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A Additional details of dataset collection

A.1 Examples of rejected questions

With a focus on overall question quality, we removed around 60% of questions
written for having any of several flaws. The vast majority of questions removed
exhibited one or more four flaws: 1) Only required recognition of a common
object, 2) only required counting a readily specified object, 3) did not require
looking at the image to answer, 4) only asked about the color of a readily specified
object. Examples of questions from each of these categories are shown in Fig. 4.

Reason rejected: Question only 
asks about the color of a clearly 
specified object.

Reason rejected: Question only 
requires recognition of a common 
object. 

Reason rejected: Question only 
requires counting specified 
objects.

Reason rejected: Question doesn’t 
require looking at the image to 
answer.

Fig. 4: Examples of questions rejected for not meeting our criteria.

A.2 Data collection interface

The data-collection interface used by crowdworkers to write questions is shown in
Fig. 5. Detailed instructions along with examples of good and bad questions were
provided. After writing a question, workers were required to press the “Check
for similar question” button. This sent a request to a server which returned
the five questions closest to those already written in our growing dataset. We
asked workers to rewrite or rephrase questions that were too similar, but did
not enforce a minimum distance cuto↵. The set of questions queried were reset
when collecting the val and test sets to allow a greater degree of overlap with the
training set. After satisfied with their question, workers advanced to the next
image. Each task workers performed included four images, nearby neighbors in
a CLIP embedding space, which encouraged creative di↵erences in questions
written for similar images. Workers were only required to write two questions
(out of four possible images) to allow them to skip images they didn’t feel they
could write a suitable questions for. This cut down on unsuitable questions that
they would have otherwise been forced to write in order to complete the task.



A-OKVQA: Knowledge-based VQA Benchmark 19

Fig. 5: Instructions and interface used for question collection.

After completing two questions, workers were allowed to submit their work and
advance to the next image set.

The data-collection interface used by crowdworkers to write rationales is
shown in Fig. 6. Detailed instructions along with examples of good rationales
were provided. We first asked workers to confirm the correct answer or provide
the answer they thought was correct. This allowed a check on the correctness of
the original question, and questions with a disagreement were removed from the
dataset. Workers then provided a 1-2 sentence explanation of why the answer
was correct that included any external knowledge needed to arrive there.

B Additional Details for Large-scale Pre-trained Models

We produce the vocabulary for the experiments in Sec. 5.2 from the training
set by selecting all correct choices, as well as all choices and direct answers
that appear in at least three questions. This results in a vocabulary with 10,424
answers.
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Fig. 6: Instructions and interface used for rationale collection.

B.1 Discriminative models

We train all of our discriminative models for 500 epochs with a learning rate of
0.01 and batch size of 128, except the model with ResNet input features, which
is trained with a learning rate of 0.001.

B.2 Contrastive models

The CLIP zero-shot setting requires no training. In the trained setting, we train
our linear layer for 500 epochs with a learning rate of 0.01 and batch size of 128.
We further elaborate on our “CLIP-style contrastive loss” below and visualize
it in Fig. 7.

Recall that we have passed CLIP representations (for questions and/or im-
ages) through a linear layer to produce a 512-d embedding (the same size as a
CLIP text encoding). For a batch of embeddings E and the CLIP text encodings
of their corresponding answers A, we produce a cosine similarity matrix between
E and A (i.e. the purple matrix in Fig. 7, showing a batch size of 4). We apply
softmax over each matrix row (producing embedding–answer matching proba-
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Fig. 7: As described in Sec. B.2. CLIP-style contrastive loss between embeddings
(of questions and images) and CLIP text encodings (of answers). Shown for a
batch size of 4.

bilities per embedding over answers in A) and compute a cross-entropy loss to
maximize the similarity between each embedding and its corresponding answer.

B.3 Generative models

We show our modified ClipCap model in Fig. 8. As in ClipCap [33], we provide
CLIP image representations to a mapping network, which produces prefix tokens
as input for GPT-2. We then tokenize our question and ground-truth answer
(appended with an end-of-sequence string, hEOSi) and also provide these tokens
as input. The remaining input tokens (in black) are zero-padding. As mentioned
in our paper, we also appended the (pre-tokenized) question string with “Choices:
...” during the MC setting.

