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Abstract. We present a dataset of 998 3D models of everyday table-
top objects along with their 847,000 real world RGB and depth images.
Accurate annotation of camera pose and object pose for each image is
performed in a semi-automated fashion to facilitate the use of the dataset
in a myriad 3D applications like shape reconstruction, object pose esti-
mation, shape retrieval etc. We primarily focus on learned multi-view
3D reconstruction due to the lack of appropriate real world benchmark
for the task and demonstrate that our dataset can fill that gap. The
entire annotated dataset along with the source code for the annotation
tools and evaluation baselines is available at http://www.ocrtoc.org/

3d-reconstruction.html.
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1 Introduction

Deep learning has shown immense potential in the field of 3D vision in recent
years, advancing challenging tasks such as 3D object reconstruction, pose esti-
mation, shape retrieval, robotic grasping etc. But unlike for 2D tasks [10,28,23],
large scale real world datasets for 3D object understanding is scarce. Hence, to
allow for further advancement of state-of-the-art in 3D object understanding we
introduce our dataset which consists of 998 high resolution, textured 3D models
of everyday tabletop objects along with their 847K real world RGB-D images.
Accurate annotation of camera pose and object pose is performed for each image.
Figure 1 shows some sample data from our dataset.

We primarily focus on learned multi-view 3D reconstruction due to the lack
of real world datasets for the task. 3D reconstruction methods [15,48,38,43,50]
learn to predict 3D model of an object from its color images with known camera
and object poses. They require large amount of training examples to be able to
generalize to unseen images. While datasets like Pix3D [44], PASCAL3D+[52]
and ObjectNet3D [51] provide 3D models and real world images, they are mostly
limited to a single image per model.

Existing multi-view 3D reconstruction methods [8,21,38,43,50] rely heavily
on synthetic datasets, especially ShapeNet [6], for training and evaluation. There
are a few works [25,38] utilizing real world datasets [7], but only for qualitative
evaluation purpose, not for training or quantitative evaluation. To remedy this,

http://www.ocrtoc.org/3d-reconstruction.html
http://www.ocrtoc.org/3d-reconstruction.html
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Fig. 1. Sample data from our dataset. From left to right, shown are visualization
of textured 3D model, three sample multi-view images with wireframe object model
superimposed based on annotated camera and object poses.

we present our dataset and validate its usefulness by performing training as well
as qualitative/quantitative evaluation with various state-of-the-art multi-view
3D reconstruction baselines.

The contributions of our work are as follows:

1. To the best our knowledge, our dataset is the first real world dataset that can
be used for training and quantitative evaluation of learning-based multi-view
3D reconstruction algorithms.

2. We present two novel methods for automatic/semi-automatic data annota-
tion. We will make the annotation tools publicly available to allow future
extensions to the dataset.

2 Related Work

3D Shapes Dataset: Datasets like Princeton shape benchmark [42], FAUST [2],
ShapeNet [6] provide a large collection of 3D CAD models of diverse objects,
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but without associated real world RGB images. PASCAL3D+[52] and Object-
Net3D [51] performed rough alignment between images from existing datasets
and 3D models from online shape repositories. IKEA [27] also performed 2D-3D
alignment between existing datasets but with finer alignment results on a smaller
set of images and shapes (759 images and 90 shapes). Pix3D [44] extended IKEA
to 10K images and 395 shapes through crowdsourcing and scanning some ob-
jects manually. These datasets mostly have single-view images associated with
the shapes.

Datasets like [24,4,19] have utilized RGB-D sensors to capture relatively
small number of objects and are mostly geared towards robot manipulation tasks
rather than 3D reconstruction. Knapitsch et al . [22] provided a small number
of large scale scenes which are suitable for benchmarking traditional Structure-
from-Motion (SfM) and Multi-view Stereo (MVS) algorithms rather than learned
3D reconstruction.

The dataset that is closest to ours is Redwood-OS [7]. It provides RGB-
D videos of 398 objects and their 3D scene reconstructions. There are several
crucial limitations that has prevented widespread adoption of this dataset for
multi-view 3D reconstruction though. Firstly, the dataset is not annotated with
camera and object pose information. While the camera pose can be obtained us-
ing Simultaneous Localization and Mapping (SLAM) or Structure-from-Motion
(SfM) techniques [3,11,32,40,41], obtaining accurate object poses is relatively
harder. Also, the 3D reconstructions were performed on scene level rather than
object level, making it difficult to directly use it for supervision of object recon-
struction.

