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Abstract. This paper does not contain technical novelty but introduces
our key discoveries in a data generation protocol, a database and insights.
We aim to address the lack of large-scale datasets in micro-expression
(MiE) recognition due to the prohibitive cost of data collection, which
renders large-scale training less feasible. To this end, we develop a proto-
col to automatically synthesize large scale MiE training data that allow
us to train improved recognition models for real-world test data. Specif-
ically, we discover three types of Action Units (AUs) that can constitute
trainable MiEs. These AUs come from real-world MiEs, early frames of
macro-expression videos, and the relationship between AUs and expres-
sion categories defined by human expert knowledge. With these AUs, our
protocol then employs large numbers of face images of various identities
and an off-the-shelf face generator for MiE synthesis, yielding the MiE-
X dataset. MiE recognition models are trained or pre-trained on MiE-X
and evaluated on real-world test sets, where very competitive accuracy
is obtained. Experimental results not only validate the effectiveness of
the discovered AUs and MiE-X dataset but also reveal some interesting
properties of MiEs: they generalize across faces, are close to early-stage
macro-expressions, and can be manually defined 3.
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1 Introduction

Micro-Expressions (MiEs) are transient facial expressions that typically last for
0.04 to 0.2 seconds [23,9]. Unlike conventional facial expressions (or Macro-
Expressions, MaEs) that last for longer than 0.2 seconds, MiEs are involuntary.
They are difficult to be pretended, and thus more capable of revealing people’s
genuine emotions. MiE recognition underpins various valuable applications such
as lie detection, criminal justice and psychological consultation.

The difficulty in collecting and labeling MiEs poses huge challenges in build-
ing MiE recognition datasets [3]. First, collecting involuntary MiEs is strenuous,
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https://orcid.org/0000-0001-9061-6180
https://orcid.org/0000-0002-4483-8783
https://orcid.org/0000-0001-8356-4909
https://orcid.org/0000-0002-1464-9500
https://github.com/liuyvchi/MiE-X


2 Y. Liu, et al.

100 5k1k

# identities

number of training samples

U
F1

 (%
)

Fig. 1. We present a large-scale synthetic MiE
training dataset, MiE-X, created by the proposed
protocol. It is two magnitudes larger than ex-
isting real MiE recognition datasets in terms of
number of MiE samples and number of iden-
tities. Compared with existing real-world MiE
datasets, MiE-X allows the MiE classifier [21]
to achieve consistently higher accuracy evaluated
on the real-world MiE dataset CompMiE [33].

even in a controlled environment [3]. Unlike MaEs, which participants can easily
“perform”, MiEs are too vague and subtle to precisely interpret. Second, cor-
rectly labeling MiEs is difficult. It usually requires domain knowledge from psy-
chology experts, and oftentimes even experts cannot guarantee a high accuracy
of annotations. As a consequence, scales of existing MiE recognition datasets are
severely limited: they typically consist of a few hundreds of samples from dozens
of identities (refer Fig. 1 for an illustrative summary). Shortage of training data
would compromise the development of MiE recognition algorithms.

In this work, we aim to address the data shortage issue by proposing a useful
protocol for synthesizing MiEs. This protocol has three steps. First, we con-
veniently obtain a large number of faces from existing face datasets. Second,
we compute sensible AUs. Third, we employ a conditional generative model to
“add” MiEs onto these faces. Conditional facial expression generation is a well-
studied problem, and we adopt an off-the-shelf algorithm, GANimation [29],
which employs coefficients of Action Units (AUs) as the generative conditions.

At the core of this synthesis protocol, we contribute in finding three types
of AUs helpful in the second step. The first type, intuitively, are AUs extracted
from real-world, annotated MiE datasets. Specifically, we extract AU coefficients
of annotated MiE samples and use these AU coefficients as conditions to trans-
fer corresponding MiEs to faces of other identities. The second type are AUs
extracted from early-stage MaEs. The formation of macro-expressions consists
of a process of facial muscle movements, and we find early stages of these move-
ments usually share similar values of AUs to those of MiEs. The third type are
AU combinations given by expert knowledge. For example, human observations
suggest that AU12 (Lip Corner Puller) is often activated when the subject
is “happy”, so we set AU12 to be slightly greater than 0 when synthesizing a
“happy” MiE. In this regard, this work is an early attempt to explore the under-
lying computational mechanism of micro-expressions, and it would be of value
for the community facilitating the understanding of micro-expressions and the
design of learning algorithms.

