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Fig. 1. Topology of different 3DMMs, where nv and nf represent the number of vertices
and triangles respectively. In our REALY benchmark, we choose HIFI3D topology since
it has better triangulation and balanced samplings with eyeballs and shoulder regions.

In this supplementary material, we provide additional technical details, qual-
itative examples, and discussions that could not be fitted into the main paper
due of lack of space, which is organized as follows: We first give full details of
how to construct our new benchmark REALY in Sec. 1. Additional experiments
and results can be found in Sec. 2, where we justify the quality of REALY. In
Sec. 3 we discuss the implementation details and choices of parameters. Finally,
we discuss the limitation and future work in Sec. 4.

1 Details of Constructing REALY Benchmark

1.1 Preparing the Template Shape Stemp

We first prepare a template shape Stemp which is crucial for registering and
retopologizing high-resolution scans from different datasets. We take the mean
shape from HIFI3D [2] as our template shape that contains 20481 vertices and
40382 triangles. We then ask an experienced artist to label semantically mean-
ingful and important keypoints Ktemp and region masks Rtemp since they play
an important role in our proposed bICP based face similarity evaluation.
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Fig. 2. We predefine 68 keypoints and 4 region masks on the template shape for con-
structing REALY.

HIFI3D Topology We choose HIFI3D for the following reasons: (1) BFM
(LSFM) does not have edge loops to define the contours of the eyes and mouth.
(2) FaceWareHouse (LYHM) has overdense samplings around the boundary
of the eyes and mouth. (3) FLAME has unnatural triangulation which can-
not model some realistic muscle movements such as raising the eyebrows. (4)
FaceScape does not have eyeballs, interior structure of the mouth, or the shoul-
der region, which limits the expressiveness of different expressions. As a compar-
ison, HIFI3D has better triangulation and balanced samplings to make realistic
and nuanced expressions. Besides, HIFI3D also has independent eyeballs, interior
structure of the mouth, and the shoulder region, which all benefit downstream
applications such as talking head generation. Please see Fig. 1 for the topology
of each 3DMM mentioned in Tab. 1 in the main paper.

Region Masks Four region masks are annotated in the Stemp, namely the nose
region RN , the mouth region RM , the forehead region RF , and the cheek re-
gion RC . Each region mask is defined as a list of vertices and faces with smooth
boundary (thanks to the good structural triangulation of HIFI3D topology).
When constructing the region masks, we particularly exclude the ear, eyeball,
nostril regions because these regions might not be reconstructed in some recon-
struction methods or not considered in some 3DMMs. We also include some
overlapping regions between two adjacent masks to avoid boundary instability
during evaluation. Please see Fig. 2 for an illustration.

Keypoints We prepare three sets of keypoints on Stemp for different use cases:
(1) Keypoints for alignment and wrapping. We ask experts to manually
label 118 keypoints on the facial region of the template shape, including 24
keypoints on the eyebrow, 48 on the eyelids, 10 on the nose and nose bridge, 36
on the mouth. This set of keypoints is used to align and retopologize the input
scans (elaborated in Sec. 1.2 and Sec. 1.4 respectively). (2) Keypoints for
evaluation. Existing methods [16,14,12,7,23,19] usually include 68 semantically
meaningful keypoints for evaluation or defining landmark loss for training. To
setup a comparable setting, we also prepare 68 keypoints with the same semantic
information as previous work, including 10 keypoints on the eyebrows, 12 on the
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Fig. 3. Left : inaccurate keypoints (e.g., in the nose) provided in LYHM dataset, which
are extracted using the mixture-of-trees algorithm [24]. Right : our high-quality key-
points obtained from a state-of-the-art landmark detector for global alignment & reg-
istration.

eyelids, 9 on the nose and nose bridge, 20 on the mouth, and 17 on the cheek
contour. This set of keypoints will be transferred to the ground-truth scans
and the retopologized meshes for evaluation (e.g., used in gICP, rICP and
bICP in our evaluation pipeline as introduced in Sec. 6 in our main paper). We
particularly denote this set of keypoints as Ktemp. (3) Keypoints for 3DMM
fitting. We follow [2] to prepare 86 keypoints including, 18 on the eyebrows, 16
on the eyelids, 15 on the nose and nose bridge, 20 on the mouth, and 17 on the
cheek contour. This set of keypoints will be transferred to our newly introduced
basis HIFI3D++++++ for 3DMM fitting.

