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Supplementary material

This is a supplementary material for the paper, Facial Depth and Normal Esti-
mation using Single Dual-Pixel Camera. We will further describe details: ground
truth acquisition process of our facial DP dataset (Sec. A), concrete description
of evaluation metrics (Sec. B), precise algorithm of our Adaptive Normal Module
(Sec. C), and generalization experiments using our network and dataset (Sec. D).

A Ground-Truth Acquisition

In this section, we describe the precise ways of ground truth depth acquisi-
tion processes from our hardware setup. These processes consist of three sub-
processes: (1) depth from structured light (Sec. A.1) (2) multi-view depth refine-
ment (Sec. A.2) (3) normal-assisted depth refinement (Sec. A.4). To this end,
we explain detail of our process to acquire parameters of Eq. 1 in manuscript.

A.1 Depth from Structured Light

Under the carefully designed hardware setup, we start to acquire initial ground
truth depth maps from structured light. We would like to briefly explain detail
processes to acquire unwrapped phase images from coded patterns. As in [24,23],
we use 12 horizontal patterns and 10 vertical patterns consisting of 6-bit inverse
gray-code (Fig. 13-(a),(b)) to get unwrapped phase images, and 8 phase-shifting
patterns [19,55] (Fig. 13-(c)) for phase correction [30]. These pattern images are
used to acquire two (horizontal/vertical) unwrapped phase images per camera
view. Then, we estimate dense correspondences based on a standard phase un-
wrapping method [55]. After that, consistency between multi-view unwrapped
phase images’ intensity is used to get high quality of facial depth following [23].

A.2 Multi-View Depth Refinement

Structured light can give us high-quality facial geometry that can be regarded as
the ground-truth depth maps. There still exists outliers that mainly comes from
small movement of face while capturing different coded patterns. To resolve this
problem, we check the visibility of acquired points in perspective view of each
camera and remove outliers of gathered point clouds with considering neighbor
points. Finally, we check each points’ multi-view photometric/depth consistency
(each point should be visible from more than two sampled views) to determine
whether the point is inlier or not. Results in Fig. 14 shows that this refinement
process can reduce outliers effectively without loosing inliers.

A.3 Surface Normal from Photometric Stereo

In this section, we will explain our progress to get good quality of normal map
to be used for supervised signal in training step. We use a photometric stereo
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(c) Images with phase-shifting patterns(b) Images with vertical patterns

(a) Images with horizontal patterns

Fig. 13. Gray-code patterns and decoding process used in Structured-Light
based ground-truth acquisition. (a) Images captured with 12 horizontal patterns
and acquired unwrapped phase image. (b) Images captured with 10 vertical patterns
and acquired unwrapped phase image. (c) Images captured with phase-shifting patterns
to refine acquired unwrapped phase images.

(a) Before refinement (b) After multi-view refinement

Fig. 14. Results of multi-view depth refinement. We visualize point clouds (a)
before refinement and (b) after multi-view refinement.

as reported in [49] to estimate surface normal of the subjects’ face. First, we
capture multiple images with light from varying directions. We calibrate the
lighting directions using a chrome ball and estimate them as follows:

L = 2(n ·R)N−R,where R = (0, 0, 1)⊺,n =
1

r
(nx, ny, nz),

nx = hx − cx, ny = hy − cy, nz =
√

r2 − n2
x − n2

y,

(6)

where c and h are the center of a chrome ball, and the center of specular reflec-
tion, respectively. r is the norm of the normal vector (nx, ny, nz). By finding the
distance between the centers c and h, the lighting direction L = (Lx, Ly, Lz) can
be calculated using Eq. 6.
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(a) (b) (c) (d) (e)

Fig. 15. Visualization of an example face of the normal-guided depth refine-
ment. (a) 3D mesh and (b) depth map before refinement. (c) An estimated normal
map. (d) Refined mesh and (e) depth map after normal-guided depth refinement.

Then, we compute the surface normal of the subject by solving a large over-
constrained linear system as below:N1

...
Np

 =

I1...
Ip

 [Lx, Ly, Lz]
⊺, p ∈ P, (7)

Finally, we follow outlier-robust scheme [48,27] to reject non-Lambertian ob-
servations by regarding them as outliers.