Using the proposed three types of AUs, our protocol allows us to create a
large-scale synthetic dataset, MiE-X, to improve the accuracy of data-driven
MiE recognition algorithms. As shown in Fig. 1, MiE-X is two orders of magni-
tude larger than existing real-world datasets. Notably, despite being synthetic,
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MiE-X can be effectively used to train MiE recognition models. When the tar-
get application has the same label space as MiE-X, we can directly use MiE-X
to train a recognition model, achieving competitive results to those trained on
real-world data. Otherwise, MiE-X can be used for pre-training, and its pre-
training quality outperforms ImageNet [6]. Our experiment shows that MiE-X
consistently improves the accuracy of frame-based MiE recognition methods and
a state-of-the-art video-based method.

– We introduce a large-scale MiE training dataset created by a useful protocol,
for training MiE recognition models. The database will be released.

– We identify three types of AUs that allow for synthesizing trainable MiEs
in the protocol. They are: AUs extracted from real MiEs, mined from early-
stage of MaEs and provided by human experts of facial expressions.

– Our experiments reveal interesting properties of MiEs: they generalize across
identities, are close to early-stage MaEs, and can be manually defined.

2 Related Work

Facial micro-expression recognition. Many MiE recognition systems use
handcrafted features, such as 3DHOG [27], FDM [38] and LBP-TOP [42] descrip-
tors. They describe facial texture patterns. Variants and extensions of LBP-TOP
have also been proposed [37,13,14]. Afterwards, deep learning based solutions
were proposed [24,17,11,25,16,20]. Petal et al. [24] use the VGG model pretrained
on ImageNet [6] and perform fine-tuning for MiE recognition. In ELRCN [16],
the network input is enriched by the concatenation of the RGB image, optical
flow and derivatives of optical flow [34]. To reduce computation cost and prevent
overfitting, it is common to use representative frames as model input. For ex-
ample, Peng et al. [26] and Li et al. [19] select the onset frame, apex frame and
offset frame in each micro-expression video. Branches [21] uses the onset and
apex frame as model input. Following this practice, we focus on synthesising
representative frames for MiEs.

Deep learning from synthetic data. Deep learning using synthetic data
has drawn recent attention. Many works use graphic engines to generate virtual
data and corresponding ground truths. Richter et al. [30] use a 3D game engine to
simulate training images with pixel-level label maps for semantic segmentation.
In [32], prior human knowledge is used to constrain the distribution of synthetic
target data. Tremblay et al. [35] randomize the parameters of the simulator to
force the model to handle large variations in object detection. Learning-based
approaches [15,31,40] try to find the best parameter ranges in simulators so that
the domain gap between generated content and the real-world data is minimized.
Another line of works uses generative adversarial networks (GANs) to generate
images for learning. For example, the label smoothing regularization technique
is adopted for generated images [43]. Camstyle [44] trains camera-to-camera
person appearance translation to generate new training data. CYCADA [12] re-
constructs images and introduces semantic segmentation loss on these generated
images to maintain consistent semantics.
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68 69 : Fig. 2. Overview of the proposed pro-
tocol for synthesizing our MiE recogni-
tion dataset. We generate MiE samples
(a triplet containing onset frame xo, apex
frame xa and the emotion label y) with
a pretrained GANimation [29] model G,
faces in the wild and AU vectors (zo, za)
introduced in Section 4.2.

Action Units (AUs) in facial analysis. Action Units are defined accord-
ing to the Facial Action Coding System (FACS) [8], which categorizes the funda-
mental facial muscles movements by their appearance on the face. Correlations
between Action Units and emotions are widely discussed in literature [7,9,28].
This work uses such correlations where we look for and validate effective AUs as
generative conditions to synthesis realistic and trainable MiEs.

3 Preliminaries

MiE recognition aims to classify emotion categories of a given face video clip.
In practice, the video clips should be first processed by a spotting algorithm
to determine the onset (starting time), apex (time of the highest expression
intensity) and offset (ending time) frames. In this work, we assume all data have
been processed by spotting algorithms [3,33] and focus on the recognition task.

Emotion labels in existing datasets are usually different, ranging from 3 to
8 categories. In this work, we use a unified and balanced label space to synthe-
size MiE-X. Specifically, during synthesis, we choose the most basic categories
(positive, negative, surprise, as defined in MEGC) and merge other emo-
tion labels into these three categories. If the label space in the target dataset is
different from MiE-X, we need to fine-tune the model further.

In the following sections, when mentioning action units (AUs), we by default
refer to the AU coefficient vector z ∈ [0, 1]d. Each dimension in vector z indicates
the intensity of a specific action unit. There are usually d = 17 dimensions [29,1].

4 Synthesizing Micro-Expressions

4.1 The Proposed Protocol

Given a face image, an emotion label y ∈ {positive, negative, surprise}, and
an onset-apex AU pair (zo, za), our protocol uses GANimation [29] to generate
an MiE sample consisting of two representative frames (refer Fig. 2).