1.2 Aligning Scans to Stemp

To construct our benchmark REALY and 3DMM basis HIFI3D++++++, we need to
collect and register large set of scans from different datasets [21,6,2]. However
these scans are in random pose and scales. For example, the surface area of scans
in LYHM [6] dataset ranges from 82, 913 mm2 to 340, 916 mm2, while the scans
in FaceScape [21] may have opposite orientations.

Therefore, our first step is to rescale and align the input scans to the template
shape Stemp. Specifically, for a given scan SH , we first rescale and align it to
Stemp using the provided keypoints from the source dataset. However, those
provided keypoints are not accurate enough, as shown on the left of Fig. 3, which
leads to unsatisfactory alignment. To tackle this problem, we iterate through
the following steps until convergence: (1) render a frontal face image of SH with
texture (3k+ resolution) using the initial/estimated transformation to align SH

to Stemp (note that the frontal pose needs to be determined from the alignment
transformation as the frontal facing pose is unknown for a given scan); (2) detect
256 2D facial keypoints on the rendered image of SH using a state-of-the-art
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landmark detector3; (3) project the 2D keypoints into 3D using the rendering
camera pose; (4) update the alignment transformation from SH to Stemp using
the correspondences between the projected 3D keypoints on SH and the known
3D keypoints on Stemp. Note that we solve for a scale factor, rotation matrix,
and translation vector for the shape transformation.

1.3 Synthesizing Multi-view Images

Since all the high-resolution scans have been aligned to the template shape Stemp,
which has known position and orientation, we can now synthesize multi-view
images for each scan in a controlled setting. Specifically, We render the input
scan with its corresponding texture on black background through a perspective
camera. We fix the intrinsic parameters (fx = 2500, fy = 2500, cx = 512, cy =
512) of the camera and change the extrinsic parameters and lighting conditions
to get a set of multi-view images in 1024 × 1024 resolution, including a frontal
image and 4 images in random poses (with angles less than 20 degree). We also
generate the ground-truth depth map for each image and record the ground-
truth camera parameters. Our generated multi-view RGB-D image collection
makes our benchmark suitable for evaluating face reconstruction methods under
various input settings (i.e., single/multi-view RGB(-D) images). Fig. 4 shows
some examples of the generated images in our REALY benchmark.

1.4 Retopologizing the Aligned Scans

For each scan SH , we wrap the template shape Stemp to obtain SL, a ground-
truth mesh in relatively low resolution with consistent topology across different
individuals. Recall that Stemp adopts the HIFI3D topology that contains 20481
vertices and 40832 triangles together with 3 sets of predefined keypoints and
facial region masks. We follow [4] to retopologize the input scan in neutral ex-
pression via a two-step approach. (1) The facial region of Stemp is deformed to
fit the facial region of SH using non-rigid ICP technique [1]. The total energy
on mesh deformation includes a smoothness term and a landmark loss term,
where the predefined keypoints on Stemp (the first set of keypoints introduced
in Sec. 1.1) are forced to be as close as possible to the automatically detected
keypoints on SH (introduced in Sec. 1.2). (2) We postprocess the deformed Stemp

to remove the spikes, which come from fitting to the noisy regions in SH . We use
Laplacian-based editing operations to fix this issue and obtain our high-quality
mesh SL. See Fig. 2 in the main paper for some examples of the registered scans.

1.5 Transferring Keypoints and Region Masks

With the help of the retopologized meshes SL, we can now transfer the keypoints
and region masks defined on Stemp to the high-resolution scans SH . First of all, we

3 we only keep 118 keypoints in the facial region, which are in correspondences with
the 118 keypoints defined on Stemp, i.e., the first set of keypoints we discussed in
Sec. 1.1.
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Fig. 4. Examples of our synthesized images in REALY benchmark. First row :
aligned high-resolution scans with textures. Second-forth rows: multi-view images of
each scan. Fifth row : frontal images of each scan.