More recently, Objectron [1] and CO3D [37] have provided large scale video
sequences of real world objects along with point clouds and object poses but with-
out precise dense 3D models. We aim to tackle the shortcomings of the existing
datasets and create a dataset that can effectively serve as a real world bench-
mark for learning-based multi-view 3D reconstruction models. Table 1 shows the
comparison between the relevant datasets.

Ours Objectron CO3D Redwood-OS Pix3D IKEA PASCAL3D+ ObjectNet3D

Multi-view images ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Dense 3D models ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Scanned 3D models ✓ ✓ ✓ ✓ ✱ ✗ ✗ ✗

Object pose annotation ✓ ✓ ✓ ✗ ✓ ✓ ✱ ✱

Textured 3D models ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 1. Comparison between different datasets. Objectron and CO3D only provide
point cloud models of the objects. Pix3D contains a mixture of scanned and CAD 3D
models. PASCAL3D+ and ObjectNet3D only have rough object pose annotation, while
the annotation is not provided in Redwood-OS. Only our dataset provides precisely
scanned texture-mapped 3D models that are further registered to multi-view RGB
images.
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3D Reconstruction: The methods in [15,16,34,45,48,54] predict 3D models
from single-view color images. Since a single-view image can only provide a
limited coverage of a target object, multi-view input is preferred in many appli-
cations. SLAM and Structure-from-Motion methods [3,11,32,40,41] are popular
ways of performing 3D reconstruction but they struggle with poorly textured
and non-Lambertian surfaces and require careful input view selection. Deep
learning has emerged as a potential solution to tackle these issues. Early works
like [8,17,21] used Recurrent Neural Networks (RNN) to perform multi-view
3D reconstruction. Pixel2Mesh++ [50] introduced cross-view perceptual feature
pooling and multi-view deformation reasoning to refine an initial shape. Mesh-
MVS [43] predicted a coarse volume from Multi-view Stereo depths first and
then applied deformations on it to get a finer shape. All of these works were
trained and evaluated exclusively on synthetic datasets due to the lack of proper
real world datasets.

Some recent works like DVR [33], IDR [55], Neus [49], Geo-Neus [13] have
focused on unsupervised 3D reconstruction with expensive per-scene optimiza-
tion for each object. These methods encode each scene into separate Multi-layer
Perceptron (MLP) that implicitly represents the scene as Signed Distance Func-
tion (SDF) or Occupancy Field. These works have obtained impressive results
on small scale datasets of real world objects [20,53]. Our dataset can be further
applied to evaluate these methods quantitatively on a much larger scale dataset.

3 Data Acquisition

Our data acquisition takes place in two steps. First, a detailed and textured
3D model of an object is generated using Shining3D® EinScan-SE 3D scanner.
The scanner uses a calibrated turntable, a 1.3 Megapixel camera and visible
light sources to obtain the 3D model of an object. Then, an Intel® RealSense™

LiDAR Camera L515 is used to record a RGB-D video sequence of the object
on a round ottoman chair, capturing 360° view around the object. The video is
recorded at 30 frames per second in HD resolution (1280×720). Figure 1 shows
a number of 3D models and some sample color images from our dataset.

Datasets like [7,24] perform 3D model generation and video recording in
one step by reconstructing the 3D scene captured by the images. The quality
of the 3D models generated this way depends heavily on the trajectory of the
camera and requires some level of expertise for data collection. Furthermore,
these datasets use consumer grade cameras which cannot reconstruct fine details
in the 3D geometry. We therefore use specialized hardware designed for high
quality 3D scanning.

Another approach is to utilize 3D CAD models from online repositories and
match them with real world 2D images, which are also mostly collected on-
line [9,27,51,52]. The downside of this approach is that it is difficult to ensure
exact instance-level match between 3D models and 2D images. According to a
survey conducted by Sun et al . [44], test subjects reported that only a small
fraction of the images matched the corresponding shapes in datasets [51,52].
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4 Data Annotation

The most challenging aspect of creating a large scale real world dataset for ob-
ject reconstruction is generating ground truth annotations. Most learning-based
3D reconstruction methods require accurate camera poses as well as consistent
object poses in the camera coordinate frame. While it is fairly easy to obtain
the camera poses, obtaining accurate object poses is more challenging.