First, we randomly select an “in-the-wild” face image x from a large pool
of identities (we use the EmotionNet [10] dataset) as the template face upon
which we add MiEs. Then, we find an onset AU zo, an apex AU za, and the
corresponding emotion label y. A triplet of (zo, za, y) could be computed from
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three different sources, which are elaborated in Section 4.2. Finally, a conditional
generative model G is employed to transfer the onset and apex AUs to the
template face x, producing an onset frame xo = G(x, zo) and an apex frame
xa = G(x, za), whose emotion label is y (same as the label of x). Here, we adopt
GANimation [29] as G, which identity-preserving and only changes facial muscle
movements. Training details of GANimation are provided in supp. materials.

Please note that the protocol uses existing techniques and that we do not
claim it as our main finding. Also note that we do not synthesize entire video
sequences of MiEs, but only the onset (the beginning) and apex (most inten-
sive) frames. The motivation is three-fold. First, a full MiE clip may contain up
to 50 frames, so a dataset of full MiEs can be 25 times as large as a dataset
of representative frames (2 frames per MiE). Second, recent literature on MiE
recognition (e.g., [26,19,21]) indicate that using representative frames suffice to
obtain very competitive accuracy. Last, synthesizing video sequences in a realis-
tic way is much more challenging than static frames, requiring smooth motions
and consistency over time. We leave video-level MiE generation to future work.

4.2 Major Finding: Action Units That Constitute Trainable MiEs

In the protocol, we make the major contribution in finding three sources of AUs
that are most helpful to define the onset and apex AUs, to be described below.

AUs extracted from real MiEs. An intuitive source of MiE AUs are, of
course, real-world MiE data. Assume we have a real-world MiE dataset with
M MiE videos, where each video is annotated with the onset and apex frames.
For each video, we extract the onset and apex AUs and record the emotion
label, forming a set of AUs ZMiE = {(zo(m), za

(m)}Mm=1 and labels YMiE =
{y(m)}Mm=1. Here, AU coefficients are extracted with the OpenFace toolkit [1].
When synthesizing MiEs with a certain emotion category based on zMiE, we
randomly draw a pair of AUs from ZMiE that have the desired emotion label.

Discussion. Despite being a valuable source of MiEs AUs, existing real-world
MiE data are severely limited in size, so ZMiE is far from being sufficient. If we
had more MiE data, it would be interesting to further study whether our method
can synthesize a better dataset. At this point, to include more MiE samples in
our synthetic training set, we find another two AU sources below.

AUs extracted from early-stage of real MaEs. Abundant MaE videos
exist in the community, which have a similar set of emotion labels with MiE
datasets. These MaE videos usually start from a neutral expression, leak subtle
muscle movements in early frames, and present obvious expressions later. In our
preliminary experiments, we observe that AUs extracted from early frames of
MaE videos have similar values as those of MiE clips. This suggests that MiEs
and early-stage of MaEs have similar intensities in muscle movements, rendering
the latter a potential source to simulate MiEs.

In leveraging MaE videos as an AU source, we regard the first frame of MaE
clips, which usually has a neutral expression, as our onset frame. The selection
of the apex frame is more challenging. However, we empirically observe that
existing MaE clips usually present MiE-liked AU intensities in the first half
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Fig. 3. Examples of how to compute zMiE, zMaE and zexp. (a) We compute zMiE

from representative frames (i.e., the onset frame and the apex frame) of real-world
MiE videos. (b) Early frames in real-world macro-expression videos are used to obtain
zMaE. The hyperparameters of choosing the frame indices are selected in Section 5.3. (c)
We specify an emotion type (e.g., sad) and then the AU distribution from the Expert
Mapping table [7], which determine the activated AU entries. Then we assign activated
AU entries with intensity values (red bars) and others with 0. The hyperparameters of
constraining intensity values are experimented in Section 5.3.

of the video. Therefore, we use two hyperparameters to find the apex frame
approximately. Suppose an MaE clip has n frames. An apex frame is randomly
drawn from frame index ⌊α×n⌋, where ⌊·⌋ rounds a number down to the nearest
integer. The selections of α and β are briefly discussed in Section 5.3.

Discussion. Different MaE datasets may be different in the frame index of
the onset and apex frames, so in practice we need to do a rapid scanning to
roughly know them. But this process is usually quick, and importantly reliable,
because 1) a certain dataset usually follows a stable pattern in terms of the
onset and apex positions and 2) onset and apex states usually last for a while.
As such, while this procedure requires a bit manual work, it is still very valuable
considering the gain it brings (large-scale MiE data).