can easily transfer the keypoints/region masks from Stemp to SL (by vertex index)
since they share the same mesh topology. Then the keypoints/region masks are
transferred from SL to SH as follows: (1) Firstly, we traverse each point in a
region RL on SL, and find its closest plane in SH . We then collect these mapped
triangles and their one-ring neighbors as the candidate corresponding region
RH on SH . However, due to the significant difference in resolution between SL

and SH , the candidate region RH only contains limited and isolated vertices
and triangles on SH . (2) Secondly, we improve RH by searching from the other
direction, i.e., from SH to RL. We find the vertices in SH such that their nearest
neighbor in SL (in vertex-to-plane distance) lie in the region RL. We then include
these vertices into RH . In this way, we get a more complete region RH on SH .
Note that this step can be greatly accelerated by only considering a bounding
box calculated based on step one’s results instead of considering all the vertices
in SH for searching. (3) Thirdly, we filter out the vertices lie in eyeball, nostril,
or mouth cavity from RH since these regions might be wrongly included into RH

due to nearest neighbor searching. To achieve this, we construct pseudo faces in
these cavity regions on the template shape and find the vertices in SH that have
nearest neighbor lying in these pseudo faces. These vertices will be excluded
from RH . (4) We then crop a region centered at the nose tip for each scan
for evaluation. Specifically, the region has a radius of 0.7 × (douter eye + dnose),
where douter eye is the outer-eye-distance and dnose is the distance between nose
bridge and nose lower cartilage, respectively. (5) Finally, we find the maximum
connected region of RH and take it as the final region mask on SH .
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Fig. 5. Illustration of REALY quality. Left : samples of SH , SL, correspondence & error
maps on SH and SL. Right : error distribution of 100 individuals in REALY, x-axis
represents the error range between 0 ∼ 0.11mm, y-axis represents the shape numbers.

2 Additional Experiment and Discussion

2.1 Quality of REALY

To demonstrate the reliability of the retopologized meshes SL, we evaluate the
similarity between SL and the corresponding scan SH as illustrated in Fig. 5.
Note that SL and SH are aligned and we can compute a map T pts

h→l from SH to SL

via nearest neighboring searing in Euclidean space. In the middle of Fig. 5 we
visualize the map via color transfer. We then evaluate the shape similarity by
NMSE, i.e., e

(
T pts
h→l

)
. We also visualize the per-vertex error on SH , which shows

extremely small errors in the facial region. We then evaluate the shape similarity
between SH and SL on the 100 individuals in REALY and report the average
errors in the histogram in Fig. 5. Specifically, the NMSE in the facial region
ranges from 0.047 ∼ 0.108 mm. The average error over all vertices in the facial
region across 100 individuals is 0.070 mm. This suggests that our retopologized
mesh SL are in high-quality and guarantees the similarity to the original scans
SH .

2.2 User Study Details

We invited 70 volunteers with computer science or modeling background to con-
duct the user study. In every question, the user is asked to select the most similar
reconstructed mesh(es) compared to the given ground-truth scan. Specifically,
for each test sample, we design the following two questions:

(Q1) choose the most similar two (compared to the ground-truth) from nine
candidate meshes reconstructed using different methods (as shown in Fig.5
in the main paper).

(Q2) choose the most similar one from up to three candidate meshes, which are
the best reconstructions according to three different evaluation protocols
(i.e., gICP from two directions, and ours; highlighted in blue, purple, and
orange boxes in the main paper).

We report the results of (Q1) in Fig. 5 in the main paper, where the best (second
best) is highlighted via “⋆” (“†”). We also show the statistics of the user study
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Table 1. Detailed user study results of Fig. 5 in the main paper.

Sample Best recon. ⋆ 2nd best recon. † Best selected by bICP

Fig. 5 (1) 72.2% (MGCNet) 53.1% (GANFit) 85.4% (GANFit)
Fig. 5 (2) 43.9% (Deep3D) 39.0% (MGCNet) 70.7% (Deep3D)
Fig. 5 (3) 51.3% (Deep3D) 35.9% (MGCNet) 76.9% (Deep3D)

in Tab. 1. For (Q2), on average, 76.1% users agreed that our bICP selected the
best reconstructed mesh compared to gICP evaluation protocols.