The methods in [44,52] perform object pose estimation by manually an-
notating corresponding keypoints in the 3D models and 2D images, and then
performing 2D-3D alignment with the Perspective-n-Point (PnP) [14,26] and
Levenberg-Marquardt algorithms [31]. Note that these datasets mostly contain
a single image for each 3D model, which makes this kind of annotation feasible.
In comparison, we aim to do this for video sequences with up to 1000 images,
which could be manual intensive. Additionally, estimating object pose that is
consistent over multi-view images will require keypoint matches at sub-pixel
accuracy which is impossible by manual annotation.

On the other hand, the methods in [9,51] manually annotate the object pose
directly by either trying to align the 3D model with the scene reconstruction [9]
or the re-projected 3D model with 2D image[51]. We found these techniques to
be inadequate for producing multi-view consistent object poses and therefore
develop our own annotation systems.

4.1 Notations

We represent an object pose by ξ ∈ SE (3) where SE (3) is the 3D Special Eu-
clidean Lie group [47] of 4×4 rigid body transformation matrix:

ξ =

[
R t
0 1

]
(1)

where R is the 3×3 rotation matrix and t is the 3D translation vector.
We define object pose wξobj as the transformation from canonical object

frame (obj) to world frame (w). Similarly, the pose of the ith camera wξcami

represents the transformation from camera to world frame. The canonical object
frame is centered at the object with z-axis pointing upwards along the gravity
direction while the world frame is arbitrary (e.g . pose of the first camera).

We use pinhole camera model with camera intrinsics matrix K:

K =

fx 0 cx
0 fy cy
0 0 1

 (2)

where fx and fy are focal lengths and cx and cy principal points. These param-
eters are provided by the camera manufacturers.

The image coordinates p of a 3D point Pw in homogeneous world coordinate
can be computed as:

p = K
[
RT

i −RT
i ti

]
Pw (3)
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Fig. 2. Texture-rich Object Annotation. Step 1 : Synthetic views of the 3D model
are rendered. Step 2 : Feature matching is performed between/across real and synthetic
images. Step 3 : Pose of the real and virtual cameras are estimated. Step 4 : Object pose
is estimated by 7-DOF alignment between estimated and ground truth virtual camera
poses.

where Ri and ti are the rotation and translation components of the camera pose.
The images taken from our RGB-D camera suffer from radial and tangential

distortion. But for the purpose of annotation, we undistort the images so that
the pinhole camera model holds.

We now present two methods for annotating our dataset depending on the
texture-richness of the object being scanned: Texture-rich Object Annota-
tion and Textureless Object Annotation.

4.2 Texture-rich Object Annotation

Since our 3D models have high-fidelity textures from our 3D scanner, we can
utilize it to annotate the object pose in the recorded video sequence. We perform
joint camera and object pose estimation by matching keypoints between images
and 3D model to ensure camera and object pose consistency over multiple views.
Figure 2 illustrates the annotation process. Following are the steps involved:

i. Rendering synthetic views of a 3D model: Instead of directly matching
keypoints between a 3D model and 2D images, we instead render synthetic views
of the 3D model and perform 2D keypoint matching. We use the physically
based rendering engine, Pyrender [29], to render synthetic views. This allows us
to utilize robust keypoint matching algorithms developed for RGB images. The
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virtual camera poses for rendering are randomly sampled around the object by
varying the camera distance, and azimuth/elevation angles with respect to the
object. We verify the quality of each rendered image by checking if there are
sufficient keypoint matches against the real images. 150 images are rendered for
each object model.

ii. Feature matching: We perform exhaustive feature matching across as well
as within the real and synthetic images using neural network based feature
matching technique SuperGlue [39].

iii. Camera pose estimation: Given the keypoint matches, we estimate the
camera poses of both the real and virtual cameras in the same world coordinate
frame using the SfM tool COLMAP [40,41].

iv. Object pose estimation: Let {ξ̂i | i = 1, ..., 150} be the ground truth
poses of the virtual cameras in object frame (we keep track of the ground truth
poses during the rendering step). Let {ξi | i = 1, ..., 150} be the corresponding

poses estimated by COLMAP in world frame. By aligning {ξi} and {ξ̂i} we can
estimate the object pose. We use the Kabsch-Umeyama algorithm [46] under
Random Sample Consensus (RANSAC) [5] scheme to perform a 7-DOF (pose
+ scale) alignment. Since COLMAP only uses 2D image information, its poses
have arbitrary scale; hence we perform a 7-DOF alignment instead of 6-DOF
to obtain metric scale. After applying the Kabsch-Umeyama algorithm we get
7-DOF transformation S in Sim(3) Lie Group parameterized as:

S =

[
sRs ts
0 1

]
(4)

The camera poses from COLMAP can then be transformed to metric scale
pose:

wξcami
=

[
RsRi sRsti + ts
0 1

]
(5)

where Ri and ti are the rotation and translation component of the camera poses
from COLMAP.