AUs defined by expert knowledge. Studies reveal strong relationships
between AUs and emotions [7,9,28]. Some explicitly summarize the posterior
probability of each AU entry being activated for each emotion label: P (zi > 0|y),
where zi indicates the i-th entry of AU vector z. The posterior probabilities, for
simplicity, are usually modeled with a Bernoulli distribution [7], i.e., P (zi >
0|y) = p and P (zi = 0|y) = 1 − p. We find the AU distribution summarized by
experts another effective source of AUs for synthesizing trainable MiEs.

We use the expert knowledge mainly to find the apex AUs, where we resort
to a mapping table [7] that describes the aforementioned posterior probabilities.
Given an emotion label, when generating the apex AUs zexpa , we first decide
which entries in zexpa should be activated (> 0) by drawing samples from the
Bernoulli distribution. We then determine the intensities of the activated entries
by randomly sampling from a uniform distribution with a fixed interval [µ, ν].
The selection of hyperparameters µ, ν is briefly discussed in Section 5.3. On the
other hand, for the onset AUs zexpo , we set them to zero vectors, which means
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Fig. 4. Examples of MiE apex frames from (a) synthetic (MiE-X) and (b) real-world
(the SMIC dataset [18]) micro-expression data. In (a), we show three columns of syn-
thesized MiE apex frames corresponding to three types of Action Units (AUs), i.e.,
zMiE,zMaE, zexp described in Section 4.2. Both real-world data and synthetic data the
shown under classes labels positive, negative, and surprise.

that no action unit is activated, thus representing a neutral face. Examples of
how to compute the above three types of AUs are provided in Fig. 3.

Discussion. We use three basic expression categories (positive, negative,
surprise) when synthesizing MiE-X, because these three classes form the largest
common intersection between the label sets from the three sources. If we could
have more fine-grained label space, it would be interesting to further explore
how the label space affects the training quality of MiE-X.

4.3 The MiE-X dataset

With the above three types of AUs and a large pool of in-the-wild faces, we
eventually are able to synthesize a large-scale MiE recognition dataset, coined
MiE-X. MiE-X contains 5,000 identities, each with 9 MiE samples4, resulting in
45,000 samples in total. To our knowledge, MiE-X is the first large-scale MiE
dataset and is more than two orders of magnitude larger than existing real-world
MiE datasets. Visualization of the generated apex frames in MiE-X is provided
in Fig. 4; comparisons with existing MiE datasets are illustrated in Fig. 1.

The strength of MiE-X as training data comes from its diversity in identity
and MiE patterns5. For instance, it contains 5,000 human identities, encouraging
models to learn identity-invariant expression features. At the same time, the
three sources of AUs are complementary, provide a wide range of AU values, and
sometimes have random AU perturbations. MiE-X alleviates overfitting risks and
allows algorithms to consistently improve their accuracy.

4 For each ID and each of the three classes positive, negative, and surprise, we
generate three MiE samples corresponding to three types of AUs. Each sample has
an onset and an apex frames, totaling 9 MiE samples and 18 frames per ID.

5 We also acknowledge GANimation that provides us with realistic facial images.
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5 Experiment

5.1 Experimental setups

Baseline classifiers. Two image-based MiE recognition methods are mainly
evaluated in this paper: the Branches [21] and ApexME [19]. Both are trained
for 80 epochs. More details are provided in supplementary materials.

Real-world datasets. We report experimental results on commonly-used
real-world datasets: CompMiE [33], MMEW and SAMM. CompMiE is pro-
posed by the MiE recognition challenge MEGC2019 [33] which merges three
existing real MiE datasets into one. The three component datasets are CASME
II [39], SAMM [5,4], and SMIC [18], respectively. CompMiE has the same la-
bel space (Section 4.2) as MiE-X and consists of 442 samples from 68 subjects
in total. MMEW and SAMM have 234 and 72 samples, respectively, and their
label spaces are different with MiE-X6. The MaE dataset CK+ [22] is a com-
monly used real-world MaE dataset containing 327 videos. Its label space is also
merged into the same one as CompMiE. When generating MiE-X (see Section 4),
we extract zMiE and zMaE from CompMiE and CK+, respectively.

Evaluation protocols. We use subject-wise k-fold cross-validation, com-
monly performed in the community [3,19,16]. Specifically, when real-world data
are used in testing, we split them into k subsets. Each time, we use k−1 subsets
for training and the rest 1 subset for testing. The average accuracy of the k tests
is reported. For CompMiE, k = 3; for MMEW and SAMM, k = 5. To evaluate
the effectiveness of MiE-X, we replace real training sets (i.e., k−1 subsets) with
MiE-X when MiE-X is used for direct deployment. Note that, for each fold, MiE-
X samples whose AUs (i.e., zMiE) are computed from real MiE samples in the
test subset will not be used in training. If MiE-X is used for pre-training, where
a fine-tuning stage is required, the k − 1 subsets will be used for fine-tuning.
Other real-world datasets (e.g., MMEW, SMIC) are also used for pre-training
to form comparisons with MiE-X7 Experiment is categorized as follows.