This user study shows that our bICP indeed better aligns with human percep-
tion in measuring the similarity between the ground-truth and the reconstructed
mesh. The additional results in Fig. 7 are also marked via “⋆” and “†” according
to the above user study.

2.3 Comparing Different Reconstruction Methods

We visualize the error map of different methods using the standard gICP based
evaluation pipeline (evaluated on both directions between the constructed face
and the original scan) or our proposed bICP based evaluation pipeline in Fig. 6
and Fig. 7, where the errors are globally normalized across different methods,
and blue (red) represents smaller (larger) error. Note that, the gICP based errors
of e

(
T pts
p→h

)
are computed on the reconstructed faces SP (see the third row of each

sample in Fig. 6 and Fig. 7), while our bICP based errors are computed on the
four fine-grained regions on the high-resolution scans SH (see the fourth row of
each sample in Fig. 6 and Fig. 7).

In some cases, the global-wise error map may exhibit misleading results
mainly due to inaccurate alignment between SP and SH , which makes it hard
to identify the best predicted face from different methods. As a comparison, our
region-aware pipeline is more fair by making a comparison based on the errors
defined on the same mesh SH among different methods. Indeed, the best pre-
dicted face selected by bICP is visually more similar to the input scan compared
to the face selected by gICP when there is a disagreement. At the same time,
our bICP can suggest which method performs the best in a particular region
(see Fig. 5 and Tab. 4 in the main paper).
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Fig. 6. Comparing different face reconstruction methods (part 1). We visu-
alize the reconstruction error of each reconstructed face using the standard evaluation
pipeline (gICP) and our novel evaluation pipeline (bICP, shown in four regions),
where large (small) errors are colored in red (blue). The best reconstructed face se-
lected using our measurement (in orange boxes) are visually closer to the ground-truth
meshes than the ones selected using the standard measurements (blue boxes for e

(
T pts
p→h

)
& purple boxes for e

(
T pts
h→p

)
). We also mark the best (second best) reconstructed face

voted in our user study by ⋆ (†). The first row of each sample is the reconstructed shape,
the second/third/fourth row of each sample is the error map of e

(
T pts
h→p

)
)/e

(
T pts
p→h

)
/ours.

These three samples are illustrated in main paper and we show bigger versions for eas-
ier comparisons.
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Fig. 7. Comparing different face reconstruction methods (part 2). We visu-
alize the reconstruction error of each reconstructed face using the standard evaluation
pipeline (gICP) and our novel evaluation pipeline (bICP, shown in four regions),
where large (small) errors are colored in red (blue). The best reconstructed face se-
lected using our measurement (in orange boxes) are visually closer to the ground-truth
meshes than the ones selected using the standard measurement (blue boxes for e

(
T pts
p→h

)
& purple boxes for e

(
T pts
h→p

)
). We also mark the best (second best) reconstructed face

voted in our user study by ⋆ (†). The first row of each sample is the reconstructed shape,
the second/third/fourth row of each sample is the error map of e

(
T pts
h→p

)
)/e

(
T pts
p→h

)
/ours.
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G.T. ExpNet RingNet MGCNet PRNet Deep3D 3DDFA-v2 GANFit N-3DMM DECA

Fig. 8. Examples of the deformed regions R∗
H of each method. We illustrate

the deformed regions R∗
H , i.e., the intermediate results obtained after applying nICP

to deform the G.T. region RH (the first column) to fit S∗
P in our evaluation pipeline.

As explained in Sec. 6 in the main paper, our fine-grained region-wise align-
ment and the two-step coarse-to-fine registration effectively helps nICP to con-
verge to a reasonably deformed shape R∗

H . See Fig. 8 for such examples, where
we visualize the deformed regions on top of the reconstructed faces.

2.4 Comparing Different 3DMMs

Model Variations of Different 3DMMs Fig. 9 shows the shape variations
of different 3DMMs. As we discussed in the main paper, previous 3DMMs have
limited shape variations because of the imbalanced ethnic scans. In contrast,
HIFI3D++++++ is capable of expressing individuals in different ethnic, gender, and
age groups with better generalization for downstream face reconstruction tasks.