Since the ground truth virtual camera poses {ξ̂i|i = 1, ..., 150} are in object
frame, the transformation in Equation (5) will lead to camera poses in object
frame i.e. wξobj = I where I is the 4×4 identity matrix.

4.3 Textureless Object Annotation

While the pipeline outlined in Sub-section 4.2 can accurately annotate texture-
rich objects, it will fail for textureless objects since correct feature matches
among the images cannot be established. To tackle this problem we develop
another annotation system shown in Figure 3 that can handle objects lacking
good textures which consists of the following steps:
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Fig. 3. Textureless Object Annotation. Step 1 : Camera pose annotation (+ dense
scene reconstruction). Step 2 : Manual annotation of rough object pose where a trans-
parent projection of the object model is superimposed over an RGB image for 2D
visualization (top) and the 3D object is placed alongside the dense scene reconstruc-
tion for 3D visualization (bottom). Step 3 : Object pose is refined such that the object
projection overlaps with the ground truth mask (green).

.

i. Camera pose estimation: Even when the object being scanned is tex-
tureless, our background has sufficient textures to allow successful camera pose
estimation. We therefore utilize the RGB-D version of ORB-SLAM2 [32] to ob-
tain the camera poses {wξcami

}. Since it uses depth information alongside RGB,
the poses are in metric scale.

ii. Manual annotation of rough object pose: We create an annotation
interface as shown in Step 2 of Figure 3 to estimate the rough object pose. To
facilitate the annotation, we reconstruct the 3D scene using the RGB-D images
and camera poses estimated in the previous step by employing Truncated Signed
Distance Function (TSDF) fusion [56]. The object pose wξobj is initialized to be
a fixed distance in front of the first camera and the z-axis is aligned with the
principle axis of the 3D scene found using Principal Component Analysis (PCA).
An annotator can then update the 3 translation and 3 Euler angle (roll-pitch-
yaw) components of the 6D object pose using keyboard to align the object model
with the scene. In addition to the 3D scene, we also show the projection of the
object model over an RGB image. The RGB image can be changed to verify the
consistency of the object pose over multiple views.

iii. Object pose refinement: We find that obtaining accurate object pose
through manual annotation is difficult, so we refine it further by aligning the
projection of the 3D object model with ground truth object masks in different
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images. The ground truth object masks are obtained from Cascade Mask R-
CNN [18] with a 152-layer ResNetXt backbone pretrained on ImageNet.

Let wξobj be the rough object pose from manual annotation and wξcami be
the pose of the ith camera. The camera-centric object pose is represented as
follows:

ξ = cami
ξobj = (wξcami

)−1 × wξobj (6)

The transformation ξ ∈ SE (3) is used to differentiably render [36] the ob-
ject model onto the image of camera i to obtain the rendered object mask by
applying the projection model of Equation (3). Since direct optimization in the
manifold space SE (3) is not possible, we instead optimize the linearized incre-
ment of the manifold around ξ. This is a common technique in SLAM and Visual
Odometry [11,32].

Let δξ ∈ se(3) represent the linearized increment of ξ belonging to the Lie
algebra se(3) corresponding to Lie Group SE(3) [47]. The updated object pose
is given by:

ξ′ = ξ × exp(δξ) (7)

Here, exp represents the exponential map that transforms se(3) to SE(3). The
object pose w.r.t. world frame can also be updated by right multiplication of the
initial pose with exp(δξ).

We can optimize δξ in order to increase the overlap between the rendered
mask M at ξ′ and ground truth mask M̂ using least-squares minimization of the
mask loss:

Lmask = mean(∥M ⊖ M̂∥2) (8)

where ⊖ represents element-wise subtraction.

The optimization is performed using stochastic gradient descent for each
camera for 30 iterations in PyTorch [35] library. Since δξ ∈ se(3) cannot repre-
sent large changes in pose, we update the pose ξ ← ξ′ every 30 iterations and
relinearize δξ around the new ξ.