– Pre-training with MiE-X (or other competing datasets) and fine-tuning on
target training set. We adopt this setting especially when the source domain
has a different label space from the target domain.

– Training (or fine-tuning) with MiE-X (or other competing datasets) followed
by direct model deployment. If the target domain and training dataset share
the same label space, models obtained from the training set can be directly
used for inference on the target test set.

Metrics. We mainly use unweighted F1-score (UF1) and unweighted aver-
age recall (UAR) [33]. UF1 and UAR indicate the average F1-score and recall,
respectively, over all classes. We also report the conventional recognition rate on
the MMEW [3] and SAMM [4] datasets to compare with the state of the art.

6 Label space of MMEW: happiness, surprise, anger, disgust, fear, sadness; Label
space of SAMM: happiness, surprise, anger, disgust, fear.

7 We discard those samples in real-world datasets that overlap with the test subset.
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Table 1. Effectiveness of MiE-X in model (pre-)training. Models are pre-trained using
MiE-X or other real-world datasets and then fine-tuned on real-world training data i.e.,
CompMiE, or the combination of CompMiE and CK+ [22]. UF1 (%) and UAR (%) are
reported on the CompMiE dataset after three-fold cross-validation. ApexME [19] and
Branches [21] are used as baselines. We observe consistent accuracy improvement when
models are pre-trained with MiE-X. In addition, when directly deploying the MiE-X
pretrained model, the accuracy is also competitive.

Pre-training Fine-tuning ApexME [19] Branches [21]
MiE data CompMiE CK+ UF1 UAR UF1 UAR

- ✓ 41.8 ± 0.7 41.9 ± 0.7 43.6 ± 0.5 44.6 ± 0.6
- ✓ ✓ 45.0 ± 0.5 45.5 ± 1.0 45.2 ± 0.5 47.0 ± 0.6

SMIC [18] ✓ 45.0 ± 1.7 44.8 ± 1.9 42.8 ± 0.8 41.4 ± 0.9
CASME [39] ✓ 44.0 ± 1.2 45.1 ± 0.5 40.7 ± 0.9 41.4 ± 0.9
SAMM [5] ✓ 43.7 ± 0.7 42.8 ± 0.5 42.3 ± 1.4 42.9 ± 1.7
MMEW [3] ✓ 43.3 ± 0.8 44.4 ± 1.2 43.3 ± 1.3 44.1 ± 1.5

MiE-X 45.2 ± 0.5 46.3 ± 0.5 47.7 ± 0.5 48.9 ± 0.8
MiE-X ✓ 46.9 ± 0.9 48.3 ± 0.9 50.7 ± 0.9 52.1 ± 1.4
MiE-X ✓ ✓ 47.0 ± 0.8 48.2 ± 0.4 52.3 ± 0.7 52.3 ± 0.4

By default, we run each experiment (k-fold cross-validation) 3 times and report
the mean and standard variance of the results in the last epoch. Moreover, we
provide the best accuracy among all epochs for reference (Table 2).

5.2 Effectiveness of the Synthetic Database

Effectiveness of MiE-X in training models for direct deployment. MiE-
X has the same label space with CompMiE. So models trained with MiE-X
can be directly evaluated on the CompMiE. In Table 1, ApexME and Branches
trained with MiE-X alone produce an UF1 of 45.2% and 47.7%, respectively,
which outperforms the training set composed of CompMiE and CK+.

Effectiveness of MiE-X in model pre-training. First, when using MiE-
X for model pre-training, we observe consistent improvement over not using it
(Table 1). For example, when we perform fine-tuning on CompMiE using the
ApexME method, pre-training with MiE-X brings 5.1% and 7.1% improvement
in UF1 and UAR, respectively, over not using MIE-X. Second, we compare MiE-
X with existing datasets (i.e., SMIC, CASME, SAMM, and MMEW) of their
effectiveness as a pre-training set, on which we train the baseline MiE classifiers
(i.e., ApexME, Branches). We do three-fold cross-validation on CompMiE. For
each fold, we use the dataset (e.g., SMIC) we would like to evaluate as the pre-
training data. Samples are removed from the training set if they also appear in
the test subset of CompMiE in the current fold. Then we fine-tune the model on
the training subset of CompMiE. Results are shown in both Table 1 and Fig. 1.
We observe that the model pre-trained on MiE-X significantly outperforms those
pre-trained on other datasets. For instance, when we pre-train Branches on MiE-
X, the final fine-tuning results on CompMiE in UF1 and UAR are 7.4% and 8.0%
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Table 2. Comparison with the state-of-the-art MiE recognition methods on MMEW
and SAMM datasets. We re-implement ApexME, Branches and DTSCNN, which are
pretrained with either ImageNet or MiE-X (grey). We report the mean recognition
accuracy (%) and standard variance. † donates vide-based methods. “Last” means test
result in the last epoch, and “Best” refers to the best accuracy among all epochs.