BFM & FLAME on RGB Fitting As shown in Fig. 10, the reconstructed
faces from some 3DMMs (especially BFM [16] and FLAME [14]) on RGB Fit-
ting from a single image can be misshapen for the following reasons: (1) It
has been acknowledged that 3D reconstruction from a 2D image is a severely
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BFM FLAME LSFM

LYHM HIFI3D HIFI3D++++++

(Ours)

Fig. 9. Model variations of different 3DMMs. We show the shape (geometry)
variation of BFM [16] (Top left), FLAME [14] (Top middle), LSFM [3] (Top right),
LYHM [6] (Bottom left), HIFI3D [2] (Bottom middle), the proposed HIFI3D++++++ (Bottom
right). For shape variations, the first three principal components are visualized at ±3
standard deviations.

ill-posed. In an under-constrained setting (such as without depth information),
the reconstruction quality can be poor due to the limited expressiveness of the
3DMMs (such as the FLAME results shown in Fig. 10). (2) On the other hand,
the quality of the scans that are used for constructing 3DMMs can also affect
the reconstruction quality. Take BFM as an example, the reconstructed example
shown in Fig. 10 has unnatural noise. As a comparison, LSFM that adopts the
same topology as BFM achieves less noisy results with higher quality when we
assign small weights to regularization terms for fitting using these two 3DMMs,
since LSFM is constructed from larger number scans with higher quality.

HIFI3D++++++ on RGB-D Fitting In order to avoid reconstructing misshapen
faces, RGB fitting relies more on face prior (i.e., impose stronger regularization
on the 3DMM parameter α) due to its access to only limited geometry supervi-
sion. In contrast, RGB-D fitting relies more on the denser and more informative
depth supervision, which is more suitable to evaluate the expressiveness different
3DMMs. In Fig. 11, Fig. 12, and Fig. 13, we show face reconstruction results
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Fig. 10. Failure examples of RBG fitting and RGB-D fitting using FLAME [14] and
BFM [16] 3DMMs. The reconstructed shapes may look reasonable in the frontal view
but reveal their poor quality from other views. Providing depth information for fitting
can significantly improve the reconstruction quality.

using different 3DMMs on RGB and RGB-D fitting. And indeed, HIFI3D++++++

outperforms the other 3DMMs on RGB-D fitting.

Conclusion Thanks to our region-based evaluation pipeline, we find that a
3DMM can have different levels of expressiveness in different regions. For exam-
ple, FLAME [14] can reconstruct the nose region well, but fail to express the
overall shape and the curvature in the forehead region. We believe it is promising
to investigate how to construct a region-aware 3DMM in the future work, which
integrates the advantages of different 3DMMs and introduces more fine-grained
prior for 3D face reconstruction.

3 Implementation Details

3.1 Details of RGB(-D) Regression

For the baselines, we use the officially released 3DMMs including the shape ba-
sis and the texture basis. For our newly introduced HIFI3D++++++, we use the same
texture basis as HIFI3D and HIFI3DA. Following [2], we render images with the
estimated parameters (i.e., 3DMM shape & texture parameters, second-order
spherical harmonics lighting parameters, and pose parameters) via a differen-
tiable renderer [11], and adopt RGB photo loss, depth loss, identity perceptual
loss, landmark loss and regularization terms to optimize these parameters, which
are defined as follows.

RGB Photo Loss. The pixel-wise RGB photometric loss is defined as:

Lrgb =
∥∥Irgb − Îrender

∥∥
2

(1)
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Input

G.T. LYHM BFM FLAME LSFM FS HIFI3D HIFI3DA Ours

Fig. 11. Comparing different 3DMMs with RGB(-D) fitting (part 1). We
highlight the best (second best) reconstructed face via red (blue) underline chosen by
the proposed evaluation pipeline, and HIFI3D++++++ shows generally the most realistic face
than others, quantitatively and perceptually. From left to right, LYHM [6], BFM [16],
FLAME [14], LSFM [3], FaceScape [21], HIFI3D [2], HIFI3DA [2], and the proposed
HIFI3D++++++ are compared. The first (second) row of each sample shows the results of
RGB (RGB-D) fitting.

where Irgb is the input RGB image, Îrender is the rendered RGB image from the
differentiable renderer using the predicted parameters. We adopt l2,1-norm for
its demonstrated robustness against outliers than l2-norm [2].