5 Dataset Statistics

We collected in total 998 objects. It typically takes about 20 minutes to scan
the 3D model of an object and record a video, but about 2 hours to register
the scanned 3D model to all the video frames. Table 2 shows the category dis-
tribution of objects in our dataset along with the method used to annotate the
object (texture-rich vs textureless). Each category in our dataset contains 39-115
objects, with average 67 objects per category. A majority of the objects (89%)
were annotated using texture-rich pipeline which requires no user input. Table 3
shows the distribution of images over the categories. We have on average 56K
images for each category.
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Category Bottle Bowl Cleanser Cup
Eating

Box Plate
Toy Toy Toy Toy Toy Toy Toy

Misc Total
Utensils Animal Car Fruit Aerocraft Boat Food Figure

Texture-rich
60 61 51 39 27 83 45 69 115 12 61 39 82 95 51 890

Annotation

Textureless
0 11 0 12 14 0 6 32 0 33 0 0 0 0 0 108

Annotation

Total 60 72 51 54 41 83 51 101 115 45 61 39 82 95 51 998

Table 2. Annotation statistics.

Bottle Bowl Cleanser Cup
Eating

Box Plate
Toy Toy Toy Toy Toy Toy Toy

Misc Total
Utensils Animal Car Fruit Aerocraft Boat Food Figure

54K 61K 44K 45K 33K 68K 45K 82K 104K 38K 51K 32K 69K 78K 43K 849K

Table 3. Image distribution over the categories. Number of images in each category
has been rounded to nearest 1000.

6 Evaluation

To verify the usefulness of our dataset, we train and evaluate state-of-the-art
multi-view 3D reconstruction baselines exclusively on our dataset. From each
object, we randomly sample 100 different 3-view image tuples as the multi-view
inputs. To ensure fair evaluation and avoid overfitting we split our dataset into
training, testing and validation sets in approximately 70%-20%-10% ratio. The
train-test-validation split is performed such that the distribution in each object
category is also 70%-20%-10%. Only the data in training set is used to fit the
baseline models while validation set is used to decide when to save the model
parameters during training (known as checkpointing). All the evaluation results
presented here are on the test set entirely held out during the training process.

6.1 Experiments

We evaluate our datasets with several recent learning-based 3D reconstruction
baseline methods, including Multi-view Pixel2Mesh (MVP2M) [50], Pixel2Mesh++
(P2M++) [50], Multi-view extension of Mesh R-CNN [15] (MV M-RCNN) pro-
vided by [43], MeshMVS [43], DVR [33], IDR [55] and COLMAP [40,41]. We use
the ‘Sphere-Init’ version of Mesh R-CNN and ‘Back-projected depth’ version of
MeshMVS.

MVP2M pools multi-view image features and uses it to deform an initial
ellipsoid to the desired shape. Pixel2Mesh++ deforms the mesh predicted by
MVP2M by taking the weighted sum of deformation hypothesis sampled near
the MVP2M mesh vertices. MV M-RCNN improves on MVP2M with a deeper
backbone, better training recipe and higher resolution initial shape.

MeshMVS first predicts depth images using Multi-view Stereo and uses the
depths to obtain a coarse shape which is deformed using similar techniques as
MVP2M and MV MR-CNN. To train the depth prediction network of Mesh-
MVS, we use depths rendered from the 3D object models since the recorded
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depth can be inaccurate or altogether missing at close distances. We also eval-
uate the baseline MeshMVS (RGB-D) which uses ground truth depths instead
of predicted depths to obtain the coarse shape, essentially performing shape
completion instead of prediction.

We also include per-scene optimized baselines DVR, IDR and COLMAP
which do not require training generalizable priors with 3D supervision. DVR
and IDR perform NeRF [30] like optimization to learn 3D models from images
using implicit neural representation. COLMAP performs Structure-from-Motion
(SfM) to first generate sparse point cloud which are further densified using Patch
Match Stereo algorithm [41]. These methods require larger number of images
to produce satisfactory results, hence we use 64 input images. Since the time
required to reconstruct a scene is large for these methods, we evaluate these
methods only on 30 scenes from the test set - 2 from each category.

All of the baselines require the object in the images to be segmented out
of the background. We do this by rendering the 2D image masks of 3D object
models using the annotated camera/object pose. Also, we transform the im-
ages to the size and intrinsics (Equation (2)) required by the baselines before
training/testing.