This model is trained autoregressively. I.e., Oi is generated conditionally,
given I0 · · · Ii (for input tokens I and output logits O), and supervised with
a cross-entropy loss against the next sequence token Ii+1. In our case, we only
compute this cross-entropy loss for outputs corresponding with the ground-truth
answer tokens (including hEOSi).

At inference time, we prompt GPT-2 with our image prefix and question
tokens. We have the model predict the most likely next token (i.e. generating a
token in the answer) from the output logits. We append this token to the input
and repeat this step, until the model predicts hEOSi. We can use the tokenizer
to decode these output tokens (excluding hEOSi), producing our model’s textual
answer prediction. Note that beam search is an alternative way to generate text
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from autoregressive language models, but we found that it led to worse results,
likely because the answers we are trying to generate are short (e.g. 1-3 words).

We fine-tuned the models in our experiments (choosing the checkpoint with
the best F1 validation score for generated answers over 10 epochs), using the
settings and COCO pre-trained weights (for the MLP mapping network) made
available by the ClipCap authors 8. For the pre-trained MLP model, they used
CLIP ViT-B/32 features, produced 10 image prefix tokens, and had also fine-
tuned GPT-2 (for their image captioning task). We further fine-tuned the GPT-2
weights on our task.

…

…

GPT-2

What is the 
possible 

hazard faced 
by the 

animal?

Tokenizer

CLIP

Mapping 
Network

being 
stuck

<EOS>

Cross Entropy Loss
(                 ,                  )

Tokenizer

Getting stuck <EOSх ͙

Generated Text

Fig. 8: Diagram of modified ClipCap architecture for VQA tasks.

C Additional Details for Rationale Generation

We generated rationales from ClipCap in a nearly identical manner to how we
generated answers (see Sec. B.3 and Fig. 8 above). However, we replace the
ground-truth answer string/tokens with a ground-truth rationale. And, we don’t
provide “Choices: ...” in the ClipCap prompt for the MC setting. We also use
beam search during generation, as it seems to perform better for these longer
strings. We also use the MLP mapping network and continue to fine-tune GPT-
2, as it demonstrates the best performance for this task. We again fine-tuned
this model on our training data for 10 epochs and picked the checkpoints with
best BLEU and METEOR validation scores.

We show some examples of generated rationales in Fig. 9.

8 https://github.com/rmokady/CLIP_prefix_caption

https://github.com/rmokady/CLIP_prefix_caption
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Q: What is the frequent vehicle on 
this pictured street?

(A) motorcycle (B) van (C) semi (D) bicycle

Generated: There are many 
motorbikes on the street.

Ground-truth: A large group of 
people on motorcycles are gathered 
in the middle of the street.

Q: What will happen if the ball is hit 
past the fence by the batter?

(A) home run (B) out (C) walk (D) game over

Generated: If the ball is hit past the 
fence by the batter, the ball will be 
thrown back to the pitcher

Ground-truth: The two men are 
playing baseball and ball over it 
means run all bases for one score.

What kind of flavor would 
the fruit on the pizza add?

(A) sweet (B) spicy (C) sour (D) 
umami

Generated: The fruit on the 
pizza adds a lot of flavor to it.

Ground-truth: Most fruits are 
sugary.

Fig. 9: Examples of rationales generated by our modified ClipCap method for
examples in our validation set.

D Additional Details for Specialized Models

For all of these models, we use the same training hyperparameters as the original
implementation. For all of the discriminative methods in the paper we use a fixed
vocabulary constructed from direct answers that appeared two or more times in
the training set. This includes 2,133 bi-grams or unigrams, with 1,937 words.

Pythia [20] Pythia is a modification of [1] that introduces changes to the
architecture and learning schedule and utilizes more training data. We fine-tune
it on the A-OKVQA dataset. For fine-tuning, we replace the top classification
layer with a randomly initialized layer for our set of answer vocabulary.