Depth Loss. The depth loss is defined as:

Ldep = ρ
(∥∥Idep − Îz

∥∥2
2

)
(2)

where ρ(·) defines a truncated l2-norm that clips the per-pixel MSE, Idep is the in-
put depth image, Îz is the rendered depth image from the differentiable renderer.
The truncated function is proved to be more robust to depth outliers [2].
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Input

G.T. LYHM BFM FLAME LSFM FS HIFI3D HIFI3DA Ours

Fig. 12. Comparing different 3DMMs with RGB(-D) fitting (part 2). We
highlight the best (second best) reconstructed face via red (blue) underline chosen by
the proposed evaluation pipeline, and HIFI3D++++++ shows generally the most realistic face
than others, quantitatively and perceptually. From left to right, LYHM [6], BFM [16],
FLAME [14], LSFM [3], FaceScape [21], HIFI3D [2], HIFI3DA [2], and the proposed
HIFI3D++++++ are compared. The first (second) row of each sample shows the results of
RGB (RGB-D) fitting.

Identity Perceptual Loss. To capture high-level identity information, we ap-
ply the following identity perceptual loss:

Lid =
∥∥ψ(Irgb)− ψ

(
Îrender

)∥∥2
2

(3)

where ψ(·) is the high-level identity features exacted from a pretrained face
recognition model. In our experiments, we use features from the fc7 layer of
VGGFace model [15].

Landmark loss. To achieve better fitting quality, we ask professional artist
to extend the 68 keypoints defined on each 3DMM into 864 keypoints. Land-

4 Corresponding to the third set of 86 keypoints we discussed in Sec. 1.1



REALY: Rethinking the Evaluation of 3D Face Reconstruction 15

G.T. Input LYHM BFM FLAME LSFM FS HIFI3D HIFI3DA Ours

Fig. 13. Comparing different 3DMMs with RGB-D fitting (part 3). We vi-
sualize rendered shapes on input image via predicted camera parmeters. HIFI3D++++++

shows best visualized results with high fidelity features among other 3DMMs. From
left to right, LYHM [6], BFM [16], FLAME [14], LSFM [3], FaceScape [21], HIFI3D [2],
HIFI3DA [2], and the proposed HIFI3D++++++ are compared.

mark loss is defined as the weighted average distances between the detected 2D
landmarks and the projected landmarks from the predicted 3D model.

Llmk =
1

F
∑
fj∈F

ωj

∥∥fj −Π(Φ(vj))
∥∥2
2 (4)

where fj ∈ F are the detected landmarks, Π(·) represents world-to-image plane
projection with given camera parameters, Φ(·) represents 6DoF head pose that
rigidly rotates and translates the mesh, and vj represent keypoints on the mesh.
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Table 2. Loss parameters in Eq. (6) for
RGB fitting.

3DMMs ωrgb ωdep ωid ωlmk ωshp ωtex

BFM 1000.0 0.0 4.00 5.0 5.0 1.0
FLAME 1000.0 0.0 4.00 5.0 2.0 10.0
LSFM 1000.0 0.0 4.00 5.0 2.0 1.0
FS 1000.0 0.0 0.10 5.0 50000.0* 0.0
HIFI3D 1000.0 0.0 4.00 5.0 2.0 1.0
HIFI3DA 1000.0 0.0 4.00 5.0 2.0 1.0
LYHM 1000.0 0.0 4.00 10.0 100.0 0.01
Ours 1000.0 0.0 4.00 5.0 2.0 1.0

Table 3. Loss parameters in Eq. (6) for
RGB-D fitting.

3DMMs ωrgb ωdep ωid ωlmk ωshp ωtex

BFM 1000.0 1000.0 1.00 5.0 5.0 1.0
FLAME 1000.0 1000.0 1.00 5.0 2.0 2.0
LSFM 1000.0 1000.0 1.00 5.0 2.0 1.0
FS 1000.0 1000.0 0.10 5.0 50000.0* 0.0
HIFI3D 1000.0 1000.0 1.00 5.0 2.0 1.0
HIFI3DA 1000.0 1000.0 1.00 5.0 2.0 1.0
LYHM 1000.0 1000.0 1.00 10.0 20.0 0.2
Ours 1000.0 1000.0 1.00 5.0 2.0 1.0

*FaceScape does not converge with small ωshp weight.