Methods
MMEW SAMM

Last Best Last Best

FDM [38] 34.6 − 34.1 −
LBP-TOP [42] 38.9 − 37.0 −
DCP-TOP [2] 42.5 − 36.8 −
ApexME [19] 48.5 ± 0.6 58.3 ± 0.9 41.3 ± 0.6 54.9 ± 0.7
ApexME + MiE-X 55.9 ± 2.0 61.4 ± 0.8 46.4 ± 0.7 60.3 ± 1.1
Branches [21] 50.1 ± 0.6 58.3 ± 0.6 44.5 ± 0.7 53.3 ± 0.5
Branches + MiE-X 56.8 ± 1.1 61.5 ± 1.0 48.7 ± 1.0 56.3 ± 0.8

TLCNN† [36] − 69.4 − 73.5

DTSCNN† [25] 60.9 ± 1.3 71.1 ± 1.1 51.6 ± 1.8 60.6 ± 1.1

DTSCNN† + MiE-X 63.1 ± 1.0 74.3 ± 0.5 55.5 ± 1.4 73.9 ± 0.9

higher than using MMEW as the pre-training data. This phenomenon validates
the effectiveness of our dataset and the proposed synthesis procedure.

Positioning within the state of the art.We follow a recent survey [3] and
compare with the state of the art on two datasets, MMEW [3] and SAMM [4],
all under 5-fold cross validation. Results are summarized in Table 2. We re-
implemented three baselines (ApexME, Branches and DTSCNN), pretrained on
either ImageNet or MiE-X. To pretrain the video-base method DTSCNN, we use
a simple variant of MiE-X where each sample has multiple frames. Specifically,
when computing zMiE and zMaE, we extract AUs for all the frames between the
onset and apex frames. All these extracted AUs are used for frame generation.
For zexp, we linearly interpolate 8 AU vectors between the onset and apex AU
vectors, thus generating 10 frames per sample.

Table 2 clearly informs us that MiE-X pre-training improves the accuracy
of all the three methods. Importantly, when MiE-X is used for pre-training,
MiE recognition accuracy is very competitive: DTSCNN achieves accuracy (best
epoch) of 74.3 ± 0.5 % and 73.9 ± 0.9 % on MMEW and SAMM, respectively.

5.3 Further Analysis

All experiments in this section are performed on the Branches baseline [21].
Comparisons of various AU combinations. Fig. 5 evaluates various AU

combinations on CompMiE. We have the following observations. First, none of
the three types of AUs are dispensable. We observe that the best recognition
accuracy is obtained when all three types of AUs are used, which outperforms
training with CompMiE+CK+ by 1.7% and 2.0% in UF1 and UAR, respectively.
Importantly, if we remove any single type of AUs, the UF1 and UAR scores de-
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Fig. 5. Comparing training effectiveness of real-world data and various synthetic
datasets sourced from different combinations of AUs. We compare UF1 (a) and UAR
(b) on CompMiE. “n.s.” means the difference is not statistically significant (i.e., p-
value > 0.05). ∗ denotes statistically significant (i.e., 0.01 < p-value < 0.05). ∗∗ and
∗ ∗ ∗ mean statistically very significant (i.e., 0.001 < p-value < 0.01) and statistically
extremely significant (i.e., p-value < 0.001), respectively. We observe decreased accu-
racy if we remove any of the three types of AUs. When all the three types are used
for database creation, both UF1 and UAR exceed results obtained by training on real-
world data, with very high statistical confidence.

crease. For example, when removing zMiE, zMaE, zexp one at a time, the decrease
in UF1 score is 1.6%, 1.0% and 1.6%, respectively.

Second, using two types of AUs outperforms using only a single type with
statistical significance. For example, when using zMiE and zMaE, UF1 is higher
than using zMaE alone by 2.15%. In fact, the three AU types come from distinct
and trustful sources, allowing them to be complementary and effective. This also
explains why all three AU types are better than any combination of two.

Third, when using a single type of AUs, we find zMaE or zexp produces much
higher UF1 and UAR than zMiE. Their superiority could be explained by their
diversity. Compared with zMiE, MiEs generated from zMaE and zexp are much
more diverse. Specifically, when constructing zMaE, the index of apex frame is
randomly drawn from a range ⌊α × n⌋ and ⌊β × n⌋. Similarly, the randomness
of AU intensities is also introduce by hyperparameter µ and ν when generating
zexp. In contrast, the index of the apex frame is fixed when constructing zMiE.