A.4 Normal-guided Depth Refinement

We further continue to remove outliers and improve the quality of depth by
constraining the surface gradient with given normal map from Sec. A.3, which
is orthogonal to the photometric normal while keeping its original position as
possible. For this, we formulate an energy function consisting of two error terms:
the position error Ed and the normal error En:

E = λEd + (1− λ)En,

Ed =
∥∥Xp −Xm

p

∥∥ ,
En =

∑
p

(
[Tx (Xp) ·Np]

2 + [Ty (Xp) ·Np]
2) (8)

where Xp, Tx,y(Xp) are a 3D point and its surface gradient in the x, y-
direction, respectively. λ is the balancing term between the position and the
normal errors. The entire minimization is also formulated as an over-constrained
linear system to be solved by least squares as described in [49].

As shown in the Fig. 15, the refinement process effectively removes outliers
and improves the overall quality of facial geometry by alleviating the line-artifact
and noisy 3D points.

A.5 Conversion from Disparity to Metric Depth

Given the estimated defocus-disparity from our proposed network, StereoDP-
Net, we provide exact conversion between the disparity and the metric depth
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(c) Correct conversion (d) Incorrect conversion(a)DP input (b) Disparity / Surface Normal

Fig. 16. Facial reconstruction from given facial DP image. Given DP input of
(a), our proposed StereoDPNet estimates disparity map and surface normal in (b). We
show the reconstructed point cloud using correct/incorrect conversion of Sec. A.5 in
(c), (d) to show the importance of our calibration process.

(a) Acquisition of depth and defocus-disparity from calibration process. (b) Find parameters of Eq [1] by line fitting.

Fig. 17. Defocus-disparity to metric depth. (a) We first acquire defocus-disparity
and depth obtained by a plane homography. (b) Using the acquired depth and disparity,
we find parameters of Eq. 1.

in Sec. 4.3 in the manuscript. As shown in Fig. 16, finding the correct relation-
ship is critical to facial 3D reconstruction since the wrong conversion can result
twisted shape. Here, we explain our calibration process in details that covers
conversion between a defocus-disparity and a metric-scale depth.

In Fig. 17 (a), we compute the corresponding pair of points of left/right DP
images. In particular, we adopt the saddle point refinement method [25] that is
robust to defocus blur in DP images. By doing so, we obtain plane depth and
defocus-disparity at each point.

In Fig. 17 (b), following Eq. 1, we use the linear relation between the ob-
tained inverse depth and defocus-disparity measurements. To find calibration
parameters, we first compute the bias B(L, f, g) and the slope A(L, f, g) through

least-square optimization. Then, we obtain the focus distance g=−A(L,f,g)
B(L,f,g) . Us-

ing focal length f and F number that are pre-defined by the lens condition, we
calculate the aperture L. α is acquired from the slope A(L, f, g). Finally, we get
all the calibration parameters of Eq. 1.
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B Evaluation Metrics

Depth Metrics. Previous studies [16,51] predict depth with affine ambiguity.
Therefore, their methods only provide experimental results with affine invariant
metrics. Following [16], we measure the quality of affine transformed depth as:

• Affine invariant metrics

- AIWE(p) : min
a,b

(∑W
u=1

∑H
v=1|du,v−(ad̂u,v+b)|p

|H·W |

)1/p

- WMAE = AIWE(1)
- WRMSE = AIWE(2)

Furthermore, based on our calibration parameters (Sec. A.5), we are able to
measure the accuracy of absolute-scale depth4 as:

• Absolute metrics

- RMSE :

√
1

|H·W |
∑W

u=1

∑H
v=1

∣∣∣Zu,v − Ẑu,v

∣∣∣2
- AbsRel : 1

|H·W |
∑W

u=1

∑H
v=1

∣∣∣(Zu,v − Ẑu,v

)
/Zu,v

∣∣∣
- MAE : 1

|H·W |
∑W

u=1

∑H
v=1

∣∣∣Zu,v − Ẑu,v

∣∣∣
- δi : 1

|H·W |
∑W

u=1

∑H
v=1

(
max

(
Zu,v

Ẑu,v
,
Ẑu,v

Zu,v

)
< τ i

)
where Ẑ denotes estimated depth and Z denotes ground-truth depth. Here, we
used τ as 1.01 where i ∈ {1, 2, 3}.
Normal Metrics. Following [38], we use Mean Angular Error (MAE) and
Root Mean Square Angular Error (RMSAE) as:

• Normal metrics
- MAE : 1

|H·W |
∑W

u=1

∑H
v=1 arccos (nu,v · n̂u,v)

- RMSAE :
√

1
|H·W |

∑W
u=1

∑H
v=1 arccos (nu,v · n̂u,v)

2

4 http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/
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C Details of Adaptive Normal Module

In this paper, we propose two sub-modules for predicting depth and surface
normal from a single pair of facial DP images. Here, we describe details of surface
sampling layer of our proposed ANM in Alg. 1, and Alg. 2.