Metrics: We follow recent works [15,43,50] and choose F1-score (harmonic mean
of precision and recall) at a thresholds τ = 0.3 as our evaluation metric. Precision
in this context is defined as the fraction of points in predicted model within τ
distance from the ground truth points while recall is the fraction of point in
ground truth model within τ distance from the predicted points.

We also report Chamfer Distance between a predicted model P and ground
truth model Q which measures the mean distance between the closest pairs of
points ΛP,Q = {(p, arg minq∥p− q∥) : p ∈ P, q ∈ Q} in the two models:

Lchamfer(P,Q) = |P |−1
∑

(p,q)∈ΛP,Q

||p− q||2 + |Q|−1
∑

(q,p)∈ΛQ,P

||q − p||2 (9)

We uniformly sample 10k points from predicted and ground truth meshes to
evaluate these metrics. Following [12,15], we rescale the 3D models so that the
longest edge of the ground truth mesh bounding box has length 10.

Results: The quantitative comparison results of different learning-based 3D
reconstruction baselines on our dataset are presented in Table 4. Note that both
training and testing set contain objects from all categories, but test F1-score on
individual categories as well as over all categories are reported here. Figure 4
visualizes the shapes generated by different methods for qualitative evaluation.

We can see that overall Pixel2Mesh++ performs the best (barring MeshMVS
RGB-D). This is contrary to the results on ShapeNet reported in [43] where
MeshMVS performs the best. This can be attributed to the high depth prediction
error of MeshMVS (average depth error is ∼6% of the total depth range). When
predicted depth is replaced with ground truth depth, we indeed see a significant
improvement in the performance of MeshMVS indicating that depth prediction
is the main bottleneck in its performance.
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Fig. 4. Qualitative Evaluation. Left to right, shown are an input image, ground
truth mesh, results from MVP2M, P2M++, MV M-RCNN, MeshMVS, and MeshMVS
(RGB-D) respectively.

Fig. 5. Qualitative evaluation. Left to
right: Input image, results from DVR, IDR,
COLMAP.

Table 5 shows the quantitative
comparison between different unsu-
pervised, per-scene optimized base-
lines. Here, IDR outperforms the
other two baselines which is in line
with the results presented in [55] on
the DTU dataset. COLMAP performs
worse than the rest because the tex-
tures on most of the objects are insuf-
ficient for dense reconstruction using
Patch Match stereo leading to sparse
and noisy results (Figure 5).

Single category training: We com-
pare the difference in the perfor-
mance when each category is trained
and evaluated separately. In this case,
there will be a different set of model parameters for each category. For these ex-
periments we sample 200 different 3-view images as inputs from each scene. Ta-
ble 6 shows the results for MV M-RCNN baseline when each category is trained
separately versus when all are trained together. We see that the performance
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Category F1@0.3 ↑ Chamfer ↓

MVP2M P2M++
MV

MeshMVS
MeshMVS

MVP2M P2M++
MV

MeshMVS
MeshMVS

M-RCNN (RGB-D) M-RCNN (RGB-D)

Bottle 74.86 81.72 67.12 55.35 94.11 0.23 0.19 1.78 0.53 0.06
Bowl 74.49 80.60 70.94 59.69 91.88 0.31 0.23 1.41 0.46 0.09
Box 61.32 72.24 67.90 59.28 91.04 0.39 0.29 0.84 0.48 0.10

Cleanser 68.69 80.90 72.37 64.01 95.97 0.30 0.19 0.96 0.39 0.04
Cup 65.31 73.67 66.00 52.41 87.40 0.39 0.30 1.59 0.64 0.12

Eating Utensils 74.34 88.40 81.67 72.74 96.08 0.24 0.12 0.84 0.26 0.04
Plate 76.13 81.65 66.69 72.03 82.70 0.34 0.26 3.42 0.27 0.16

Toy Boat 55.77 65.57 57.95 59.58 88.19 0.46 0.37 6.54 5.22 5.79
Toy Aerocraft 52.85 65.31 56.91 64.94 91.13 0.73 0.55 2.91 0.34 0.08
Toy Animals 49.46 68.12 64.07 59.89 93.53 0.81 0.51 0.94 0.42 0.06
Toy Food 60.92 71.24 61.08 49.12 90.16 0.35 0.25 2.78 0.59 0.10
Toy Fruit 56.78 72.85 59.84 41.28 88.86 0.55 0.37 3.77 0.87 0.11