Lastly, we compare results that employ two real-world training datasets. The
first is CompMiE, described as in Section 5.1, and the second is a combination of
CompMiE and CK+. It is shown that CompMiE + CK+ outperforms CompMiE
by an obvious margin, suggesting that early-stage of MaEs highly correlate with
MiEs. These results motivated us to mine effective AUs (zMaE) from MaEs.

Impact of the number of AUs, IDs and MiE samples in MiE-X. For
MiE-X, the IDs, AUs and MiE samples are all important, and we now investigate
how their quantities influence MiE recognition accuracy by creating MiE-X vari-
ants with different numbers of IDs, AU triplets and samples. Here, please note
that the diversity is highly relevant to the number of distinct IDs/AUs/samples,
so sometimes we use number and diversity interchangeably. When studying AU
and ID diversity, we set the AU combination to be zMaE + zexp because their
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Fig. 6. (a)-(b): Impact of the number of AU triplets (a), IDs (b) and MiE samples
(c). In (a)-(b), we use zMaE and zexp for database synthesis, while in (c) all three types
AUs are used. We employ the Branches method [21]. When we gradually increase the
numbers, the three-fold cross validation accuracy (UF1, %) on CompMiE first improves
and then remains stable in all the three subfigures.

diversity can be easily changed by specifying the number of sampling times from
the uniform distributions (refer Section 4.2). When investigating the number of
MiE samples, we use all three types of AUs.

To evaluate the influence of AU diversity, we set the number of MiE samples
and IDs to 30,000 and 5,000 (6 samples per ID), respectively in all the dataset
variations. The AU diversity can be customized by allowing multiple identities
to share the same AU triple. Specifically, the number of AU triplets is set to
4,000, 6,000, 10,000, 30,000 and From the experimental results in Fig. 6 (a), we
observe the effectiveness of synthetic data generally increases when AU diversity
is improved. For example, the UF1 score increases by 1.8%, when the number of
distinct AU triplets increases from 4,000 to 10,000. When the number of AUs is
greater than 10,000, the curve reaches saturation.

To study the diversity of IDs, we fix the number of MiE samples and AU
triplets in MiE-X to be 30,000. We set the ID number as 700, 1,000, 1,700, and
5,000, achieved by randomly selecting face images from the EmotionNet [10]
dataset8. In this experiment, an ID generates more than 6 MiE samples using AU
triplets randomly drawn from the pool of 30,000. Results in Fig. 6 (b) show that
more IDs leads to a higher recognition accuracy. For example, UF1 of synthetic
dataset increases from 44.4% to 45.8% when the number of IDs increases from
700 to 1,700. When the number of IDs exceeds 1,700, the curve becomes stable.

To study the impact of the number of MiE samples, we fix the number of
AU triplets to 9,000 and the number of IDs to 1,000. We then gradually increase
the generated samples from 9,000 to 54,000 by reusing more AU triplets on each
ID. Experimental results are shown in Fig. 6 (c). We find the effectiveness of the
synthetic training set generally increases when more samples are included and
that curve becomes flat when the number of samples are greater than 36k. For

8 Note that each image in EmotionNet usually denotes a different identity.



How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset? 13

example, the UF1 is improved by 1.0%, when the number of samples increases
from 9k to 36k. When the number of samples increases from 36k to 54k, there is
a slight UF1 improvement of 0.2%. This observation is expected because when
the number of IDs and AUs are fixed, the total information contained in the
dataset is constrained. From the above experiments, we conclude that MiE-X
benefits from more AUs, IDs and samples within a certain range.

Table 3. Performance comparison between
training with and without side faces. Eval-
uation is on the CompMiE dataset.

w/ side w/o side

UF1 (%) 47.7 ± 0.5 47.4 ± 0.8

Impact of face poses. We use
5,000 IDs with frontal faces to syn-
thesize a training set variant which
is compared with MiE-X composed
of faces of various poses. To find
the frontal faces, we manually se-
lect 10 frontal faces in the Emotion-
Net dataset as queries and for each
search for 500 faces with similar facial
landmarks detected by a pretrained
MTCNN landmark detector [41]. Table 3 summarizes the results on CompMiE,
where we do not observe obvious difference between the two training sets. This
can possibly be explained by the fact that real-world MiE datasets mostly con-
tain frontal faces collected in laboratory environments. Therefore, pose variance
in MiE-X may not significantly influence performance on existingtests. Never-
theless, we speculate using various poses to generate MiE-X would benefit MiE
recognition in uncontrolled environments.