Algorithm 1 Surface Sampling in ANM

Require: Aggregated Cost Volume, CA ∈ RC×M×H×W

Inferred disparity, d̂ ∈ RH×W

Number of sampled neighbors, P=4
Number of hypothesis planes in CA, M=8

1: procedure SurfaceSample(CA, d̂, P , M)
2: d̃P ←Convert-Disparity-to-VolumeIndex(d̂,M) ▷ Alg. 2
3: CS ←Sample-P -Closest-Neighbors(CA, d̃P, P,M)
4: return Sampled volume CS ∈ RC×P×H×W

5: end procedure

Algorithm 2 Ray Sampling in Volume

Require: Inferred disparity d̂ ∈ RH×W

Number of hypothesis planes in CA, M=8
dmin = d0, dmax = dm (Eq. 2 of the manuscript)
VolumeIndex d̃P ∈ R3×H×W

1: procedure Convert-Disparity-to-VolumeIndex(d̂, M)
2: for (u, v) in d̂ do

3: d̃P(u,v) ←
(
u, v,

d̂(u,v)−dmin

dmax−dmin
·M

)
4: end for
5: return VolumeIndex d̃P ∈ R3×H×W

6: end procedure
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D Supplementary Results

D.1 Comparison of DPNet with the Original

Since there is no public code for DPNet [16], we re-implement DPNet [16] by
ourselves following their description. To verify our implementation, we train our
DPNet and measure the performance on their dataset [16]. Although there is
a little performance drop with our implementation compared to the reported
performance in the original paper [16], we show that our implemented model
has similar performance with the original implementation in Table 5.

Method
Affine error metric ↓

AIWE(1) AIWE(2) 1 - ρ

DPNet (reported in [16]) 0.0581 0.0735 0.827
DPNet (reimplemented) 0.073 0.09 0.883

Table 5. Comparison of DPNet reported in [16] and re-implemented by
ours. We measure the performance of our re-implemented DPNet on their dataset [16]
and compare with the reported performance in [16]. Note that we don’t use their affine
invariant loss to purely verify the performance of the model.

D.2 Application : Face Relighting

Although our main goal is to estimate the depth and normal from DP images,
we introduce naive methods for one of the applications, face relighting, that can
be the baseline for future works.
Face Relighting. Given the reference images and the surface normals from
StereoDPNet, we generate relighted images using a Ratio Image-based method
[75]. The target spherical harmonic lightings are randomly sampled and the
lighting directions of reference images are inferred with SfSNet [58]. The results
are shown in Fig. 18.

D.3 Real-World Results

We show additional real-world results with unmet environment to demonstrate
our method and dataset’s generality in Fig. 20 and in Fig. 21 similar to Fig. 8 of
manuscript. We also note that our method is able to apply with various camera
parameters (focus distance from 1.0m to 1.5m and F-number from 2.0 to 7.1).
We also demonstrate that our method can deal with various facial expressions
in Fig. 19.
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DP Input DP Input DP InputSurface Normal Surface Normal Surface Normal

Fig. 18. Face relighting from our estimated surface normal. We display the
original DP image, estimated normal map from StereoDPNet, and two different relit
images with sampled lighting directions.

DP Input Point Cloud

NormalDepth

Point Cloud

NormalDepth

DP Input DP Input

NormalDepth

Point Cloud

Fig. 19. Depth and Normal with facial expressions. We demonstrate that our
method can cover face with various facial expressions thanks to our carefully designed
facial dataset.
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(A) StereoNet (B) DPNet (C) BTS (D) NNet (Depth and Normal) (E) Ours (Depth and Normal)

#F : 5.6
Focus : 1.5m

#F : 7.1
Focus : 1.0m

#F : 5.6
Focus : 1.2m

#F : 5.6
Focus : 1.0m

#F : 2.0
Focus : 1.5m

#F : 2.2
Focus : 1.0m

Fig. 20. Real-world results. More real-world results with captured camera settings
similar to Fig. 8.
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(A) StereoNet (B) DPNet (C) BTS (D) NNet (Depth and Normal) (E) Ours (Depth and Normal)

#F : 2.0
Focus : 1.5m

#F : 2.0
Focus : 1.5m

#F : 2.2
Focus : 1.5m

#F : 2.0
Focus : 1.0m

#F : 5.6
Focus : 1.2m

#F : 5.6
Focus : 1.2m

Fig. 21. Real-world results. More real-world results with captured camera settings
similar to Fig. 8.
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