)
wrong quantity, e.g ., “one” instead of “two” (Figure F.1c). However, although
there exist some false positives in our dataset, we strongly encourage to use
ECCV Caption and mAP@R for evaluating a new VL model. Even if there ex-
ist some false positives, they are not 100% wrong examples; if a model learns
good global ranking, then the partially correct examples should be located in
the top rankings than other random items. Therefore we strongly encourage to
use mAP@R instead of Recall@k; mAP@R can mitigate the error by false posi-
tives, while Recall@k can amplify errors by noisy annotations by only checking
whether the top-K retrieved items are in the true items or not.
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