Miscellaneous 56.54 69.40 66.34 61.57 91.40 0.63 0.46 0.96 0.47 0.11
Toy Car 59.32 71.33 63.90 57.65 88.28 0.37 0.25 1.47 0.47 0.10

Toy Figure 50.42 68.32 57.23 58.63 91.39 0.70 0.46 5.12 0.52 0.08

All 61.25 73.30 64.77 58.79 90.85 0.47 0.33 2.24 0.65 0.29

Table 4. Quantitative comparison of state-of-the-art learning-based multi-view
3D reconstruction methods on our dataset. We report F1-score and Chamfer Distance
on each semantic category as well as over all categories. The baseline MeshMVS (RGB-
D) is not considered for highlighting the best performance since it uses ground truth
depth as additional input.

is generally better when using all categories, showing that 3D reconstruction
models can learn to generalize over multiple categories in our dataset.

7 Discussion

The results presented in Tables 4 and 6 as well as the qualitative evaluation of
Figure 4 show that the problem of generalizable multi-view 3D reconstruction
is far from solved. While works like Pixel2Mesh++, Mesh R-CNN and Mesh-
MVS have offered promising avenues for advancement of the state-of-the-art,
more research is still needed in this direction. Table 5 and Figure 5 shows the
limitations of traditional 3D reconstruction methods like COLMAP. While more
recent NeRF-based methods like DVR and IDR generates high quality recon-
struction, their running time is at the order of 10 hours in general and requires
a larger number of input images (64 in our case). We hope that our dataset can
serve as a challenging benchmark for these problems; aiding and inspiring future
work in 3D shape generation.

8 Conclusion

We present a large scale dataset of 3D models and their real world multi-view
images. Two methods were developed for annotation of the dataset which can
provide high accuracy camera and object poses. Experiments show that our
dataset can be used for training and evaluating multi-view 3D reconstruction
methods, something that has been lacking in existing real world datasets.
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Category F1@0.3 ↑ Chamfer ↓
DVR IDR COLMAP DVR IDR COLMAP

Bottle 92.95 91.90 25.80 0.11 0.09 1.36
Bowl 69.20 83.50 14.72 0.60 0.62 1.81
Box 75.97 78.95 34.64 0.70 0.22 1.66

Cleanser 86.61 98.32 45.54 0.09 0.02 1.38
Cup 70.77 78.69 14.86 0.64 0.68 3.23

Eating utensils 87.93 95.12 41.34 0.08 0.04 1.10
Plate 62.46 75.01 76.98 0.50 0.45 0.14

Toy Boat 86.71 99.87 45.66 0.08 0.01 0.37
Toy Aerocraft 78.48 99.07 86.37 0.24 0.02 0.09
Toy Animals 85.26 90.61 53.31 0.19 0.11 0.67
Toy Food 86.06 89.59 34.74 0.12 0.08 0.96
Toy Fruit 63.27 90.25 0.55 0.75 0.09 40.56

Miscellaneous 89.21 89.31 45.96 0.10 0.09 0.66
Toy Car 76.25 94.26 27.24 0.24 0.06 1.32

Toy Figure 82.25 97.60 49.39 0.16 0.03 0.32

All 79.56 89.54 39.81 0.30 0.17 3.71

Table 5. Quantitative comparison of state-of-the-art NeRF-based 3D reconstruc-
tion methods along with COLMAP on our dataset. We report F1-score and Chamfer
Distance on each semantic category as well as over all categories.

Category F1@0.3 ↑ Chamfer ↓
All Single All Single

Bottle 67.12 64.02 1.78 3.33
Bowl 70.94 53.41 1.41 27.37
Box 67.90 65.81 0.84 1.85

Cleanser 72.37 73.00 0.96 1.21
Cup 66.00 61.95 1.59 1.61

Eating utensils 81.67 77.06 0.84 0.80
Plate 66.69 62.15 3.42 50.72

Toy Boat 57.95 55.39 6.54 10.21
Toy Aerocraft 56.91 43.51 2.91 5.16
Toy Animals 64.07 62.32 0.94 1.16
Toy Food 61.08 62.02 2.78 4.92
Toy Fruit 59.84 20.54 3.77 67.82

Miscellaneous 66.34 44.29 0.96 3.71
Toy Car 63.90 65.18 1.47 1.26

Toy Figure 57.23 50.81 5.12 9.0

Mean 64.77 58.15 2.24 10.57

Table 6. Single Vs All Category Training evaluation on MV M-RCNN baseline.
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