LXMERT [45] LXMERT is a Transformer-based vision and language model
pre-trained using a large amount of image-sentence pairs for a set of pre-training
tasks such as masked language modeling and object prediction. The model is pre-
trained on VQAv2 [12], GQA [14], VG-QA [56], COCO captions [7], and Visual
Genome captions [23]. We then fine-tune the model using the training set of
A-OKVQA.

VilBERT [28] ViLBERT is an extension of the BERT architecture to pro-
cess vision and language modalities for learning a joint representation for them.
ViLBERT has been pre-trained on proxy tasks, but it has been evaluated on
VQA as a downstream task. ViLBERT is pre-trained using Conceptual Cap-
tions [42] and fine-tuned on A-OKVQA. To evaluate how well a model trained
on VQAv2 or OK-VQA performs on A-OKVQA, we fine-tune ViLBERT after
training them on thoese datasets. These models are referred to as ‘ViLBERT-
VQA’ and ‘ViLBERT-OK-VQA’ in Table 5.
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KRISP [31] KRISP is a method for knowledge-based VQA which com-
bines multi-modal Transformers with graph neural networks methods on knowl-
edge graphs. We use the same models and data and knowledge sources and
pre-processing steps as in that work, but filter the knowledge graph based on
A-OKVQA rather than OK-VQA (see Sec. 3.2 of [31]).

GPV-2 [22]GPV-2 [22] is a generative vision and language model built using
the T5 [39] language model and VinVL [54] image features. It was pre-trained on
Conceptual Captions [42] and then fine-tuned in a multi-task setting on image
captioning, visual question answering, object localization, and classification, as
well on web-search images for 10,000 visual concepts.

We fine-tune the fully-trained model on A-OKVQA by training it to generate
the most common answer for each question. For direct answer evaluations, an-
swers are then generated using beam search with 20 beams. For multiple choice,
the answers are ranked by the log-probability score assigned to them by the
model.

We perform two additional experiments with rationales with this model.
First, ground-truth rationales are appended to the question as additional in-
put text. Recall that we do not provide rationales at test time. However, for this
experiment we use them during test. We refer to this model as ‘GPV-2 + GT
Ratl.’. Second, we use the same setting, but we replace every occurrence of the
ground-truth answer in the rationale with the [answer] token. We refer to this
model as ‘GPV-2 [22] + Masked Ans.’ in Table 5.

E Knowledge Type Results

We use the test subset that we collected knowledge types on (see Sec. 4) to look
at the accuracy of these models for di↵erent types of knowledge. In Table 8,
we see that while again GPV is the best overall and in every category, the re-
sults show some interesting distinctions. KRISP, which is specifically designed
with access to explicit knowledge sources such as ConceptNet [26] performs bet-
ter on “Knowledge Base” questions compared with other discriminative multi-
modal transformer methods such as VilBERT and LXMERT as well compared
to ClipCap which has an overall higher performance. It also performs better on
“Physical Knowledge” which also tends to overlap with its knowledge sources.

Table 8: Analysis of results based on knowledge type.

Model Commonsense Knowledge Base Physical Knowledge Visual Knowledge

VilBERT [28] 24.30 19.96 29.76 26.55

LXMERT [45] 25.51 16.01 27.38 27.23

KRISP [31] 26.63 20.72 39.29 26.09

ClipCap [33] 27.19 16.57 30.95 33.41

GR-GPT 21.42 12.99 17.86 24.79

GPV-2 [22] 39.76 25.24 44.05 41.19
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F Biases

Our dataset has its own set of biases. Here are some examples: (1) The dataset is
based on COCO, originally intended for identifying 80 object categories. Hence,
the same biases exist in our dataset. For instance, because of the composition of
those 80 categories, images of baseball fields and safaris (and hence questions)
are more common than one might otherwise expect. (2) Selecting the choice
that appears most frequently in the train set achieves above chance performance
in the multiple-choice setting (although it performs poorly in the direct an-
swer setting) as shown in Table 3-row (c). (3) For automated filtering, we used
Pythia and RoBERTa trained on specific datasets. Hence, our data is biased by
those methods as well. Regarding social biases, we checked the entire dataset
and removed questions including o↵ensive language, racial or gender biases, and
stereotypes.
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