Analysis of other hyperparameters. Due to the lack of validation data in
real-world MiE datasets, we mostly used prior knowledge and intuition to choose
the hyperparameters. Specifically, we chose α = 0.3, β = 0.5 and µ = 0.1, ν =
0.3 in experiments. Here, we briefly analyze these two sets of hyperparameters
involved in the AU computation on CompMiE using cross-validation. [α, β] is the
interval from which the apex frames for computing zMaE are randomly selected.
Specifically, we analyze three options: (α = 0.1, β = 0.3), (α = 0.3, β = 0.5)
and (α = 0.5, β = 0.7). The number of identities is 5,000. Recognition accuracy
of the three options is given by Fig. 7 (a), where α = 0.3, β = 0.5 produces the
highest UF1 score. This result is in accordance with our intuition: the first 30%
to 50% frames of an MaE would be more similar to an MiE.

[µ, ν] is the interval from which the intensities of expert-defined AUs are
uniformly sampled. Similarly, we analyze three options, i.e., (µ = 0.1, ν = 0.3),
(µ = 0.3, ν = 0.5) and (µ = 0.5, ν = 0.7). This is inspired by observing AU
coefficients of real MiEs: the intensity of each action unit is not large, i.e., < 0.7
in most cases, because micro-expressions have subtle facial muscle movements.
Results are shown in Fig. 7 (b): the intensity range [0.1, 0.3] is superior. Because
the highest value of an MaE AU is 1.0, the value of [µ,ν] delivers another intuitive
message: facial AU intensities of MiEs are around 10% to 30% those of MaEs.
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5.4 Understanding of MiEs: A Discussion

MiEs generalize across faces. AUs extracted from real MiEs provide closest
resemblance to true MiEs and are thus indispensable. These AUs zMiE are gen-
eralizable because they can be transplanted to faces of different identities. The
fact that a higher number of face identities generally leads to a higher accuracy
indicates the benefit of adding AUs zMiE to sufficiently many faces to improve
MiE recognition towards identity invariance.
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Fig. 7. Impact of hyperparameters in com-
puting zMaE and zexp. UF1 (%) on the
CompMiE dataset is reported in each sub-
figure. (a): MiE-X is composed by zMaE

only. Three groups of α and β values are
tested. (b): MiE-X is made from zexp only.
Three groups of µ and ν are investigated. ∗
and ∗∗ have the same meaning as Fig. 5.

Early-stage MaEs resemble
real MiEs. To our knowledge, we
make very early attempt to leverage
MaEs for MiE generation. Although
the two types of facial expressions dif-
fer significantly in their magnitude of
facial movement, we find AUs in ini-
tial stages of MaEs are effective ap-
proximations to those in MiEs.

Expert knowledge is transfer-
able to MiEs. While AUs annotated
by experts are used to describe MaEs,
we find expert AUs with reduced
magnitude are effective in synthesiz-
ing MiEs. We therefore infer from a
computer vision viewpoint that MiEs
are related to normal expressions but
with lower intensity. Moreover, by ex-
amining the complementary nature of the three types of AUs, we infer that
expert knowledge adds some useful computational cues, which do not appear
in MaEs and real MiEs but can be humanly defined. Nevertheless, our work is
limited in that the psychological aspects of MiEs are not considered, which will
be studied in future with cross-disciplinary collaborations.

6 Conclusion

This paper addresses the data lacking problem in MiE recognition. An important
contribution is the introduction of a large-scale synthetic dataset, MiE-X, with
standard emotion labels to improve MiE model training. In the synthesis proto-
col, we feed faces in the wild, desired emotion labels and AU triplets (our focus)
to a generation model. Specifically, sourced from real MiEs, early-stage MaEs,
and expert knowledge, three types of AUs are identified as useful and comple-
mentary to endorse an effective protocol. This understanding of the role of AUs
in effective MiE synthesis is another contribution of this work. Experiment on
real-world MiE datasets indicates MiE-X is a very useful training set: models
(pre-)trained with MiE-X consistently outperform those (pre-)trained on real-
world MiE data. In addition, this paper reveals some interesting computational
properties of MiEs, which would be of value for further investigation.
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micro-expression analysis using spatiotemporal completed local quantized patterns.
Neurocomputing 175, 564–578 (2016)

15. Kar, A., Prakash, A., Liu, M.Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D.,
Torralba, A., Fidler, S.: Meta-sim: Learning to generate synthetic datasets. arXiv
preprint arXiv:1904.11621 (2019)

16. Khor, H.Q., See, J., Phan, R.C.W., Lin, W.: Enriched long-term recurrent con-
volutional network for facial micro-expression recognition. In: 2018 13th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2018).
pp. 667–674. IEEE (2018)



16 Y. Liu, et al.

17. Kim, D.H., Baddar, W.J., Ro, Y.M.: Micro-expression recognition with expression-
state constrained spatio-temporal feature representations. In: Proceedings of the
24th ACM international conference on Multimedia. pp. 382–386. ACM (2016)

18. Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-
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