The weight ωj controls the importance of each keypoint, where we set 50 for
those located in eye, nose and mouth region, and 1 otherwise.

Regularization. To ensure the plausibility of the reconstructed faces, we apply
regularization to the shape and texture parameters:

Lreg = ωshp

∥∥αshp − αµ
shp

∥∥2
2
+ ωtex

∥∥αtex − αµ
tex

∥∥2
2

(5)

where αshp / αtex and αµ
shp/α

µ
tex represent the predict shape/texture parameters

and mean face shape/texture parameters respectively.
The final total loss function to be minimized is defined as the weighted sum

of each part:

Ltotal = ωrgbLrgb + ωdepLdep + ωidLid + ωlmkLlmk + Lreg (6)

Parameters In our experiments, we use Adam optimizer [13] in TensorFlow
for 1000 iterations with a learning rate 0.05 decaying exponentially in every
50 iterations. We fine-tune the parameters ωrgb, ωdep, ωid, ωlmk, ωshp, ωtex for each
3DMM and use the best combinations as reported in Tab. 2 and 3.

3.2 Parameters for the Evaluation Pipeline

We implement our evaluation pipeline in Python. It takes about 3 hours to eval-
uate 100 individuals in REALY on a single Intel i7-9700 CPU for each method,
including both the global wise error and 4 region-aware error. Taking BFM with
35709 vertex (Deep3D) as an example, the baseline gICP takes 0.81 minute
while ours takes 1.73 minute per sample for evaluation. Specifically, for our eval-
uation pipeline, it takes 0.48 second for keypoint alignment, 1.28 minute for
region alignment (rICP), and 0.45 minute for error computation (bICP).

In rICP, we set the maximum number of iterations to 100 and stop early
if the change of matching error is less than 10−6. The weight wK (in Algo. 1
in the main text) is set to the ratio between the number of vertex in RH and
in KP . We use a two-stage nICP approach (Algo. 2, step 3 in the main text)
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to avoid unsatisfactory deformation results in bICP. At the first stage, we only
include the landmark term and the stiffness term for initial deformation with
weight 50 and 150 respectively. At the second stage we include all the terms
including distance term, landmark term, and stiffness term with weight 1, 5, 50
respectively. In both stages, the weight of the stiffness term gradually decays to
allow for more localized deformations.

3.3 Experiments Setup

Preprocess Input Image. For learning-based face reconstruction, we apply
MTCNN [22] to detect and crop the face region of the input frontal images
provided by our REALY, and resize them into a resolution of 300× 300. As for
RGB(-D) fitting, we resize input images to 512× 512 without cropping.

Baselines for Face Reconstruction We use the officially pretrained model
released by the previous work [5,17,18,9,7,12,10,20,8] for the face reconstruction
experiments. We make sure that none of these methods have seen or fine-tuned
on the tested images in REALY. We compare different methods by evaluating
the similarity between the reconstructed face and the ground-truth from REALY
using our evaluation pipeline. Note that only the facial region of each method is
considered during the evaluation phase. Moreover, we also reorder the detected
68 keypoints of each method such that they are in correspondences with the 68
keypoints on the ground-truth for proper evaluation. Recall that our evaluation
pipeline is based on predefined region masks where the eyeballs, nostrils, and
mouth cavity are not considered for more fair comparisons since some recon-
structed faces (e.g., FLAME) do not have eyeballs or nostrils or mouth cavity.

Error in Metric Units During the evaluating, we rescale the SH in REALY
and the predicted shapes SP back to its original size in LYHM [6] such that
the shape difference between SH and SP is measured in proper metric units and
reflects real-world difference.

4 Limitation & Future Work

Our work still has some limitations. Although using in-the-lab images produced
with controlled configurations can faithfully reflect the reconstruction ability of
existing methods, the robustness of different methods is not investigated. We
leave it for future work by generating more challenging images with different
variations (e.g., expressions, backgrounds and occlusions) and extending our
REALY benchmark to in-the-wild environment. Besides, our evaluation pipeline
is computationally expensive since it requires alignment and deformation of each
of the 4 regions. In the future, we would like to investigate more powerful and
more efficient evaluation approaches.
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